
Understanding Generalization in Deep Learning via Tensor Methods

Supplementary Material

Supplementary material for the paper: “Understanding Generalization in Deep Learning via Tensor Methods”.
This appendix is organized as follows:

• Appendix A: Experimental details and additional results

• Appendix B: Technical definitions and propositions

• Appendix C: Main technical contributions

• Appendix D, E, and F: Generalization bounds on three types of neural networks: convolutional neural
networks, fully-connected neural networks, and neural networks with residual connections

• Appendix G: Additional algorithms and algorithmic details

A Additional Experimental Results

A.1 Architecture and optimization setting

We train these four models (VGG-16, CP-VGG-16, WRN-28-10 and CP-WRN-28-10) using standard optimization
settings with no dropouts and default initializations provided by PyTorch (Paszke et al., 2017). We use a
SGD optimizer with momentum=0.9, weight decay=5e-4, and initial learning rate=0.05 to start the training
process. The learning rate is scheduled to be divided by 2 every 30 epochs for VGG-16 and CP-VGG-16. While
for WRN-28-10 and CP-WRN-28-10, the learning rate is scheduled to be divided by 5 at the 60th, 120th and
160th epoch. We run 300 epochs to train each VGG-16 and CP-VGG-16, and we run 200 epochs to train each
WRN-28-10 and CP-WRN-28-10.

A.2 Generalization bounds comparison with (Arora et al., 2018)

The generalization bound we calculated for a well-trained CP-VGG-16 (with the same # of parameters as VGG-16)
on CIFAR10 dataset is around 12 (thus, of order 101) according to the transformation f(x) = x/20− 0.5 applied
in Figure 2b. Our evaluated bound is much better than naive counting of # parameters. Although we may not
be able to directly compare our calculated bound with that in (Arora et al., 2018), which is roughly of order
105 as (Arora et al., 2018) uses a VGG-19 to evaluate their generalization bound while our evaluation is done
using a CP-VGG-16, we present in Table 4 the effective number of parameters identified by our proposed bound.
Compared with the effective number of parameters in (Arora et al., 2018) (Table 1 of (Arora et al., 2018)), we can
see that (1) our effective number of parameters is upper bounded by the total number of parameters in original
network (thus, the compression ratio is bounded by 1), while the effective number identified by (Arora et al.,
2018) could be several times larger than the original number of parameters (e.g. based on Table 1 of (Arora et al.,
2018), their effective number of parameters in layer 4 and 6 are more than 4 times of the original number of
parameters); (2) the effective number of parameters in (Arora et al., 2018) ignores the dependence on depth,
log factors and constants, while our effective number of parameters in Table 4 is exactly the actual number of
parameters in the compressed network without these dependences.

A.3 Neural networks with CPL are natural for compression

The compression results in Table 5 are obtained directly without any fine tuning.

A.4 Improved Generalization Achieved by CPL

We provide additional experimental details in the improved generalization ability achieved by CPL under label
noise setting. Our CPL combined with co-teaching (CT) (Han et al., 2018) outperforms SOTA method. Co-
teaching (Han et al., 2018) is a training procedure for defeating label noise: it avoids overfitting to noisy labels by
selecting clean samples out of the noisy ones and using them to update the network. Given the experimental
results that neural networks with CPL tend to overfit less to noisy labels (Table 3), we combine Co-teaching to
train networks with CPL on three different types of corrupted data (Table 3). The hyperparameters we use in
these experiments are the same as the ones in Co-teaching [2].

As shown in Table 3, we compare our method CT+CPL against various label-noise methods (Han et al., 2018)
under standard label noise setting (Han et al., 2018). (1) As shown in Figure 5, our method (CT+CPL)
consistently outperforms the SOTA method with various choices of the number of components. (1.1) Specifically,
according to Table 3, we see that combining CPL with co-teaching achieves the SOTA results on MNIST for

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Table 4: Effective number of parameters identified by our proposed bound in Theorem 4.5.

layer
original

of params
our effective
of params

our
compression ratio

effective # of params
in Arora et al. (2018)

compression ratio
in Arora et al. (2018)

1 1728 1694 0.980324 10728.622 6.208693
2 36864 36984 1.003255 63681.09 1.727460
3 73728 73932 1.002767 116967.945 1.586479
4 147456 147630 1.001180 910160.75 6.172423
5 294912 295106 1.000658 817337.9 2.771464
6 589824 590904 1.001831 3913927.2 6.635754
7 589824 590904 1.001831 15346982.0 26.019596
8 1179648 1177892 0.998511 367775.12 0.311767
9 2359296 2288242 0.969883 95893.41 0.040645
10 2359296 1774344 0.752065 87476.836 0.037078
11 2359296 350526 0.148572 42480.465 0.018006
12 2359296 42394 0.017969 40184.535 0.017032
13 2359296 124080 0.052592 137974.52 0.058481

Table 5: The compression results of a 28-layer Wide-ResNet equipped with CPL (CP-WRN-28-10) on CIFAR10
dataset. The compression is done via normalizing the CP spectrum and then deleting the components in CPL
which have amplitudes smaller than the given cut-off-threshold.

Cut-off threshold Compression ratio # params Test acc %
0 1× 36.5M 95.09

1e-4 0.229 (4×) 8.36M 95.08
1e-3 0.164 (5×) 6.90M 95.05
1e-2 0.124 (8×) 4.52M 94.53

PairFlip3 with corruption rate 45% and Symmetric4 with corruption rate 50%. (1.2) We also investigate the
learning curve of our method compared with the SOTA (see Figure 6.). The models first reach best test accuracy
early in the training, and then the test accuracy deteriorates as training goes on due to memorization effect. We see
that our method always dominates the vanilla CT method when generalizability of the model starts to deteriorate
due to memorization effect. This clearly shows that a neural network with CPL has better generalizability
property than the plain neural network under this label noise setting. (2) For the Symmetric-20% in Table 3, as
the label corruption rate is low, our method has a low effect in improving the generalization, which is expected.

0.2 0.4 0.6 0.8
91.5

92

92.5

93

Compression ratio

T
es

t
ac

cu
ra

cy
(%

)

CT
CT+CPL

(a) PairFlip-45%

0.2 0.4 0.6 0.8

94

94.5

95

Compression ratio

T
es

t
ac

cu
ra

cy
(%

)

CT
CT+CPL

(b) Symmetric-50%

Figure 5: Test accuracy vs. different compression ratios

Remark. The results displayed in Figure 5 and Figure 6 are based on our implementation of the CT method in

3PairFlip denotes that the label mistakes can only happen within very similar classes (Han et al., 2018)
4Symmetric denotes that the label mistakes may happen across different classes uniformly (Han et al., 2018)

Understanding Generalization in Deep Learning via Tensor Methods

0 50 100 150 200
90

92

94

96

98

100

Epoch

A
cc

u
ra

cy
(%

)
CT
CT+CPL

(a) PairFlip-45%

0 50 100 150 200

94

96

98

100

Epoch

A
cc

u
ra

cy
(%

)

CT
CT+CPL

(b) Symmetric-50%

Figure 6: Convergence plots of test accuracy vs. number of epochs on MNIST data

order to achieve a fair comparison, while the results displayed in Table 3 are based on the reported accuracies
by (Han et al., 2018) as we would like to compare our CT+CPL with other different label-noise methods as
well.

A.5 Compressibility of CPL: Property Evaluation CPL

0 500 1,000 1,500 2,000

0

0.05

0.1

Index of the components

U
n

n
or

m
al

iz
ed

am
p

li
tu

d
e well-trained

corrupted
random

(a) CP spectrum with unnormalized amplitudes

0 500 1,000 1,500 2,000

0

0.5

1

Index of the components

N
or

m
al

iz
ed

am
p

li
tu

d
e

well-trained
corrupted
random

(b) CP spectrum with normalized amplitudes

Figure 7: Comparison of the CP spectra of a well-trained, a corrupted, and a randomly initialized CP-VGG-16
a the 13th convolutional layer

Figure 7b displays the CP spectral of a well-trained, a corrupted, and a randomly initialized CP-VGG-16 (at the
13th convolutional layer). For the unnormalized CP spectra of three models in Figure 7b(a), we can see that the
largest amplitude in the CP spectrum of the corrupted CP-VGG-16 is much smaller than that of well-trained and
random models. Yet, a smaller leading value in the CP spectrum does not necessarily mean that the corrupted
is more low rank. As shown in Figure 7b(b), after normalizing the CP spectrum of each model by its largest
amplitude, well-trained CP-VGG-16 still has the most low-rank CP spectrum (the blue curve) than that of
corrupted or random models. Notice that the random model has the least low rankness since its weight tensors
are the closest to random noise and thus it is hard to compress them.

We also compare our proposed properties among the three different sets of CP-VGG-16: well-trained, corrupted,
and randomly initialized. As shown in Figure 8, since random models have the least compressibility as their weight
tensors are closest to random noise, properties that focus more on the compressibility of the model are larger
on random models (e.g tensor noise bound), which will lead to larger generalization bounds. In the meantime,
properties that focus more on measuring the information loss after compression as well as the expressive power of
the models (e.g. Fourier factors) are smaller for random models. The reason why well-trained models have the
largest tensorization factor is in Figure 7b as the corrupted model usually has a very small leading value in its
CP spectrum of later layers; yet as explained before, this does not necessarily indicate that corrupted models
have more compressibility or low-rankness. The reason why the CP spectrum of corrupted models tend to have a
small leading value is still a interesting question to study and we defer this to future work.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

2 4 6 8 10 12

0.5

1.0

1.5

2.0

layers

va
lu

es

rank across layers

well trained
corrupted
random

(a) Rank R

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

layers

va
lu

es

tensorization factor across layers

well trained
corrupted
random

(b) TF t
(k)
j

2 4 6 8 10 12

0.00

0.25

0.50

0.75

1.00

1.25

1.50

·10−2

layers

va
lu

es

tensor noise bound across layers

well trained
corrupted
random

(c) TNB ξ
(k)
j

2 4 6 8 10 12

0.0

0.2

0.4

0.6

0.8

1.0

1.2

layers

well trained
corrupted
random

(d) LC ζ(k)

2 4 6 8 10 12

2

4

6

layers

va
lu

es

norm across layers

well trained
corrupted
random

(e) ‖M‖F

2 4 6 8 10 12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
·10−2

layers

va
lu

es

right hand side across layers

well trained
corrupted
random

(f) RHS

Figure 8: Comparison of proposed properties among well-trained, corrupted and randomly-initialized CP-VGG-16
models

Optimization settings for obtaining the well-trained, corrupted, and randomly initialized models
of CP-VGG-16. We obtain well-trained CP-VGG-16 using the same hyperparameter settings as mentioned in
Appendix Section A.1. For corrupted CP-VGG-16, we train the model under 50% of label noise but using the
same set of hyperparameters as the well-trained models. For CP-VGG-16 with random initialization, we just
train the models for less than 1 epoch. For each set of these models, we obtain 200 instances using different
random seeds.

B Common Definitions and Propositions

In this section, we will briefly review three key concepts underlying all analysis in this work, including (multidi-
mensional discrete Fourier transform), CP decomposition and 2D-convolutional layer in neural networks.

B.1 Multidimensional Discrete Fourier Transform (MDFT)

Definition B.1. (Multidimensional discrete Fourier transform, MDFT) An m-dimensional MDFT Fm defines a
mapping from an m-order tensor X ∈ RN1×···×Nm to another complex m-order tensor X̃ ∈ CN1×···×Nm such that

X̃f1,...,fm =

(
m∏
l=1

Nl

)− 1
2 N1∑
n1=1

· · ·
Nm∑
nm=1

Xn1,··· ,nm

(
m∏
l=1

ωflnl

Nl

)
(6)

where ωNl
= exp (−j2π/Nl) and (

∏m
l=1Nl)

− 1
2 is the normalization factor that makes Fm unitary. Through out

the paper, we will use symbols with tilde (e.g. X̃) to denote tensors after MDFT.

MDFT can also be applied on a subset of the dimensions I ⊆ [m], and in this case we denote the mapping as FIm.

X̃i1,...,im =

(∏
l∈I

Nl

)− 1
2 ∑
∀l∈I

Xn1,··· ,nm

(∏
l∈I

ωflnl

Nl

)
(7)

where il = fl if l ∈ I and il = nl for l /∈ I.

Fact B.2. (Separability of MDFT) An m-dimensional MDFT Fm is equivalent to a composition of m unidimen-
sional DFTs, i.e.

Fm = F1
m ◦ F2

m ◦ · · · ◦ Fmm (8)

Similarly, FIm is identical to a composition of |I| unidimensional DFTs over corresponding dimensions.

Understanding Generalization in Deep Learning via Tensor Methods

Fact B.3. (MDFT is unitary) For an MDFT F , its adjoint F∗ is equal to its inverse F−1, i.e. F∗ = F−1. An
immediate corollary of this property is that the operator norm is invariant to MDFT: Given an operator A, its
operator norm of A is equal to F∗AF , i.e. ‖A‖ = ‖F∗AF‖.

