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A Preliminaries

A.1 CountSketch and Gaussian Transforms

Definition A.1 (Sparse embedding matrix or CountSketch transform). A CountSketch transform is defined to
be Il = ®D € R™*"™, Here, D is an n xn random diagonal matriz with each diagonal entry independently chosen
to be +1 or —1 with equal probability, and ® € {0,1}™*™ is an m x n binary matriz with Dy = 1 and all
remaining entries 0, where h : [n] — [m] is @ random map such that for each i € [n], h(i) = j with probability
1/m for each j € [m]. For any matriz A € R"*¢ TIA can be computed in O(nnz(A)) time.

Definition A.2 (Gaussian matrix or Gaussian transform). Let S = \/% -G € R™*™ where each entry of
G € R™*™ 4s chosen independently from the standard Gaussian distribution. For any matriz A € R"*¢ SA can

be computed in O(m - nnz(A)) time.

We can combine CountSketch and Gaussian transforms to achieve the following:

Definition A.3 (CountSketch + Gaussian transform). Let S = SII, where II € R**" is the CountSketch
transform (defined in Definition A.1) and S € R™** is the Gaussian transform (defined in Definition A.2). For
any matriz A € R S'A can be computed in O(nnz(A) + dtm“~2) time, where w is the matriz multiplication
exponent.

A.2 Pythagorean Theorem, matrix form

Here we state a Pythagorean Theorem for matrices.

Theorem A.4 (Pythagorean Theorem). For any integers m,n > 0 and matrices A, B € R™*" iftr[ATB] =0,
then

IA+ Bl = [|All + ||BII%
A.3 Adaptive Sampling

We described a t-round adaptive sampling algorithm. The algorithm is originally proposed in [DRVWO06]. We
will use 7y (A) to denote the matrix obtained by projecting each row of A onto a linear subspace V. If V is
spanned by a subset S of rows, we denote the projection of A onto V' by mgpan(s)(A). We use Typan(s),x(A) for
the best rank-k approximation to A whose rows lie in span(.S).

e Start with a linear subspace V. Let Fg = A — 7y (A) and S = ()
e For j=1tot, do

— Pick a sample S; of s; rows of A independently from the following distribution : row 4 is picked with

i B |2
probability PZ.(] D> ||‘|E;:11“||§

~ S=SUS;
— Bj = A — 7ypan(V U S)(A).

Theorem A.5 ([DRVWO6], see also Theorem 3 in [DV06]). After one round of the adaptive sampling procedure
described above,

k
B[4 = opanvus) s (AIIF] < 14 = AgllE + || o[-
1 CS1

B Additional Results for Sketching f-Matrix Product

B.1 Proofs of Sketch log(| - | 4+ 1)-Vector Product

Theorem B.1 ([Gan07], K-Set). There exists a data structure supports updates of the form (i,A) to a vector
v € R™, wherei € [n] and A € {—1,1}, and supports a query operation at any time. The algorithm either returns
the current vector v € R™ or “Fail”. If the supp(v) < k, then the data structure returns “Fail” with probability
at most § € (0,1). The algorithm uses space O[klognlog(k/d)] bits.
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Proof of Theorem 4.2. Firstly, in the algorithm, for the level j, we sample the universe with probability p; =
min(ww, 1). Suppose the true support of z satisfies |supp(z)| = ©(27). We argue that with high
probability, there exists an j* > j such that KSET;+« succeeds. To show this, it is suffice to show that KSET;
succeeds with high probability. By Chernoff bound, with probability at least 1 —©(J), the number of coordinates
sampled in level j is ©(¢~2 poly(logn/§)). By Theorem B.1, the KSET; instance succeeds to return the sampled
sub vector with probability at least 1 — O(6). Since the coordinates sampled in KSET;- is with probability at

least p;, we can bound the variance of unbiased estimator by

2 2
E || Y 2wilog(lyl +1) | | = | E| Y 2a;log(yil +1)
’ i€S; 7 lies;
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where the first step uses the fact

Z 2z log(|lys| +1)| = ZPr[i € S;127x; log(|yi| + 1),
I |ies; i=1
the second step expands the square, the fourth step uses Pr[i € S;] = 277, the fifth step uses the fact that
> aib; < (max;a;) - Y, b for by > 0, and the last step uses the fact that

max (27 log(|y;| + 1)) < 27 - logm - min log(|y;| + 1) < logm - Zlog(\yﬂ +1)
i€[n] i€[n] P

Applying Bernstein’s inequality, we conclude the proof. O

B.2 Sketch /|- |-Vector Product

Our algorithm for sketching \/W—Vector product is based on the algorithm established in [BVWY17]. The
algorithm is formally presented in Algorithm 3. We first present an algorithm that approximates the inner product
for only non-negative x. In the theorem, we will show the inner product for general x can be approximated as
well. The high level idea is similar to the p-stable distribution algorithm established in [Ind00]. However this
algorithm is much simpler in terms of hashing function chosen and distribution design. In this algorithm, we used
the distribution called p-inverse distribution ([BVWY17]) over positive integers such that Pr[X < z] =1