B.2 CP decomposition

Definition B.4. (CP decomposition) Given an m-order tensor T ∈ RN1×···×Nm , a CP decomposition factorizes
T into m core factors {Kl}ml=1 with Kl ∈ RR×Nl (with its rth column as klr ∈ RNl) such that

T =

R∑
r=1

λrk
1
r ⊗ · · · ⊗ kmr (9a)

Tn1,··· ,nm
=

R∑
r=1

λrK
1
r,n1
· · ·Km

r,nm
(9b)

where each column klr has unit `2 norm, i.e. ‖klr‖2 = 1,∀r ∈ [R], l ∈ [m]. Without loss of generality, we assume
the CP eigenvalues are positive and sorted in decreasing order, i.e. λ1 ≥ λ2 ≥ · · · ≥ λm > 0. If the columns in Kl

are orthogonal, i.e. 〈klr,klr′〉 = 1 for r 6= r′, the factorization is further named as orthogonal CP decomposition.

Lemma B.5. (MDFT of CP decomposition) If an m-order tensor T ∈ RN1×···×Nm takes a CP decomposition as
in Eq. (9a), its (all-dimensional) MDFT T̃ = Fm(T) ∈ CN1×···×Nm also takes a CP format as

T̃ =

R∑
r=1

λrk̃
1
r ⊗ · · · ⊗ k̃mr (10)

T̃f1,··· ,fm =

R∑
r=1

λrK̃
1
r,f1 · · · K̃

m
r,fm (11)

where K̃l = F2
2 (Kl),∀l ∈ [m]. The result can be extended to MDFT where a subset of dimensions are transformed.

Proof. (of Lemma B.5) According to the definition of multidimensional discrete Fourier transform, we have

T̃n1,··· ,nm
=

(
m∏
l=1

Nl

)− 1
2 N1∑
n1=1

· · ·
Nm∑
nm=1

Tn1,··· ,nm

(
m∏
l=1

ωflnl

Nl

)
(12)

=

(
m∏
l=1

Nl

)− 1
2 N1∑
n1=1

· · ·
Nm∑
nm=1

(
R∑
r=1

λrK̃
1
r,n1
· · · K̃m

r,nm

)(
m∏
l=1

ωflnl

Nl

)
(13)

=

R∑
r=1

λr

(
N
−1/2
1

N1∑
n1=1

K1
r,n1

ωf1n1

N1

)
· · ·

(
N−1/2m

Nm∑
nm=1

Km
r,nm

ωfmnm

Nm

)
(14)

=

R∑
r=1

λrK̃
1
r,f1 · · · K̃

m
r,fm (15)

which completes the proof.

B.3 2D-Convolutional Layer in Neural Networks

Definition B.6. (2D-convolutional layer) In CNNs, a 2D-convolutional layer is parametrized by a 4th-order
tensorM∈ Rkx×ky×T×S (with kx×ky kernels). It defines a mapping from a 3rd-order input tensor X ∈ RH×W×S
(with S channels) to another 3rd-order output tensor Y ∈ RH×W×T (with T channels).

Y:,:,t =

S∑
s=1

M:,:,t,s ∗ X:,:,s (16)

Yi,j,t =

S∑
s=1

∑
p,q

Mi−p,j−q,t,sXp,q,s (17)

where ∗ represents a 2D-convolution operator.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Lemma B.7. (Convolutional theorem of 2D-convolutional layer) Suppose X̃ = F1,2
3 (X) ∈ CH×W×S , M̃ =

F1,2
4 (M) ∈ CH×W×T×S and Ỹ = F1,2

3 (Y) ∈ CH×W×T are the MDFT of input, weights and outputs tensors X ,
W and Y respectively, then these three tensors satisfy the following equation:

Ỹf,g,t =
√
HW

S∑
s=1

M̃f,g,t,sX̃f,g,s (18)

Notice that the equation has a constant
√
HW since we use a normalized MDFT.

Proof. (of Lemma B.7) The theorem can be easily proved by applying MDFT on both sides of Eq. (17).

Ỹf,g,t =
1√
HW

∑
i,j

Yi,j,tωifHω
jg
W (19)

=
1√
HW

∑
i,j

(
S∑
s=1

∑
p,q

Mi−p,j−q,t,sXp,q,s

)
ωifHω

jg
W (20)

=
√
HW

S∑
s=1

 1√
HW

∑
i,j

Mi−p,j−q,t,sω
(i−p)f
H ω

(j−q)g
W

(1√
HW

∑
p,q

Xp,q,sωpfH ωqgW

)
(21)

=
√
HW

S∑
s=1

M̃f,g,t,sX̃f,g,s (22)

Lemma B.8. (Operator norm of 2D-convolutional layer) Suppose we rewrite the tensors in matrix/vector form,

i.e. X̃f,g,s = x̃
(f,g)
s , M̃f,g,t = M̃

(f,g)
t,s , Ỹf,g,t = ỹ

(f,g)
t , then Eq. (18) can be written using matrix/vector products:

ỹ
(f,g)
t =

S∑
s=1

M̃
(f,g)
t,s ỹ

(f,g)
t , ∀f, g (23)

The operator norm of M, defined as ‖M‖ = max‖X‖F=1 ‖Y‖F , can be obtained by spectral norms of M̃ (f,g) as:

‖M‖ =
√
HW max

f,g

∥∥∥M (f,g)
∥∥∥
2

(24)

Remarks. The bound is first given by Sedghi et al. (2018). In this work, we provide a much simpler proof compared
to the original one in Sedghi et al. (2018). In the next section, we show that the bound can be computed without
evaluating the spectral norm if the weights tensor M takes a CP format similar to Eq. (9a).

Proof. (of Lemma B.8) From Fact B.3, we know that ‖M‖ = ‖M̃‖, where ‖M̃‖ = max‖X̃‖F=1 ‖Ỹ‖F . Next, we

bound ‖Ỹ‖2F (i.e.
∑
f,g

∥∥ỹ(f,g)
∥∥2
F

) assuming ‖X̃ ‖22 = 1 (i.e.
∑
f,g

∥∥x̃(f,g)
∥∥2
2

= 1).

‖Ỹ‖2F =
∑
f,g

∥∥∥ỹ(f,g)
∥∥∥2
2

(25)

≤ HW
∑
f,g

∥∥∥M̃ (f,g)
∥∥∥2 ∥∥∥x̃(f,g)

∥∥∥2
2

(26)

≤ HW max
f,g

∥∥∥M̃ (f,g)
∥∥∥2∑

f,g

∥∥∥x̃(f,g)
∥∥∥2
2

(27)

= HW max
f,g

∥∥∥M̃ (f,g)
∥∥∥2 (28)

‖Ỹ‖F ≤
√
HW max

f,g

∥∥∥M̃ (f,g)
∥∥∥ (29)

We complete the proof by observing all inequalities can achieve equality simultaneously.

Understanding Generalization in Deep Learning via Tensor Methods

Definition B.9. (Tensor product) For vectors a ∈ Rn, b ∈ Rm, and c ∈ Rp, their tensor product a⊗ b⊗ c is a
3-way tensor in Rm×n×p, with the (i, j, k)th entry being aibjck. Similarly, for a matrix A ∈ Rn×m and a vector
c ∈ Rp, their tensor product A⊗ c is a m× n× p tensor with the (i, j, k)th entry being Aijck.

Definition B.10. (Kronecker product). Let A be an n× p matrix and B an m× q matrix. The mn× pq matrix

A⊗B =

a1,1B a1,2B · · · a1,pB
a2,1B a2,2B · · · a2,pB

...
...

...
...

an,1B an,2B · · · an,pB

is called the Kronecker product of A and B. The outer product is an instance of Kronecker products.

C CP Layers in Tensorial Neural Networks

In this section, we will introduce three types of neural network layers, whose parameters are factorized in CP
format as in Eq. (9a) (with small variations). For brevity, we omit the layer superscript and denote the input,
layer parameters and output as X , M and Y , and we use Y =M (X) to denote the relations between X , M and
Y.

C.1 CP 2D-convolutional Layer

Definition C.1. (CP 2D-convolutional layer) For a given 2D-convolutional layer in Eq. (17), a CP decomposition
factorizes the weights tensorM∈ RH×W×T×S into three core factors C ∈ RR×kx×ky , U ∈ RR×T , V ∈ RR×S and
a vector of CP eigenvalues λ ∈ RR such that

M =

R∑
r=1

λrCr ⊗ ur ⊗ vr (30)

Mi,j,t,s =

R∑
r=1

λrCr,i,jUr,tVr,s (31)

where λr > 0, ‖Cr‖F = 1, ‖ur‖2 = 1 and ‖vr‖2 = 1 for all r ∈ [R].

Lemma C.2. (Operator norm of CP 2D-convolutional layer) For a 2D-convolutional layer whose weights tensor
takes a CP format as in Eq. (31), the operator norm ‖M‖ is bound by the CP eigenvalues λ as

‖M‖ ≤
√
HW

R∑
r=1

|λr|max
f,g

∣∣∣C̃(f,g)r

∣∣∣ (32)

Proof. (of Lemma C.2) From Fact B.3, the operator norm of M is equal to the one of its MDFT M̃ = F1,2
4 (M),

i.e. ‖M‖ = ‖M̃‖. According to Lemma B.8, it is sufficient to compute the spectral norm for each matrix M̃ (f,g)

individually. Notice that if M takes a CP format, each M̃ (f,g) has a decomposed form as follows

M̃ (f,g) =

R∑
r=1

λrC̃(f,g)r urv
>
r (33a)

M̃
(f,g)
t,s =

R∑
r=1

λrC̃(f,g)r Ur,tVr,s (33b)

where C̃ = F2,3
3 (C) and C̃(f,g)r = C̃r,f,g. The rest of the proof follows the definition of spectral norm of M̃ , i.e.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

‖M̃ (f,g)‖2 = max‖a‖=1 ‖M̃ (f,g)a‖. Let b = M̃ (f,g)a, we can bound the `2 norm of b:

‖b‖2 =
∥∥∥M̃ (f,g)a

∥∥∥
2

=

∥∥∥∥∥
R∑
r=1

λrC̃(f,g)r urV
>
r a

∥∥∥∥∥
2

(34)

≤
R∑
r=1

∣∣∣λrC̃(f,g)r

(
v>r a

)∣∣∣ ‖ur‖2 (35)

=

R∑
r=1

∣∣∣λrC̃(f,g)r

(
v>r a

)∣∣∣ (36)

≤
R∑
r=1

|λr|
∣∣∣C̃(f,g)r

∣∣∣ (37)

Therefore, ‖M‖ = ‖M̃‖ =
√
HW maxf,g ‖M̃ (f,g)‖ ≤

√
HW

∑R
r=1 |λr|maxf,g

∣∣∣C̃(f,g)r

∣∣∣.
C.2 Higher-order CP Fully-connected Layer

Definition C.3. (Higher-order fully-connected layer) The layer is parameterized by a 2mth-order tensor M∈
RT1×···×Tm×S1×···×Sm . It maps an mth-order input tensor X ∈ RS1×···×Sm to another mth-order output tensor
Y ∈ RT1×···×Sm with the following equation:

Yt1,··· ,tm =
∑
∀l:Sl

Mt1,··· ,tm,s1,··· ,smXs1,··· ,sm (38)

Definition C.4. (Higher-order CP fully-connected layer) Given a higher-order fully-connected layer in Eq. (38), a
CP decomposition factorizes the weights tensorM∈ RT1×···×Tm×S1×···×Sm into m core factors Km ∈ RR×Tm×Sm .

Mt1,··· ,tm,s1,··· ,sm =

R∑
r=1

λrK1
r,t1,s1 · · · K

m
r,tm,sm (39)

For simplicity, we denote the rth slice of Kl as Kl
r = Klr,:,:. We assume Kl

r has unit Frobenius norm, i.e.

‖Kl
r‖F = 1 and λr > 0 for all r ∈ [R].

Lemma C.5. (Operator norm of higher-order CP fully-connected layer) For a higher-order fully layer whose
weights tensor takes a CP format as in Eq. (39), the operator norm ‖M‖ is bound by the CP eigenvalues λ as

‖M‖ ≤
R∑
r=1

|λr| (40)

Proof. (of Lemma C.5) The proof follows directly the definition of operator norm ‖M‖ = max‖X‖F=1 ‖Y‖F .

‖Y‖F ≤
R∑
r=1

|λr|
∥∥Kl

m

∥∥
2
· · ·
∥∥Kl

1

∥∥
2
‖X‖F (41)

≤
R∑
r=1

|λr|
∥∥Kl

m

∥∥
F
· · ·
∥∥Kl

1

∥∥
F
‖X‖F (42)

=

R∑
r=1

|λr|‖X‖F =

R∑
r=1

|λr| (43)

Understanding Generalization in Deep Learning via Tensor Methods

C.3 Higher-order 2D-convolutional layer

Definition C.6. (Higher-order 2D-convolutional layer) The layer is parameterized by a (2m+ 2)th-order tensor
M ∈ Rk×k×T1×···×Tm×S1×···×Sm . It maps an (m + 2)th-order input tensor X ∈ RH×W×S1×···×Sm to another
(m+ 2)th-order output tensor Y ∈ RH×W×T1×···×Sm as:

Y:,:,t1,··· ,tm =

Sl∑
∀l:sl=1

M:,:,t1,·,tm,s1,··· ,sm ∗ X:,:,s1,··· ,sm (44a)

Yi,j,t1,··· ,tm =

Sl∑
∀l:sl=1

∑
p,q

Mi−p,j−q,t1,··· ,tm,s1,··· ,smXp,q,s1,··· ,sm (44b)

Definition C.7. (CP decomposition of higher-order 2D-convolutional layer) Given a higher-order 2D-convolutional
layer in Eq. (38), a CP decomposition factorizes the weights tensorM∈ RH×W×T1×···×Tm×S1×···×Sm into (m+ 1)
core factors C ∈ RR×H×W and Kl ∈ RR×Tl×Sl ,∀l ∈ [m].

Mi,j,t1,··· ,tm,s1,··· ,sm =

R∑
r=1

λrCr,i,jK1
r,t1,s1 · · · K

m
r,tm,sm (45)

where we we assume Cr and Kl
r = Klr,:,: has unit Frobenius norm, i.e. ‖Kl

r‖F = 1 and ‖Cr‖F = 1

Lemma C.8. (Operator norm of Higher-order CP 2D-convolutional layer) For a higher-order 2D-convolutional
layer layer whose weights tensor takes a CP format as in Eq. (45), the operator norm ‖M‖ is bound by the CP
eigenvalues λ as

‖M‖ ≤
√
HW

R∑
r=1

|λr|max
f,g

∣∣∣C̃(f,g)r

∣∣∣ (46)

Proof. (of Lemma C.8) The proof is a combination of Lemmas C.2 and C.5. Let M̃ = F1,2
m (M), we have

‖M‖ = ‖M̃‖ =
√
HW max

f,g
‖W̃(f,g)‖ (47)

M̃(f,g) =

R∑
r=1

λrC̃(f,g)r K1
r,t1,s1 · · · K

m
r,tm,sm (48)

The operator norm is bounded using Lemma C.5: ‖M̃(f,g)‖ ≤
∑R
r=1 |λr|maxf,g

∣∣∣C̃(f,g)r

∣∣∣.
D Convolutional Neural Networks: Compressibility and Generalization

D.1 Complete Proofs of Convolutional Neural Networks

Definition D.1. [tensorization factor t
(k)
j] The tensorization factors

{
t
(k)
j

}R(k)

j=1
of the kth layer is defined as

t
(k)
j :=

j∑
r=1

∣∣∣λ(k)r

∣∣∣max
f,g

∣∣∣C̃(f,g)
r

∣∣∣ (49)

where λ
(k)
r is the rth largest value in the CP spectrum of M(k).

Definition D.2. [tensor noise bound ξ
(k)
j] The tensor noise bound

{
ξ
(k)
j

}R(k)

j=1
of the kth layer measures the

amplitudes of the remaining components after pruning the ones with amplitudes smaller than the λ
(k)
j :

ξ
(k)
j :=

R(k)∑
r=j+1

∣∣∣λ(k)r

∣∣∣max
f,g

∣∣∣C̃(f,g)
r

∣∣∣ (50)

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Definition D.3. [layer cushion ζ(k)] As introduced in Arora et al. (2018), the layer cushion of the kth layer is
defined to be the largest value ζ(k) such that for any X (k) ∈ S,

ζ(k)
∥∥M(k)

∥∥
F√

H(k)W (k)

∥∥∥X (k)
∥∥∥
F
≤
∥∥∥M(k+1)

∥∥∥
F

(51)

Following Arora et al. (2018), the layer cushion considers how much smaller the output
∥∥M(k+1)

∥∥
F

of the kth

layer (after activation) compared with the product between the weight tensor
∥∥M (k)

∥∥
F

and the input
∥∥X (k)

∥∥
F
.

Note that H(k) and W (k) are constants and will not influence the results of the theorem and the lemmas. For
simplicity, we use H and W to denote the maximum H(k) and W (k) over the n layers for the following proofs
where upper bounds are desired.

Given these definitions, we can bound the difference of outputs from a given model and its compressed counterpart.

The following lemma characterizes the relation between the difference and the factors t
(k)
j , ξ

(k)
j , ζ(k).

Lemma D.4. (Compression bound of convolutional neural networks) Suppose a convolutional neural network
M has n layers, and each convolutional layer takes a CP format as in Eq. (31) with rank R(k). If an algorithm

generates a compressed network M̂ such that only R̂(k) components with largest λ
(k)
r ’s are retained at the kth

layer, the difference of their outputs at the mth is bounded by X (m+1) as

∥∥∥X (m) − X̂ (m))
∥∥∥
F
≤

(
m−1∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m−1∏
l=k+1

t(l)

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥X (m))
∥∥∥
F

(52)

Therefore for the whole network with n layers, the difference between M(X) and M̂(X) is bounded by

∥∥∥M(X)− M̂(X)
∥∥∥
F
≤

(
n∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

n∏
l=k+1

t(l)

ζ(l)
∥∥M(l)

∥∥
F

)
‖M(X)‖F (53)

Proof. (of Lemma D.4) We prove this lemma by induction. For m = 2, the lemma holds since∥∥∥X (2) − X̂ (2)
∥∥∥
F

=
∥∥∥ReLU(Y(1)

)
− ReLU

(
Ŷ(1)

)∥∥∥
F

(54)

≤
∥∥∥Y(1) − Ŷ(1)

∥∥∥
F

=
∥∥∥(M(1) − M̂(1)

)(
X (1)

)∥∥∥
F

(55)

≤
√
HWξ(1)

∥∥∥X (1)
∥∥∥
F
≤ ξ(1)

ζ(1)
∥∥M(1)

∥∥
F

∥∥∥M(2)
∥∥∥
F

(56)

where Y = M(X) denotes the computation of a convolutional layer. (1) The first inequality follows the
Lipschitzness of the ReLU activations; (2) The second inequality uses Lemma C.2; and (3) the last inequality
holds by the definition of ζ(1). For m+ 1 > 2, we assume the lemma already holds for m∥∥∥X (m+1) − X̂ (m+1)

∥∥∥
F

=
∥∥∥ReLU(Y(m)

)
− ReLU

(
Ŷ(m)

)∥∥∥
F

(57)

≤
∥∥∥Y(m) − Ŷ(m)

∥∥∥
F

=
∥∥∥M(m)

(
X (m)

)
− M̂(m)

(
X̂ (m)

)∥∥∥
F

(58)

=
∥∥∥ ˆM(m)

(
X (m) − X̂ (m)

)
+
(
M(m) − M̂(m)

)(
X (m)

)∥∥∥
F

(59)

≤
√
HW

(
t(m)

∥∥∥X (m) − X̂ (m)
∥∥∥
F

+ ξ(m)
∥∥∥X (m)

∥∥∥
F

)
(60)

≤ t(m)

(
m−1∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m−1∏
l=k+1

t(l)

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥X (m)
∥∥∥
F

+
ξ(m)

ζ(m)
∥∥M(m)

∥∥
F

∥∥∥X (m)
∥∥∥
F

(61)

≤

(
m∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m∏
l=k+1

t(l)

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥M(m+1)
∥∥∥
F

(62)

which completes the induction.

Understanding Generalization in Deep Learning via Tensor Methods

Lemma D.5. For any convolutional neural network M of n layers satisfying the assumptions in section 3 and
any error 0 ≤ ε ≤ 1, Algorithm 1 generates a compressed tensorial neural network M̂ such that for any X ∈ S:∥∥∥M(X)− M̂(X)

∥∥∥
F
≤ ε ‖M(X)‖F (63)

The compressed convolutional neural network M̂ has
∑n
k=1 R̂

(k)(s(k) + o(k) +k
(k)
x k

(k)
y + 1) total parameters, where

each R̂(k) satisfies:
R̂(k) = min

{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1t
(i)
j ≤

ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

}
(64)

Remark. Equation (64) is slightly different with equation 5, as the margin γ is replaced by a perturbation error ε.
Therefore, how well the compressed tensorial neural network can approximate the original network is related to

the choice of R̂(k). Notice that when ˆR(k) = R(k), the inequality for the kth layer will be automatically satisfied
as θ(k) = 0 in this case by definition.

Proof. (of Lemma D.5) The proof is trivial by observing

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

≤ ε

n

n∏
i=k+1

ζ(i)
∥∥M(i)

∥∥
F

t(i)
(65)

=⇒ ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

n∏
i=k+1

t(i)

ζ(i)
∥∥M(i)

∥∥
F

≤ ε

n
(66)

=⇒
n∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

n∏
i=k+1

t(i)

ζ(l)
∥∥M(i)

∥∥
F

≤ ε (67)

Before proving Theorem 4.5, Lemma D.6 (introduced below) is needed.

Lemma D.6. For any convolutional neural network M of n layers satisfying the assumptions in section 3 and
any margin γ ≥ 0, M can be compressed to a tensorial convolutional neural network M̂ with

∑n
k=1 R̂

(k)(s(k) +

t(k) + k
(k)
x × k(k)y + 1) total parameters such that for any X ∈ S, L̂0(M̂) ≤ L̂γ(M). Here, for each layer k,

R̂(k) = min
{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1t
(i)
j ≤

ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

}
(68)

Proof. (of Lemma D.6)

If γ ≥ 2 maxX∈S ‖M(X)‖F, for any pair (X , y) ∈ S, we have

|M(X)[y]−max
j 6=y

M(X)[j]|2 ≤ (|M(X)[y]|+ |max
j 6=y

M(X)[j]|)2

≤ 4 max
X∈S
‖M(X)‖2F

≤ γ2

Then the output margin of M cannot be greater than γ for any X ∈ S. Thus L̂γ(M) = 1.

If γ < 2 maxX∈S ‖M(X)‖F, setting

ε =
γ

2 maxX∈S ‖M(X)‖F
in Lemma D.5, we obtain a compressed fully-connected tensorial neural network M̂ with the desired number of
parameters and ∥∥∥M(X)− M̂(X)

∥∥∥
F
<
γ

2
⇒ ∀j, |M(X)[j]− M̂(X)[j]| < γ

2

Then for any pair (X , y) ∈ S, if M(X)[y] > γ + maxj 6=yM(X)[j], M̂ classifies X correctly as well because:

M̂(X)[y] >M(X)[y]− γ

2
> max

j 6=y
M(X)[j] +

γ

2
> max

j 6=y
M̂(X)[j]

Thus, L̂0(M̂) ≤ L̂γ(M).

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Now we prove the main theorem 4.5 by bounding the covering number given any ε.

D.1.1 Covering Number Analysis for Convolutional Neural Network

Proof. (of Theorem 4.5) To be more specific, let us bound the covering number of the compressed network M̂ by
approximating each parameter with accuracy µ.

Lemma D.7. For any given constant accuracy µ, the covering number of the compressed convolutional network M̂
is of order Õ(d) where d denotes the total number of parameters in M̂: d :=

∑n
k=1 R̂

(k)(s(k) +o(k) +k
(k)
x ×k(k)y +1).

Let M̃ denote the network after approximating each parameter in M̂ with accuracy µ (and M̃(k) denote its weight

tensor on the kth layer). Based on the given accuracy, we know that ∀k, |λ̂(k)r − λ̃(k)r | ≤ µ,
∥∥∥â(k)

r − ã
(k)
r

∥∥∥ ≤ √s(k)µ,∥∥∥b̂(k)r − b̃
(k)
r

∥∥∥ ≤ √o(k)µ,
∥∥∥Ĉ(k)

r − C̃
(k)
r

∥∥∥ ≤√k(k)x k
(k)
y µ, where s, o, kx and ky are the number of input channels,

the number of output channels, the height of the kernel and the width of the kernel, as defined in Section 3.

For simplicity, in this proof, let us just use X (k),Y(k),a
(k)
r , b

(k)
r ,C

(k)
r to denote X̂ (k), Ŷ(k), â

(k)
r , b̂

(k)
r , Ĉ

(k)
r . X (k) ∈

RH×W×s(k)

, Y(k) ∈ RH×W×o(k)

.

We have

F1,2
3 (Y(k))fgj =

√
HW

∑
i

[F1,2
3 (X (k))fgi

R̂(k)∑
r=1

λ(k)r a
(k)
ri b

(k)
rj F2(C(k)

r)fg]

F1,2
3 (Ỹ(k))fgj =

√
HW

∑
i

[F1,2
3 (X̃ (k))fgi

R̂(k)∑
r=1

λ̃(k)r ã
(k)
ri b̃

(k)
rj F2(C̃(k)

r)fg]

where
√
HW is a normalization factor defined in Lemma B.7

Let ε(k) =
∥∥∥Ỹ (k) − Y (k)

∥∥∥
F
. Then for each k, let ϕ =

∑
f,g,i,j

(∑R̂(k)

r λ
(k)
r a

(k)
ri b

(k)
rj

(
F2(C

(k)
r)fg − F2(C̃

(k)
r)fg

))2
and ψ =

∑
f,g,i,j

(∑R̂(k)

r

(
λ
(k)
r a

(k)
ri b

(k)
rj − λ̃

(k)
r ã

(k)
ri b̃

(k)
rj

)
F2(C̃

(k)
r)fg

)2
. We first bound ϕ and ψ as follows.

Bound ϕ =
∑
f,g,i,j

(∑R̂(k)

r λ
(k)
r a

(k)
ri b

(k)
rj

(
F2(C

(k)
r)fg−F2(C̃

(k)
r)fg

))2
: All calculations are based on the kth layer,

we remove the layer number (k) for ease of reading. So a = a(k) (the same for b, c, and R). Then

∑
f,g,i,j

(R̂(k)∑
r

λ(k)r a
(k)
ri b

(k)
rj

(
F2(C(k)

r)fg −F2(C̃(k)
r)fg

))2

≤
∑
f,g,i,j

(R̂∑
r

(λraribrj)
2
R̂∑
r

(
F2(Cr)fg −F2(C̃r)fg

)2)

≤
R̂∑
r

(λ2r
∑
i

a2ri
∑
j

b2rj)

R̂∑
r

∑
f,g

(
F2(Cr)fg −F2(C̃r)fg

)2
≤

R̂∑
r

λ2rR̂kxkyµ
2

Bound ψ =
∑
f,g,i,j

(∑R̂(k)

r

(
λ
(k)
r a

(k)
ri b

(k)
rj − λ̃

(k)
r ã

(k)
ri b̃

(k)
rj

)
F2(C̃

(k)
r)fg

)2
: Similarly, we remove the layer number

(k) for ease of reading. Then we have

Understanding Generalization in Deep Learning via Tensor Methods

∑
f,g,i,j

(R̂(k)∑
r

(
λ(k)r a

(k)
ri b

(k)
rj − λ̃

(k)
r ã

(k)
ri b̃

(k)
rj

)
F2(C̃(k)

r)fg

)2

≤
∑
f,g,i,j

(R̂∑
r

(λraribrj − λ̃rãrib̃rj)2
R̂∑
r

F2(C̃r)
2
fg

)
=
∑
f,g,i,j

(R̂∑
r

(
λr(aribrj − ãrib̃rj) + (λr − λ̃r)ãrib̃rj

)2 R̂∑
r

F2(C̃r)
2
fg

)

≤
∑
f,g,i,j

((
2

R̂∑
r

λ2r(aribrj − ãrib̃rj)2 + 2

R̂∑
r

(λr − λ̃r)2ã2rib̃2rj
) R̂∑

r

F2(C̃r)
2
fg

)

=
∑
f,g,i,j

((
2

R̂∑
r

λ2r
(
ari(brj − b̃rj) + (ari − ãri)b̃rj

)2
+ 2

R̂∑
r

(λr − λ̃r)2ã2rib̃2rj
) R̂∑

r

F2(C̃r)
2
fg

)

≤
∑
f,g,i,j

((
4

R̂∑
r

λ2r
(
a2ri(brj − b̃rj)2 + (ari − ãri)2b̃2rj

)2
+ 2

R̂∑
r

(λr − λ̃r)2ã2rib̃2rj
) R̂∑

r

F2(C̃r)
2
fg

)

=

(
4

R̂∑
r

λ2r
(∑

i

a2ri
∑
j

(brj − b̃rj)2 +
∑
i

(ari − ãri)2
∑
j

b̃2rj
)2

+ 2

R̂∑
r

(λr − λ̃r)2
∑
i

ã2ri
∑
j

b̃2rj

) R̂∑
r

∑
f.g

F2(C̃r)
2
fg

≤
(
4

R̂∑
r

λ2r(oµ
2 + sµ2) + 2R̂µ2

)
R̂

=
(
4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)
µ2

Bound ε(k) =
∥∥∥Ỹ(k) − Y(k)

∥∥∥
F
: Similarly, we remove the layer number (k). And we let wi = F1,2

3 (X (k))fgi,

w̃i = F1,2
3 (X̃ (k))fgi, ui =

∑R̂
r λ

(k)
r a

(k)
ri b

(k)
rj F2(C

(k)
r)fg and ũi =

∑R̂
r λ̃

(k)
r ã

(k)
ri b̃

(k)
rj F2(C̃

(k)
r)fg.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

∥∥∥Ỹ(k) − Y(k)
∥∥∥2
F

=
∥∥∥F1,2

3 (Ỹ(k))−F1,2
3 (Y(k))

∥∥∥2
F

=
∑
f,g,j

∣∣[F1,2
3 (Ỹ(k))]fgj − [F1,2

3 (Y(k))]fgj
∣∣2

=
∑
f,g,j

HW (
∑
i

wiui −
∑
i

w̃iũi)
2

= HW
∑
f,g,j

(∑
i

wi(ui − ũi) +
∑
i

(wi − w̃i)ũi
)2

≤ 2HW
∑
f,g,j

(∑
i

wi(ui − ũi)
)2

+ 2
∑
f,g,j

(∑
i

(wi − w̃i)ũi
)2

≤ 2HW
∑
f,g,j

(
(
∑
i

w2
i)
∑
i

(ui − ũi)2
)

+ 2
∑
f,g,j

(∑
i

(wi − w̃i)2(
∑
i

ũi)
2
)

≤ 2HW (
∑
f,g,i

w2
i)
∑
f,g,i,j

(ui − ũi)2 + 2
∑
f,g,i

(wi − w̃i)2
∑
f,g,i,j

ũ2i

≤ 2HW (
∑
f,g,i

w2
i)(2ϕ+ 2ψ) + 2

∑
f,g,i

(wi − w̃i)2
∑
f,g,i,j

ũ2i

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2
∑
f,g,i

(wi − w̃i)2
∑
f,g,i,j

ũ2i

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2(
∥∥∥X (k) − X̃ (k)

∥∥∥2
F

∥∥∥M̃∥∥∥2
F
)

When k = 1, we know that X (1) = X̃ (1), so

∥∥∥Ỹ(1) − Y(1)
∥∥∥2
F

≤ 4HW
∥∥∥X (1)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

When k > 1, we have

∥∥∥Ỹ(k) − Y(k)
∥∥∥2
F

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2(
∥∥∥X (k) − X̃ (k)

∥∥∥2
F

∥∥∥M̃∥∥∥2
F
)

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2(
∥∥∥ReLU(Y(k−1)

)
− ReLU

(
Ỹ(k−1)

)∥∥∥2
F

∥∥∥M̃∥∥∥2
F
)

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2(
∥∥∥Y(k−1) − Ỹ(k−1)

∥∥∥2
F

∥∥∥M̃∥∥∥2
F
)

≤ 4HW
∥∥∥X (k)

∥∥∥2
F
µ2
(R̂∑

r

λ2rR̂kxky + 4

R̂∑
r

λ2r(o+ s)R̂+ 2R̂2
)

+ 2((ε(k−1))2
∥∥∥M̃∥∥∥2

F
)

Understanding Generalization in Deep Learning via Tensor Methods

Let α(k) = 4HW
∥∥X (k)

∥∥2
F

(∑R̂(k)

r (λ
(k)
r)2R̂(k)k

(k)
x k

(k)
y + 4

∑R̂(k)

r (λ
(k)
r)2(o(k) + s(k))R̂(k) + 2(R̂(k))2

)
µ2,

and β(k) = 2
∥∥∥M̃(k)

∥∥∥2
F
. Then the difference between the final output of the two networks are bounded by:

∥∥∥M̂(X)− M̃(X)
∥∥∥2
F

=
∥∥∥ReLU((Ŷ)

)
− ReLU

(
(Ỹ)
)∥∥∥2

F

≤
∥∥∥Ŷ − Ỹ∥∥∥2

F

≤
n∑
k=1

α(k)
n∏

i=k+1

β(i)

Since ∀k ∈ [n],
∥∥X (k)

∥∥ ≤ Πn
i=k

‖X (n+1)‖
F

ζ(i)‖M(i)‖
F

, to obtain an ε-cover of the compressed network, we can first assume

β(k) ≥ 1 ∀k ∈ [n]. Then µ need to satisfy:

µ ≤ ε

2
√
HWn

∥∥X (n+1)
∥∥
F
R̂(∗)(

√
2‖M̃(∗)‖

F

ζ(∗)‖M(∗)‖
F

)n
√

(λ(∗))2k
(∗)
x k

(∗)
y + 4(λ(∗))2(o(∗) + s(∗)) + 2

where R̂(∗) = maxk r
(k) λ(∗) = maxr,k λ

(k)
r , s(∗) = maxk s

(k), o(∗) = maxk o
(k), k

(∗)
x = maxk k

(k)
x , k

(∗)
y = maxk k

(k)
y

and
‖M̃(∗)‖

F

µ(∗)‖M(∗)‖
F

= maxk
‖M̃(k)‖

F

µ(k)‖M(∗)‖
F

As when µ is fixed, the number of networks in our cover will at most be (1
µ)d where d denote the number of

parameters in the compressed network. Hence, the covering number w.r.t to a given ε is Õ(nd) (n is the number
of layers in the given neural network). As for practical neural networks, the number of layers n is usually much
less than O(log(d)), thus the covering number we obtained w.r.t to a given ε is just Õ(d) for practical neural
networks.

E Fully Connected Networks: Compressibility and Generalization

In this section, we derive generalization bounds for fully connected (FC) neural networks (denoted as M) using
tensor methods.

E.1 Compression of a FC Network with CPL

Original Fully Connected Neural Network: Let M denote an n-layer fully connected network with ReLU

activations, where A(k) ∈ Rh(k)×h(k+1)

denotes the weight matrix of the kth layer, x(k) ∈ Rh(k)

denotes the
input to kth layer, and y(k) denotes the output of the kth layer before activation in M. Transform original
FCN to a CP-FCN: We transform the original fully connected network M to a network M with CPL. The

kth layer of M is denoted by M(k) ∈ Rs
(k)
1 ×s

(k)
2 ×s

(k+1)
1 ×s(k+1)

2 is a 4-dimensional tensor reshaped from A(k) where

s
(k)
1 × s(k)2 = hk,∀k ∈ [n].

Input and Output of M: The original input and output vectors of M are reshaped into matrices. The input

to the kth layer of the M, denoted by X(k) ∈ Rs
(k)
1 ×s

(k)
2 , is a matrix reshaped from the input vector x(k) of the

kth layer in the original network M. Similarly, the output of the kth layer before activation in M, denoted by

Y (k) ∈ Rs
(k)
1 ×s

(k)
2 , is a matrix reshaped from the output vector y(k) of the kth layer in the original network M. For

prediction purposes, we reshape the output Y (n) of the last layer in M back into a vector. So the final outputs of
M and M are of the same dimension.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Assumption E.1 (Polyadic Form of M). For each layer k, assume the weight tensorM(k) of M has a Polyadic

form with rank R(k) ≤ min{s(k)1 , s
(k)
2 , s

(k+1)
1 , s

(k+1)
2 }:

M(k) =

R(k)∑
i=1

λ
(k)
i a

(k)
i ⊗ b

(k)
i ⊗ c

(k)
i ⊗ d

(k)
i (69)

where ∀i, ai, bi, ci, di are unit vectors in Rs
(k)
1 ,Rs

(k)
2 ,Rs

(k+1)
1 ,Rs

(k+1)
2 respectively, and ∀1 ≤ i ≤ R(k), 〈ai, ai〉 =

1, 〈bi, bi〉 = 1, 〈ci, ci〉 = 1, 〈di, di〉 = 1. Moreover, for each M(k), λ
(k)
i ≥ λ

(k)
i+1,∀i, and the absolute value of the

smallest |λ(k)
R(k) | can be arbitrarily small.

The total number of parameters in M is (s
(k)
1 + s

(k)
2 + s

(k+1)
1 + s

(k+1)
2 + 1)R(k) and a smaller R(k) renders fewer

number of parameters and thus leads to compression. We introduce a compression mechanism that prunes out
the smaller components of weight tensor of M, i.e., a low rank approximation of each weight tensor M(k) of the
kth layer, and generates a compressed CP-FCN M̂. The algorithm is depicted in Algorithm 2.

Compression of a FC Network with CPL: In Li and Huang (2018), a tensor decomposition algorithm
(procedure 1 in Li and Huang (2018)) on tensors with asymmetric orthogonal components is guaranteed to recover
the top-r components with the largest singular values. To compress M, we apply top-R̂(k) (R̂(k) ≤ R(k)) CP de-

composition algorithm on eachM(k), obtaining the components from CP decomposition (λ̂
(k)
i , â

(k)
i , b̂

(k)
i , ĉ

(k)
i , d̂

(k)
i),

i ∈ [R̂(k)]. Therefore, we achieve a compressed network M̂ of M, and the jth layer of the compressed network

M̂ has weight tensor as follows

T̂ (k) =

R̂(k)∑
i=1

λ̂
(k)
i â

(k)
i ⊗ b̂

(k)
i ⊗ ĉ

(k)
i ⊗ d̂

(k)
i . (70)

As each M(k) has a low rank orthogonal CP decomposition by our assumption, the returned re-

sults {λ̂(k)i , â
(k)
i , b̂

(k)
i , ĉ

(k)
i , d̂

(k)
i }R̂

(k)

i=1 from procedure 1 in Li and Huang (2018) are perfect recoveries of

{λ(k)i , a
(k)
i , b

(k)
i , c

(k)
i , d

(k)
i }R̂

(k)

i=1 according to the robustness theorem in Li and Huang (2018). Our compression
procedure is depicted in Algorithm 2.

Algorithm 2 Compression of Fully Connected Neural Networks
�FBR (in Appendix G) denotes a sub-procedure which calculates R̂(k) such that

∥∥∥M(X)− M̂(X)
∥∥∥
F
≤ ε ‖M(X)‖F holds for any input X in

the training dataset and for any given ε.
4TNN-Project (in Appendix G) denotes a sub-procedure which returns a compressed network M̂ by pruning out the smaller components in
the Polyadic form of the weight tensors in the original CNN.
More intuitions of the sub-procedures FBR and TNN-Project are described in Section E.2.

Input: A FCN M of n layers and a margin γ

Output: A compressed M̂ whose expected error L0(M̂) ≤ L̂γ(M) + Õ
(√∑n

k=1 R̂
(k)(2s(k)+2s(k+1)+1)

m

)
1: Calculate all layer cushions {ζ(k)}nk=1 based on definition E.4
2: Pick R(k) = min{s(k), s(k+1)} for each layer k
3: If M does not have CPL, apply a CP-decomposition to the weight tensor of each layer k
4: Set the perturbation parameter ε := γ

2maxX‖M(X)‖F
5: Compute number of components needed for each layer of the compressed network {R̂(k)}nk=1 ←

FBR�
(
{M(k)}nk=1, {R(k)}nk=1, {ζ(k)}nk=1, ε

)
6: M̂← TNN-Project4

(
M, {R̂(k)}ni=1

)
7: Return the compressed convolutional neural network M̂

We denote the input matrix of the kth layer in M̂ as X̂(k), and the output matrix before activation as Ŷ (k). Note
that X(1) = X̂(1) as the input data is not being modified.

Algorithm 2 is desigend for general neural networks. For neural networks with CPLayer, line 3 can be done by
pruning out small components from CP decomposition, and only keeping top-R̂(k) components. For notation
simplicity, assume for each layer in M, the width of the kth layer is a square of some integer s(k). Then the
input to the kth layer of M is a ReLu transformation of the output of the k − 1th layer as in equation (71). The

Understanding Generalization in Deep Learning via Tensor Methods

output of the kth layer of M is illustrated in equation (72) as the weight tensor which permits a CP forms as in
equation (69).

X(k) = ReLU
(
Y (k−1)

)
(71)

Y (k) =

R̂(k)∑
i=1

λ
(k)
i a

(k)
i

>
X(k)b

(k)
i c

(k)
i ⊗ d

(k)
i + φ(k)(X(k)) (72)

where φ(k) =
∑R(k)

i=R̂(k)+1 λ
(k)
i a

(k)
i ⊗b

(k)
i ⊗c

(k)
i ⊗d

(k)
i , φ(k)(X(k)) denotes the multilinear operation of the tensor φ(k)

on X(k), i.e., {φ(k)(X(k))}i,j =
∑
k,l φ

(k)
i,j,k,lX

(k)
k,l and a

(k)
i , b

(k)
i , â

(k)
i , b̂

(k)
i ∈ Rsk . Similarly, the input and output of

the kth layer of the compressed neural nets M̂ satisfy

X̂(k) = ReLU
(
Ŷ (k−1)

)
(73)

Ŷ (k) =

R̂(k)∑
i=1

λ̂
(k)
i (â

(k)
i)>X̂(k)b̂

(k)
i ĉ

(k)
i ⊗ d̂

(k)
i . (74)

E.2 Characterizing Compressibility of FC Networks with CPL

Now we characterize the compressibility of the fully connected network with CPL M through properties defined
in the following, namely reshaping factor, tensorization factor, layer cushion and tensor noise bound.

Definition E.2. (reshaping factor). The reshaping factor ρ(k) of layer k is defined to be the smallest value ρ(k)

such that for any x ∈ S, ∥∥∥X(k)
∥∥∥ ≤ ρ(k) ∥∥∥X(k)

∥∥∥
F

(75)

The reshaping factor upper bounds the ratio between the spectral norm and Frobenius norm of the reshaped
input in the kth layer over any data example in the training dataset. Reshaping the vector examples into matrix
examples improves the compressibility of the network (i.e., renders smaller ρ(k)) as illustrated and empirically

verified in Su et al. (2018). Note that X̂(k) is the input to the kth layer of the compressed network M̂, and
ρ(k) ≤ 1,∀k.

Definition E.3. (tensorization factor) The tensorization factor {t(k)j }R
(k)

j=1 of the kth layer regarding the network
with CPL M and the original network M is defined as:

t
(k)
j =

j∑
r=1

|λ(k)r |,∀j. (76)

The tensorization factor measures the amplitudes of the leading components. By Lemma C.5, the tensorization
factor is the upper bound of operator norm of the weight tensor.

Definition E.4. (layer cushion). Our definition of layer cushion for each layer k is similar to Arora et al.
(2018). The layer cushion ζ(k) of layer k is defined to be the largest value ζ(k) such that for any x ∈ S,
ζ(k)

∥∥A(k)
∥∥
F

∥∥x(k)
∥∥ ≤ ∥∥x(k+1)

∥∥.

The layer cushion defined in Arora et al. (2018) is sligntly larger than ours since our RHS is∥∥x(k+1)
∥∥ = ReLU

(
A(k)x(k)

)
while the RHS of the inequality in the definition of layer cushion in Arora et al.

(2018) is A(k)x(k). The layer cushion under our settings also considers how much smaller the output
∥∥x(k+1)

∥∥ is

compared to is compared to the upper bound
∥∥A(k)

∥∥
F

∥∥x(k)
∥∥.

Definition E.5. (tensor noise bound). The tensor noise bound {ξ(k)}R(k)

j=1 of the the kth layer measures the
amplitudes of the remaining components after pruning out the ones with amplitudes smaller than the jth

component:

ξ
(k)
j :=

R(k)∑
r=j+1

|λ(k)r | (77)

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

The tensor noise bound measures the amplitudes of the CP components that are pruned out by the compression
algorithm, and the smaller it is, the more low-rank the weight matrix is. We will see that a network equipped
with CPL will be much more low-rank than standard networks.

E.3 Generalization Guarantee of Fully Connected Neural Networks

We have introduced the compression mechanism in Algorithm 2. For a fully connected network with CPL M that
is characterized by the properties such as reshaping factor, tensorization factor, layer cushion and tensor noise
bound, in section E.2, we derive the generalization error bound of a compression network with any chosen ranks
{R̂(k)}nk=1 as follows.

Theorem E.6. For any fully connected network M of n layers satisfying the Assumptions E.1, Algorithm 2
generates a compressed network M̂ such that with high probability over the training set , the expected error
L0(M̂) is bounded by

L0(M̂) ≤ L̂γ(M) + Õ
(√∑n

k=1 R̂
(k)(2s(k) + 2s(k+1) + 1)

m

)
(78)

for any margin γ ≥ 0, and the rank of the kth layer, R̂(k), satisfies that

R̂(k) = min
{
j ∈ [R(k)]

∣∣∣ nρ(k)ξ(k)j Πn
i=k+1t

(i) ≤ γ

2 maxx∈S ‖M(x)‖F

∥∥∥A(k)
∥∥∥
F

Πn
i=kζ

(i)
}

and ρ(k), t(k), ζ(k) are reshaping factor, tensorization factor, layer cushion and tensor noise bound of the kth layer

in Definitions E.2, E.3, and E.4 respectively. ξ
(k)
j is defined in the same way with ξ(k), where R̂(k) is replaced by

j.

The generalization error of the compressed network L0(M̂) depends on the compressibility of the M. The
compressibility of the M determines the rank that the compression mechanism should select according to
Theorem E.6, which depends on reshaping factor ρ(k), tensorization factor t(k), layer cushion ζ(k) and tensor

noise bound ξ
(k)
j .

Proof sketch of Theorem E.6: To prove this theorem, we introduce the following Lemma E.7, which reveals
that the difference between the output of the original fully connected network M and that of the compressed M is
bounded by ε ‖M(x)‖F. Then we show the covering number of the compressed network M by approximating each

parameter with some certain accuracy is Õ(d) w.r.t to a given ε. After bounding the covering number, the rest of
the proof follows from conventional learning theory.

Lemma E.7. For any fully connected network M of n layers satisfying Assumption E.1 , Algorithm 2 generates
a compressed Tensorial − FC M̂ where for any x ∈ S and any error 0 ≤ ε ≤ 1:∥∥∥M(x)− M̂(X)

∥∥∥
F
≤ ε ‖M(x)‖F (79)

The compressed Tensorial − FC M̂ consists of
∑n
k=1 R̂

(k)[2(s(k) + s(k+1)) + 1)] number of parameters, where

each R̂(k) is defined as what is stated in Algorithm 4: for each layer k ∈ [n],

R̂(k) = min
{
j ∈ [R(k)]

∣∣∣ ρ(k)ξ(k)j Πn
i=k+1t

(i) ≤ ε

n

∥∥∥A(k)
∥∥∥
F

Πn
i=kζ

(i)
}

The complete proofs are in E.4

E.4 Complete Proofs of Fully Connected Neural Networks

To prove Lemma E.7, Lemma E.8 (introduced below) is needed.

Lemma E.8. For any fully connected network M of n layers satisfying the assumptions in section 3, given a
list of ranks {R̂(k)}ni=1(∀k, R̂(k) ≤ R(k)), after tensorizing each layer in M and making M into M, Algorithm 6

generates a compressed tensorial neural network M̂ with
∑n
k=1 r

(k)[2(s(k) + s(k+1)) + 1)] total parameters where
for any x ∈ S: ∥∥∥M(x)− M̂(X)

∥∥∥
F
≤ (

n∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πn
i=k+1

t(i)

ζ(i)
) ‖M(x)‖F

Understanding Generalization in Deep Learning via Tensor Methods

where X is the matricized version of x, and ρ(k), t(k), ζ(k), ξ(k) are reshaping factor, tensorization factor, layer
cushion, and tensor noise bound of the kth layer in Definitions E.2, E.3, E.4, and E.5 respectively.

Proof. (of Lemma E.8) Based on Algorithm 2, since for each layer k in the compressed network M̂, representing

{λ̂(k)i , â
(k)
i , b̂

(k)
i , ĉ

(k)
i , d̂

(k)
i }R̂

(k)

i=1 only needs R̂(k)[2(s(k) + s(k+1)) + 1)] parameters, the total number of parameters

in M̂ is
∑n
k=1 R̂

(k)[2(s(k) + s(k+1)) + 1)].

Then as for any x ∈ S, M(x) = M(X), and by construction, M(X) = X(n+1) and M̂(X) = X̂(n+1), we can prove

the lemma by showing
∥∥∥X(n+1) − X̂(n+1)

∥∥∥
F

satisfies the above inequality, and we will prove this by induction.

Notice

Induction Hypothesis: For any layer m ≥ 0,
∥∥∥X(m) − X̂(m)

∥∥∥
F
≤ (
∑m−1
k=1

ρ(k)ξ(k)

ζ(k)‖A(k)‖
F

·Πm−1
i=k+1

t(i)

ζ(i)
)
∥∥X(m)

∥∥
F

Base case: when m = 1, the above inequality hold trivially as X(1) = X̂(1) as we cannot modify the input, and
the RHS is always ≥ 0.

Inductive Step: Now we assume show that the induction hypothesis is true for all m, let us look what

happens at layer m + 1. As we assume perfect recovery in each layer, ∀k, {λ̂(k)i , â
(k)
i , b̂

(k)
i , ĉ

(k)
i , d̂

(k)
i }R̂

(k)

i=1 =

{λ(k)i , a
(k)
i , b

(k)
i , c

(k)
i , d

(k)
i }R̂

(k)

i=1 .

Let φ(k) :=
∑R(k)

i=R̂(k)+1 λ
(k)
i a

(k)
i ⊗ b

(k)
i ⊗ c

(k)
i ⊗ d

(k)
i , and note that M(k) = M̂(k) + φ.

Then we have

∥∥∥X(m+1) − X̂(m+1)
∥∥∥
F

=
∥∥∥ReLU(Y (m)

)
− ReLU

(
Ŷ (m)

)∥∥∥
F

≤

∥∥∥∥∥∥
R̂(m)∑
i=1

λ
(m)
i (a

(m)
i)>X(m)b

(m)
i c

(m)
i ⊗ d(m)

i + φ(m)(X(m))−
R̂(m)∑
i=1

λ̂
(m)
i (â

(m)
i)>X̂(m)b̂

(m)
i ĉ

(m)
i ⊗ d̂(m)

i

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
R̂(m)∑
i=1

λ
(m)
i (a

(m)
i)>(X(m) − X̂(m))b

(m)
i c

(m)
i ⊗ d(m)

i + φ(m)(X(m))

∥∥∥∥∥∥
F

So

∥∥∥X(m+1) − X̂(m+1)
∥∥∥
F

≤

∥∥∥∥∥∥
R̂(m)∑
i=1

λ
(m)
i (a

(m)
i)>(X(m) − X̂(m))b

(m)
i c

(m)
i ⊗ d(m)

i

∥∥∥∥∥∥
F

+
∥∥∥φ(m)(X(m))

∥∥∥
F

As φ(m)(X(m)) =
∑R(k)

i=R̂(k)+1 λ
(k)
i (a

(k)
i)>X(m)b

(k)
i c

(k)
i ⊗ d

(k)
i . Since {cmi }i and are {dmi }i are sets of orthogonal

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

vectors with unit norms,

∥∥∥φ(m)(X(m))
∥∥∥
F

=

√√√√√ R(k)∑
i=R̂(k)+1

[λ
(k)
i (a

(k)
i)>X(m)b

(k)
i]2

≤

√√√√√ R(k)∑
i=R̂(k)+1

(λ
(k)
i)2

∥∥∥a(k)i

∥∥∥2 ∥∥∥X(m)b
(k)
i

∥∥∥2

≤

√√√√√ R(k)∑
i=R̂(k)+1

(λ
(k)
i)2

∥∥X(m)
∥∥2 ∥∥∥b(k)i

∥∥∥2

=

√√√√√ R(k)∑
i=R̂(k)+1

(λ
(k)
i)2

∥∥∥X(m)
∥∥∥

= ξ(m)
∥∥∥X(m)

∥∥∥
≤ ξ(m)ρ(m)

∥∥∥X(m)
∥∥∥
F

≤
ρ(m)ξ(m)

∥∥X(m+1)
∥∥
F

ζ(m)
∥∥A(m)

∥∥
F

Similarly, we can bound
∥∥∥∑R̂(m)

i=1 λ
(m)
i (a

(m)
i)>(X(m) − X̂(m))b

(m)
i c

(m)
i ⊗ d(m)

i

∥∥∥
F

as follows:

∥∥∥∥∥∥
R̂(m)∑
i=1

λ
(m)
i (a

(m)
i)>(X(m) − X̂(m))b

(m)
i c

(m)
i ⊗ d(m)

i

∥∥∥∥∥∥
F

=

√√√√R̂(m)∑
i=1

[λ
(m)
i (a

(m)
i)>(X(m) − X̂(m))b

(m)
i]2

≤

√√√√R̂(m)∑
i=1

(λ
(m)
i)2

∥∥∥X(m) − X̂(m)
∥∥∥

≤

√√√√R̂(m)∑
i=1

(λ
(m)
i)2

∥∥∥X(m) − X̂(m)
∥∥∥
F

=

√
(t(m))2

∥∥A(m)
∥∥2
F

∥∥∥X(m) − X̂(m)
∥∥∥
F

≤ t(m)
∥∥∥A(m)

∥∥∥
F
· (
m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm−1
i=k+1

t(i)

ζ(i)
)
∥∥∥X(m)

∥∥∥
F

≤ ρ(m)t(m)
∥∥∥A(m)

∥∥∥
F

∥∥X(m+1)
∥∥
F

ζ(m)
∥∥A(m)

∥∥
F

× (

m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm−1
i=k+1

t(i)

ζ(i)
)

= (

m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm
i=k+1

t(i)

ζ(i)
) ·
∥∥∥X(m+1)

∥∥∥
F

Understanding Generalization in Deep Learning via Tensor Methods

Combining the above two terms together, we have∥∥∥X(m+1) − X̂(m+1)
∥∥∥
F

≤ (

m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm
i=k+1

t(i)

ζ(i)
) ·
∥∥∥X(m+1)

∥∥∥
F

+
ρ(m)ξ(m)

∥∥X(m+1)
∥∥
F

ζ(m)
∥∥A(m)

∥∥
F

= (

m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm
i=k+1

t(i)

ζ(i)
+

ρ(m)ξ(m)

ζ(m)
∥∥A(m)

∥∥
F

) ·
∥∥∥X(m+1)

∥∥∥
F

= (

m−1∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm
i=k+1

t(i)

ζ(i)
+

ρ(m)ξ(m)

ζ(m)
∥∥A(m)

∥∥
F

·Πm
i=m+1

t(i)

ζ(i)
) ·
∥∥∥X(m+1)

∥∥∥
F

= (

m∑
k=1

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πm
i=k+1

t(i)

ζ(i)
) ·
∥∥∥X(m+1)

∥∥∥
F

Where the second to the last equality is due to the fact that for any αi, β ∈ R, (Πk
i=k+1αi)× β = β.

Then we can proceed to prove Lemma E.7:

Proof. (of Lemma E.7) Based on the assumptions of the components from CP decomposition for each M(k) in
section 3, the {R̂(k)}nk=1 returned by Algorithm 4 will satisfy:

• ∀k, R̂(k) ≤ R(k)

• ρ(k)ξ(k)Πn
i=k+1t

(i) ≤ ε
n

∥∥A(k)
∥∥
F

Πn
i=kζ

(i)

Thus,

ρ(k)ξ(k)

ζ(k)
∥∥A(k)

∥∥
F

·Πn
i=k+1

t(i)

ζ(i)
≤ ε

n

Then by lemma E.8, ∥∥∥M(x)− M̂(X)
∥∥∥
F
≤ ε ‖M(x)‖F

Before proving Theorem E.6, Lemma E.9 (introduced below) is needed.

Lemma E.9. For any fully connected network M of n layers satisfying the assumptions in section 3 and any margin
γ ≥ 0, M can be compressed to a fully-connected tensorial neural network M̂ with

∑n
k=1 R̂

(k)[2(s(k) + s(k+1)) + 1)]

total parameters such that for any x ∈ S, L̂0(M̂) ≤ L̂γ(M). Here, for each layer k,

R̂(k) = min
{
j ∈ [R(k)]

∣∣∣ ρ(k)ξ(k)j Πn
i=k+1t

(i) ≤ ε

n

∥∥∥A(k)
∥∥∥
F

Πn
i=kζ

(i)
}

Proof. (of Lemma E.9) If γ ≥ 2 maxx∈S ‖M(x)‖F, for any pair (x, y) ∈ S, we have

|M(x)[y]−max
j 6=y

M(x)[j]|2 ≤ (|M(x)[y]|+ |max
j 6=y

M(x)[j]|)2

≤ 4 max
x∈S
‖M(x)‖2F

≤ γ2

Then the output margin of M cannot be greater than γ for any x ∈ S. Thus L̂γ(M) = 1.

If γ < 2 maxx∈S ‖M(x)‖F, setting

ε =
γ

2 maxx∈S ‖M(x)‖F

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

in Lemma E.7, we obtain a compressed fully-connected tensorial neural network M̂ with the desired number of
parameters and ∥∥∥M(x)− M̂(X)

∥∥∥
F
<
γ

2
⇒ ∀j, |M(x)[j]− M̂(X)[j]| < γ

2

Then for any pair (x, y) ∈ S, if M(x)[y] > γ + maxj 6=yM(x)[j], M̂ classifies x correctly as well because:

M̂(X)[y] >M(x)[y]− γ

2
> max

j 6=y
M(x)[j] +

γ

2
> max

j 6=y
M̂(X)[j]

Thus, L̂0(M̂) ≤ L̂γ(M).

Now we prove the main theorem E.6 by bounding the covering number given any ε.

Proof. (of Theorem E.6) To be more specific, let us bound the covering number of the compressed network M̂ by
approximating each parameter with accuracy µ.

Covering Number Analysis for Fully Connected Neural Network Let T̃ denote the network after
approximating each parameter in M̂ with accuracy µ (and T̃ (k) denote its weight tensor on the kth layer). Based

on the given accuracy, we know that ∀k, |λ̂(k)i −λ̃
(k)
i | ≤ µ and

∥∥∥â(k)
i − ã

(k)
i

∥∥∥ ≤ √s(k)µ (similar inequalities also hold

for b̂
(k)
i , ĉ

(k)
i , d̂

(k)
i). For simplicity, in this proof, let us just use a

(k)
i , b

(k)
i , c

(k)
i ,d

(k)
i to denote â

(k)
i , b̂

(k)
i , ĉ

(k)
i , d̂

(k)
i

Notice that

Y (k) =

r(k)∑
i=1

λ
(k)
i (a

(k)
i)>X(k)b

(k)
i c

(k)
i ⊗ d

(k)
i

Ỹ (k) =

r(k)∑
i=1

λ̃
(k)
i (ã

(k)
i)>X̃(k)b̃

(k)
i c̃

(k)
i ⊗ d̃

(k)
i

Let ε(k) =
∥∥∥Ỹ (k) − Y (k)

∥∥∥
F
. Then for each k, let us first bound |(a(k)

i)>X(k)b
(k)
i − (ã

(k)
i)>X̃(k)b̃

(k)
i | and∥∥∥c(k)i ⊗ d

(k)
i − c̃

(k)
i ⊗ d̃

(k)
i

∥∥∥
F

separately.

Bound |(a(k)
i)>X(k)b

(k)
i − (ã

(k)
i)>X̃(k)b̃

(k)
i |: When k = 1, we know that X(1) = X̃(1). Let us first consider the

base case where k = 1. For simplicity, let a = a
(1)
i , ã = ã

(1)
i , b = b

(1)
i , b̃ = b̃

(1)
i , and X = X(1). Then

|(a(1)
i)>X(1)b

(1)
i − (ã

(1)
i)>X̃(1)b̃

(1)
i |

= |a>Xb− ã>Xb̃|
= |a>Xb− a>Xb̃ + a>Xb̃− ã>Xb̃|
= |a>X(b− b̃) + (a− ã)>Xb̃|
≤ |a>X(b− b̃)|+ |(a− ã)>Xb̃|

≤
∥∥X>a∥∥∥∥∥b− b̃

∥∥∥+ ‖a− ã‖
∥∥∥Xb̃

∥∥∥
≤ µ

√
s(1) ‖X‖ (‖a‖+

∥∥∥b̃∥∥∥)

≤ 2µ
√
s(1) ‖X‖

The second to the last inequality is because singular values are invariant to matrix transpose.

When k ≥ 1, similarly, let a = a
(k)
i , ã = ã

(k)
i (define b in a similar way), X = X(k), and X̃ = X̃(k). Let

Understanding Generalization in Deep Learning via Tensor Methods

Y = Y (k−1), and Ỹ = Ỹ (k−1) (basically the output from the (k − 1)th layer before activation). Then

|(a(k)
i)>X(k)b

(k)
i − (ã

(k)
i)>X̃(k)b̃

(k)
i |

= |a>Xb− ã>X̃b̃|
= |a>Xb− ã>Xb̃ + ã>Xb̃− ã>X̃b̃|
≤ |a>Xb− ã>Xb̃|+ |ã>Xb̃− ã>X̃b̃|

≤ 2µ
√
s(k) ‖X‖+

∥∥∥X − X̃
∥∥∥ ,by base case k = 1

= 2µ
√
s(k) ‖X‖+

∥∥∥ReLU (Y)− ReLU
(
Ỹ
)∥∥∥

≤ 2µ
√
s(k) ‖X‖+

∥∥∥ReLU (Y)− ReLU
(
Ỹ
)∥∥∥

F

≤ 2µ
√
s(k) ‖X‖+

∥∥∥Y − Ỹ
∥∥∥
F

= 2µ
√
s(k) ‖X‖+ ε(k−1)

Then we can also bound |λ(k)i (a
(k)
i)>X(k)b

(k)
i − λ̃(k)i (ã

(k)
i)>X̃(k)b̃

(k)
i |. For simplicity, let λ = λ

(k)
i , λ̃ = λ̃

(k)
i ,

x = (a
(k)
i)>X(k)b

(k)
i , and x̃ = (ã

(k)
i)>X̃(k)b̃

(k)
i . Then

|λ(k)i (a
(k)
i)>X(k)b

(k)
i − λ̃

(k)
i (ã

(k)
i)>X̃(k)b̃

(k)
i |

= |λx− λ̂x̂|

≤ |λ− λ̂||x|+ |λ̂||x− x̂|

≤ |λ− λ̂||x|+ |λ||x− x̂|, we can pick |λ̂| ≤ |λ|

≤ µ|x|+ |λ| × (2µ
√
s(k)

∥∥∥X(k)
∥∥∥+ ε(k−1))

≤ µ
∥∥∥X(k)

∥∥∥+ 2µ
∥∥∥X(k)

∥∥∥ |λ|√s(k) + |λ|ε(k−1)

= µ
∥∥∥X(k)

∥∥∥ (1 + 2|λ|
√
s(k)) + |λ|ε(k−1)

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

Bound
∥∥∥c(k)i ⊗ d

(k)
i − c̃

(k)
i ⊗ d̃

(k)
i

∥∥∥
F
: Similarly let c = c

(k)
i and c̃ = c̃

(k)
i (define d and d̃ in a similar way). Then

∥∥∥c(k)i ⊗ d
(k)
i − c̃

(k)
i ⊗ d̃

(k)
i

∥∥∥2
F

=
∥∥∥cd> − c̃d̃>

∥∥∥2
F

= Tr((cd> − c̃d̃>)>(cd> − c̃d̃>))

= Tr((dc> − d̃c̃>)(cd> − c̃d̃>))

= Tr(dc>cd> − d̃c̃>cd> − dc>c̃d̃> + d̃c̃>c̃d̃>)

= Tr(dc>cd>)− Tr(d̃c̃>cd>)− Tr(dc>c̃d̃>) + Tr(d̃c̃>c̃d̃>)

= Tr(c>cd>d)− Tr(c>c̃d̃>d) + Tr(c̃>c̃d̃>d̃)− Tr(c̃>cd>d̃)

= Tr(c>(cd> − c̃d̃>)d + c̃>(c̃d̃> − cd>)d̃)

= c>(cd> − c̃d̃>)d + c̃>(c̃d̃> − cd>)
˜̃
d

≤ ‖c‖
∥∥∥cd> − c̃d̃>

∥∥∥ ‖d‖+ ‖c̃‖
∥∥∥c̃d̃> − cd>

∥∥∥ ‖d‖
≤ 2

∥∥∥cd> − c̃d̃>
∥∥∥ , as the norms of c,d, c̃, d̃ are ≤ 1

= 2
∥∥∥cd> − cd̃> + cd̃> − c̃d̃>

∥∥∥
= 2

∥∥∥c(d> − d̃>) + (c− c̃)d̃>
∥∥∥

≤ 2(
∥∥∥c(d> − d̃>)

∥∥∥+
∥∥∥(c− c̃)d̃>

∥∥∥)

≤ 2(‖c‖
∥∥∥d− d̃

∥∥∥+ ‖d‖ ‖c− c̃‖), as they are rank 1 matrices

≤ 4
√
s(k+1)µ

Bound ε(k) =
∥∥∥Ỹ (k) − Y (k)

∥∥∥
F
: Similarly, for simplicity, let wi = λ

(k)
i (a

(k)
i)>X(k)b

(k)
i , w̃i = λ̃

(k)
i (ã

(k)
i)>X̃(k)b̃

(k)
i ,

Ui = c
(k)
i ⊗ d

(k)
i , and Ũi = c̃

(k)
i ⊗ d̃

(k)
i .

Understanding Generalization in Deep Learning via Tensor Methods

Since
∥∥∥Ỹ (k) − Y (k)

∥∥∥
F

=
∥∥∥∑r(k)

i=1 wiUi −
∑r(k)

i= d̃iŨi

∥∥∥
F
,∥∥∥∥∥∥

r(k)∑
i=1

wiUi −
r(k)∑
i=

w̃iŨi

∥∥∥∥∥∥
F

=

∥∥∥∥∥∥
r(k)∑
i=1

(wiUi − w̃iŨi)

∥∥∥∥∥∥
F

≤
r(k)∑
i=1

∥∥∥wiUi − w̃iŨi

∥∥∥
F

=

r(k)∑
i=1

∥∥∥wiUi − wiŨi + wiŨi − w̃iŨi

∥∥∥
F

≤
r(k)∑
i=1

∥∥∥wiUi − wiŨi

∥∥∥
F

+
∥∥∥wiŨi − w̃iŨi

∥∥∥
F

=

r(k)∑
i=1

∥∥∥wi(Ui − Ũi)
∥∥∥
F

+
∥∥∥(wi − w̃i)Ũi

∥∥∥
F

=

r(k)∑
i=1

|wi|
∥∥∥Ui − Ũi

∥∥∥
F

+ |wi − w̃i|
∥∥∥Ũi

∥∥∥
F

≤
r(k)∑
i=1

|wi| ×
√

4
√
s(k+1)µ+

(
µ
∥∥∥X(k)

∥∥∥ (1 + 2|λi|
√
s(k)) + |λi|ε(k−1)

)
×
∥∥∥Ũi

∥∥∥
F

≤
r(k)∑
i=1

|λ(k)i |
∥∥∥X(k)

∥∥∥×√4
√
s(k+1)µ+

(
µ
∥∥∥X(k)

∥∥∥ (1 + 2|λi|
√
s(k)) + |λi|ε(k−1)

)
×
∥∥∥c̃(k)i ⊗ d̃

(k)
i

∥∥∥
F

=

r(k)∑
i=1

2|λ(k)i |
∥∥∥X(k)

∥∥∥×√√s(k+1)µ+ µ
∥∥∥X(k)

∥∥∥ (1 + 2|λi|
√
s(k)) + |λi|ε(k−1)

≤
r(k)∑
i=1

µ
∥∥∥X(k)

∥∥∥ (1 + 2|λ(k)i |(
√
s(k) +

√
s(k+1))

)
+ |λ(k)i |ε

(k−1), assume

√√
s(k+1)µ ≤

√
s(k+1)µ

≤ r(k) × {µ
∥∥∥X(k)

∥∥∥ (1 + 2|λ(k)max|(
√
s(k) +

√
s(k+1))

)
+ |λ(k)max|ε(k−1)}

≤ µr(k)[1 + 2|λ(k)max|(
√
s(k) +

√
s(k+1))]

∥∥∥X(k)
∥∥∥+ r(k)|λ(k)max|ε(k−1)

(80)

Let α(k) := µr(k)[1+2|λ(k)max|(
√
s(k)+

√
s(k+1))]

∥∥X(k)
∥∥, and β(k) = r(k)|λ(k)max|, then by the recurrence relationship

in 80, the difference between the final output of the two networks are bounded by:∥∥∥M̂(X)− M̃(X)
∥∥∥
F

=
∥∥∥ReLU(Ŷ (n)

)
− ReLU

(
Y (n)

)∥∥∥
F

(= X(n+1) −X(n+1))

≤
∥∥∥Ỹ (n) − Y (n)

∥∥∥
F

≤
n∑
k=1

α(k)Πn
i=k+1β

(i)

Since ∀k ∈ [n],
∥∥X(k)

∥∥ ≤ Πn
i=k

ρ(i)

ζ(i)‖A(i)‖
F

∥∥X(n+1)
∥∥
F
, to obtain an ε-cover of the compressed network, we can first

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

assume β(k) ≥ 1 ∀k ∈ [n]. Then µ need to satisfy:

µ ≤ ε

(r(∗)|λ∗|)n
∥∥X(n+1)

∥∥
F
nr(∗)(1 + 4|λ(∗)|

√
s(∗))(ρ(∗)

µ(∗)‖A(∗)‖
F

)n

where r(∗) = maxk r
(k)λ(∗) = maxi,k λ

(k)
i , s(∗) = maxk s

(k), and ρ(∗)

µ(∗)‖A(∗)‖
F

= maxk
ρ(k)

µ(k)‖A(k)‖
F

As when µ is fixed, the number of networks in our cover will at most be (1
µ)d where d denote the number of

parameters in the original network. Hence, the covering number w.r.t to a given ε is Õ(nd) (n is the number of
layers in the given neural network). As for practical neural networks, the number of layers n is usually much
less than O(log(d)), thus the covering number we obtained w.r.t to a given ε is just Õ(d) for practical neural
networks.

F Neural Networks with Skip Connections

F.1 Problem Setup

For neural nets with skip connections, the current theoretical analyses consider convolutional neural networks
with one skip connection used on each layer, since our theoretical results can easily extend to general neural nets
with skip connections. Therefore, we used the same the notations for neural nets with skip connections as what
we defined for convolutional neural networks.

Forward pass functions Under the above assumptions, the only difference that we need to take into account
between our analysis of CNN with skip connections and our analysis of standard CNN is the forward pass
functions. In neural networks with skip connections, we have

X (k) = ReLU
(
Y(k−1)

)
Y(k) =M(k)

(
X (k)

)
+ X (k)

and

X̂ (k) = ReLU
(
Ŷ(k−1)

)
Ŷ(k) = M̂(k)

(
X̂ (k)

)
+ X̂ (k)

where M(k)
(
X (k)

)
and M̂(k)

(
X̂ (k)

)
compute the outputs of the kth convolutional layer.

Similarly, we use tensorization factor, tensor noise bound and layer cushion as in convolutional neural network
defined in 4.2, 4.3 and 4.4. But note that the input X (k) in the definition of layer cushion is the input of kth

layer after skip connection.

F.2 Generalization Guarantee of Compressed Network Proposed

Theorem F.1. For any convolutional neural network M of n layers with skip connection satisfying the assumptions
in section 3 and any margin γ ≥ 0, Algorithm 1 generates a compressed network M̂ such that with high probability
over the training set, the expected error L0(M̂) is bounded by

L̂γ(M) + Õ
(√∑n

k=1 R̂
(k)(s(k) + o(k) + k

(k)
x × k(k)y + 1)

m

)
(81)

where

R̂(k) = min
{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1(t
(i)
j + 1) ≤ γ

2nmaxX∈S ‖M(X)‖F
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

}
(82)

To prove this theorem, Lemma F.2 is needed.

Understanding Generalization in Deep Learning via Tensor Methods

Lemma F.2. For any convolutional neural network M of n layers with skip connection satisfying the assumptions
in section 3 and any error 0 ≤ ε ≤ 1, Algorithm 1 generates a compressed tensorial neural network M̂ such that
for any X ∈ S:

∥∥∥M(X)− M̂(X)
∥∥∥
F
≤ ε ‖M(X)‖F (83)

The compressed convolutional neural network M̂ has with
∑n
k=1 R̂

(k)(s(k) +o(k) +k
(k)
x ×k(k)y +1) total parameters,

where each R̂(k) satisfies:

R̂(k) = min
{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1(t
(i)
j + 1) ≤ ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

}
(84)

F.3 Complete Proofs of Neural Networks with Skip Connection

To prove Lemma F.2, the following Lemma F.3 is needed.

Lemma F.3. For any convolutional neural network M of n layers with skip connection satisfying the assumptions
in section 3, Algorithm 5 generates a compressed tensorial neural network M̂ where for any X ∈ S:

∥∥∥M(X)− M̂(X)
∥∥∥
F
≤

(
n∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

n∏
l=k+1

t(l) + 1

ζ(l)
∥∥M(l)

∥∥
F

)
‖M(X)‖F

where ξ, ζ, and t are tensor noise bound, layer cushion, tensorization factor defined in 4.3, 4.4 and 4.2 respectively.

Proof. (of Lemma F.3)

We know by construction, M(X) = X (n+1) and M̂(X) = X̂ (n+1), we can just show
∥∥∥X (n+1) − X̂ (n+1)

∥∥∥
F

satisfies

the above inequality, and we will prove this by induction. Notice

Induction Hypothesis: For any layer m > 0,

∥∥∥X (m) − X̂ (m)
∥∥∥
F
≤

(
m∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m∏
l=k+1

t(l) + 1

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥X (m)
∥∥∥
F

Base case: when m = 1, the above inequality hold trivially as X (1) = X̂ (1) as we cannot modify the input, and
the RHS is always ≥ 0.

Inductive Step: Now we assume show that the induction hypothesis is true for all m, then at layer m+ 1 we
have

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

∥∥∥X (m+1) − X̂ (m+1)
∥∥∥
F

=
∥∥∥ReLU(Y(m)

)
− ReLU

(
Ŷ(m)

)∥∥∥
F

≤
∥∥∥Y(m) − Ŷ(m)

∥∥∥
F

≤
∥∥∥M(m)

(
X (m)

)
+ X (m) −

(
M̂(m)

(
X̂ (m)

)
+ X̂ (m)

)∥∥∥
F

≤
∥∥∥M(m)

(
X (m)

)
− M̂(m)

(
X̂ (m)

)∥∥∥
F

+
∥∥∥X (m) − X̂ (m)

∥∥∥
F

≤
∥∥∥M̂(m)

(
X (m) − X̂ (m)

)
+
(
M(m) − M̂(m)

)(
X (m)

)∥∥∥
F

+
∥∥∥X (m) − X̂ (m)

∥∥∥
F

≤
√
HW

(
t(m) + 1

)∥∥∥X (m) − X̂ (m)
∥∥∥
F

+
√
HWξ(m)

∥∥∥X (m)
∥∥∥
F

≤
√
HW

(
t(m) + 1

)(m−1∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m−1∏
l=k+1

t(l) + 1

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥X (m)
∥∥∥
F

+
√
HWξ(m)

∥∥∥X (m)
∥∥∥
F

≤

(
m−1∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m−1∏
l=k+1

t(l) + 1

ζ(l)
∥∥M(l)

∥∥
F

)
(t(m) + 1)

ζ(m)
∥∥M(m)

∥∥
F

∥∥∥X (m+1)
∥∥∥
F

+
ξ(m)

ζ(m)
∥∥M(m)

∥∥
F

∥∥∥X (m+1)
∥∥∥
F

≤

(
m∑
k=1

ξ(k)

ζ(k)
∥∥M(k)

∥∥
F

m∏
l=k+1

t(l) + 1

ζ(l)
∥∥M(l)

∥∥
F

)∥∥∥X (m+1)
∥∥∥
F

The proof of Lemma F.3 is then completed by induction.

Now we can proove Lemma F.2

Proof. (of Lemma F.2)

The proof is similar with the proof of Lemma D.5. The only difference is we replace t(l) by t(l) + 1.

To prove Theorem F.1, the following lemma is needed.

Lemma F.4. For any convolutional neural network M of n layers with skip connection satisfying the assumptions
in section 3 and any margin γ ≥ 0, M can be compressed to a tensorial convolutional neural network M̂ with∑n
k=1 R̂

(k)(s(k) + t(k) + k
(k)
x × k(k)y + 1) total parameters such that for any X ∈ S, L̂0(M̂) ≤ L̂γ(M). Here, for

each layer k,

R̂(k) = min
{
j ∈ [R(k)]|ξ(k)j Πn

i=k+1(t
(i)
j + 1) ≤ ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

}
The proof of Lemma F.4 is the same with Lemma E.9. And by setting ε = γ

2maxX∈S
, we get the desired expression

of R̂(k) in the main theorem.

Proof. (of Theorem F.1) Similarly, let us bound the covering number of the compressed network M̂ by approxi-
mating each parameter with accuracy µ.

Covering Number Analysis for Convolutional Neural Network Let M̃ denote the network after approx-
imating each parameter in M̂ with accuracy µ. We use the same assumptions and notations with the proof of
Theorem 4.5. And we still use X (k),Y(k),M(k) to denote X̂ (k), Ŷ(k), M̂(k)

Bound τ (k) =
∥∥∥Ỹ(k) − Ŷ(k)

∥∥∥
F
:

Understanding Generalization in Deep Learning via Tensor Methods

∥∥∥Ỹ(k) − Y(k)
∥∥∥
F

=
∥∥∥M̃(k)(X̃ (k)) + X̃ (k) −

(
M(k)(X (k)) + X (k)

)∥∥∥
F

≤
∥∥∥M̃(k)(X̃ (k))−M(k)(X (k))

∥∥∥
F

+
∥∥∥X̃ (k) −X (k)

∥∥∥
F

=
∥∥∥M̃(k)(X̃ (k))−M(k)(X (k))

∥∥∥
F

+
∥∥∥ReLU(Ỹ(k)

)
− ReLU

(
Y(k)

)∥∥∥
F

≤
∥∥∥M̃(k)(X̃ (k))−M(k)(X (k))

∥∥∥
F

+
∥∥∥Ỹ(k−1) − Y(k−1)

∥∥∥
F

=
∥∥∥M̃(k)(X̃ (k))−M(k)(X (k))

∥∥∥
F

+ τ (k−1)

Based on the proof of Theorem 4.5 (in Appendix D), we can easily get

∥∥∥Ỹ(k) − Y(k)
∥∥∥
F

=

n∑
k=1

k∑
i=1

α(i)
k∏

t=i+1

β(t)

where α(k) = 4HW
∥∥X (k)

∥∥2
F

(∑R̂(k)

r (λ
(k)
r)2R̂(k)k

(k)
x k

(k)
y + 4

∑R̂(k)

r (λ
(k)
r)2(o(k) + s(k))R̂(k) + 2(R̂(k))2

)
µ2,

and β(k) = 2
∥∥∥M̃(k)

∥∥∥2
F
.

Since ∀k ∈ [n],
∥∥X (k)

∥∥ ≤ Πn
i=k

‖X (n+1)‖
F

ζ(i)‖M(i)‖
F

, to obtain an ε-cover of the compressed network, we can first assume

β(k) ≥ 1 ∀k ∈ [n]. Then µ need to satisfy:

µ ≤ ε

2
√
HWn2

∥∥X (n+1)
∥∥
F
R̂(∗)

√
(λ(∗))2k

(∗)
x k

(∗)
y + 4(λ(∗))2(o(∗) + s(∗)) + 2(

√
2‖M̃(∗)‖

F

ζ(∗)‖M(∗)‖
F

)n

where R̂(∗) = maxk r
(k) λ(∗) = maxr,k λ

(k)
r , s(∗) = maxk s

(k), o(∗) = maxk o
(k), k

(∗)
x = maxk k

(k)
x , k

(∗)
y = maxk k

(k)
y

and
‖M̃(∗)‖

F

µ(∗)‖M(∗)‖
F

= maxk
‖M̃(k)‖

F

µ(k)‖M(∗)‖
F

So the skip connections don’t change the limiting behavior of the covering number, which w.r.t to a given ε is
Õ(nd) (n is the number of layers in the given neural network, d is the number of parameters), and Õ(d) for
practical neural networks. Because skip connections don’t need extra parameters, the neural network still has∑n
k=1 R̂

(k)(s(k) + t(k) + k
(k)
x × k(k)y + 1) total parameters.

Jingling Li1,3, Yanchao Sun1, Jiahao Su4, Taiji Suzuki2,3, Furong Huang1

G Additional Algorithms and Algorithmic Details

Details of Step 3 in Algorithm 1. We use the alternating least squares (ALS) in the implementation of step
3, which is the ‘parafac’ method of the tensorly library (Kossaifi et al., 2019), to obtain the CP decomposition.
Though CP decomposition is in general NP-hard, the ALS method usually converges for most tensors, with
polynomial convergence rate w.r.t. the given precision of the allowed reconstruction error (Anandkumar et al.,
2015, 2014a,b). In addition, step 3 obtains a CP parametrization of the weight tensor rather than recovers the
true components of the weight tensor’s CP decomposition. The rank in the CP decomposition is selected in step
2 and is an upper bound of the true rank of the tensor (Proposition 4.1). Thus, with the chosen rank, we can
obtain a CP decomposition with a very low reconstruction error. In practice, for our cases, the CP decomposition
method (ALS) used in step 3 always converges within a few iterations, with reasonable run time.

Algorithm 3 Find Best Rank for CNN (FBRC)

Input: A list of weight tensors {M(k)}nk=1 in the original network M where each M(k) ∈ Rs
(k)×o(k)×k(k)

x ×k
(k)
y ,

a list of number of components {R(k)}nk=1, a list of layer cushions {ζ(k)}nk=1 of the original network, and
a perturbation parameter ε which denotes the maximum error we could tolerate regarding the difference
between the output of original network and that of compressed network.

Output: Returns a list of number of components {R̂(k)}nk=1 for the compressed network such that∥∥∥M(X)− M̂(X)
∥∥∥
F
≤ ε. Notice that for each k, if the original network does not have skip connections,

R̂(k) satisfies that
ξ
(k)

R̂(k)
Πn
i=k+1t

(i)

R̂(k)
≤ ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

(85)

or if skip connection is used, R̂(k) satisfies that

ξ
(k)

R̂(k)
Πn
i=k+1(t

(i)

R̂(k)
+ 1) ≤ ε

n
Πn
i=kζ

(i)
∥∥∥M(i)

∥∥∥
F

(86)

1: For each layer k, calculate the following properties: layer cushion ζ(k), weight norm
∥∥M(k)

∥∥
F
, then calculate

the RHS ε
nΠn

i=kζ
(i)
∥∥M(i)

∥∥
F

for each k

2: Find the smallest R̂(n) such that the tensor noise bound for the last layer ξ(n) satisfies ξ(n) ≤ ε
nζ

(n)
∥∥M(n)

∥∥
F

3: for k = n− 1 to 1 do
4: if M does not have skip connections then

5: Calculate the multiplication of tensorization factor for layers upper than k, i.e., Πn
i=k+1t

(i)

R̂(i)
, based on

the choices of R̂(i) for k ≤ i ≤ n
6: Find the smallest R̂(k) by calculating the largest possible ξ(k) such that Equation 85 holds.
7: else
8: Calculate the multiplication of tensorization factor for layers upper than k, i.e., Πn

i=k+1(t
(i)

R̂(k)
+ 1), based

on the choices of R̂(i) for k ≤ i ≤ n
9: Find the smallest R̂(k) by calculating the largest possible ξ(k) such that Equation 86 holds.

10: Return {R̂(k)}nk=1

Remark. The FBRC algorithm finds a set of ranks that satisfies inequality 85 (CNNs) or 86 (NNs with skip
connections) within polynomial time because of the following guarantees. The total number of possible sets
of ranks (say T), which the FBRC algorithm will at most search through, is equal to the product of the ranks
of all layers. The rank of each layer is upper bounded by Proposition 4.1 and thus T is polynomial w.r.t. the
shape of the original weight tensors and the number of layers. Moreover, the search will definitely succeed as the
inequalities 85 and 86 automatically hold when R̂(k) = R(k).

Understanding Generalization in Deep Learning via Tensor Methods

Algorithm 4 Find Best Rank (FBR)

Input: A list of tensors {M(k)}nk=1 where each M(k) ∈ Rs
(k)
1 ×s

(k)
2 ×s

(k+1)
1 ×s(k+1)

2 is reshaped from a matrix A(k),
a list of number of components {R(k)}nk=1, a list of layer cushions {ζ(k)}nk=1 of the original network, and
a perturbation parameter ε which denotes the maximum error we could tolerate regarding the difference
between the output of original network and that of compressed network.

Output: Returns a list of number of components {R̂(k)}nk=1 for the compressed network such that∥∥∥M(X)− M̂(X)
∥∥∥
F
≤ ε.

ρ(k)ξ
(k)

R̂(k)
Πn
i=k+1t

(i)

R̂(k)
≤ ε

n

∥∥∥A(k)
∥∥∥
F

Πn
i=kζ

(i)} (87)

1: For each layer k, calculate the following properties: reshaping factor ρ(k), layer cushion ζ(k), weight norm∥∥A(k)
∥∥
F
, then calculate the RHS ε

n

∥∥A(k)
∥∥
F

Πn
i=kζ

(i) for each k

2: Find the smallest R̂(n) such that the tensor noise bound for the last layer ξ(n) satisfies ρ(n)ξ(n) ≤ ε
nζ

(n)
∥∥A(k)

∥∥
F

3: for k = n− 1 to 1 do
4: Calculate the multiplication of tensorization factor for layers upper than k, i.e., Πn

i=k+1t
(i)

R̂(i)
, based on the

choices of R̂(i) for k ≤ i ≤ n
5: Find the smallest R̂(k) by calculating the largest possible ξ(k) such that Equation 87 holds.
6: Return {R̂(k)}nk=1

Algorithm 5 CNN-Project

Input: A convolutional neural network M of n layers where its weight tensorM(k) of the kth layer is parametrized

by {λ(k)r , a
(k)
r , b

(k)
r , c

(k)
r }R

(k)

r=1 , and a list of ranks {R̂(k)}ni=1.

Output: Returns a compressed network M̂ of M where for each layer k,
∥∥∥M̂(k)

∥∥∥ is constructed by the top R̂(k)

components from CP components of M(k).
1: for k = 1 to n do
2: M̂(k) ←

∑R̂(k)

r=1 λ
(k)
r a

(k)
r ⊗ b(k)r ⊗ c(k)r

3: Let M̂(k) be the weight tensor of the kth layer in M̂
4: Return M̂

Algorithm 6 TNN-Project

Input: A fully connected neural network M of n layers where its weight tensorM(k) of the kth layer is parametrized

by {λ(k)r , a
(k)
r , b

(k)
r , c

(k)
r , d

(k)
r }R

(k)

r=1 , and a list of ranks {R̂(k)}ni=1.

Output: Returns a compressed network M̂ of M where for each layer k,
∥∥∥T̂ (k)

∥∥∥ is constructed by the top R̂(k)

components from CP components of M(k).
1: for k = 1 to n do
2: M̂(k) ←

∑R̂(k)

r=1 λ
(k)
r a

(k)
r ⊗ b(k)r ⊗ c(k)r ⊗ d(k)r

3: Let T̂ (k) be the weight tensor of the kth layer in M̂
4: Return M̂

	Introduction
	Related Works
	Notations and Preliminaries
	CNNs with CPL: Compressibility and Generalization
	Compression of a CNN with CPL
	Characterizing Compressibility of CNN with CPL: Network Properties
	Generalization Guarantee of CNNs

	Experiments
	Evaluation of Proposed Properties and Generalization Bounds
	Generalization Improvement on Real Data Experiments
	CPL Is Natural for Compression

	Conclusion and Discussion
	Additional Experimental Results
	Architecture and optimization setting
	Generalization bounds comparison with arora2018stronger
	Neural networks with CPL are natural for compression
	Improved Generalization Achieved by CPL
	Compressibility of CPL: Property Evaluation CPL

	Common Definitions and Propositions
	Multidimensional Discrete Fourier Transform (MDFT)
	CP decomposition
	2D-Convolutional Layer in Neural Networks

	CP Layers in Tensorial Neural Networks
	CP 2D-convolutional Layer
	Higher-order CP Fully-connected Layer
	Higher-order 2D-convolutional layer

	Convolutional Neural Networks: Compressibility and Generalization
	Complete Proofs of Convolutional Neural Networks
	Covering Number Analysis for Convolutional Neural Network

	Fully Connected Networks: Compressibility and Generalization
	Compression of a FC Network with CPL
	Characterizing Compressibility of FC Networks with CPL
	Generalization Guarantee of Fully Connected Neural Networks
	Complete Proofs of Fully Connected Neural Networks

	Neural Networks with Skip Connections
	Problem Setup
	Generalization Guarantee of Compressed Network Proposed
	Complete Proofs of Neural Networks with Skip Connection

	Additional Algorithms and Algorithmic Details

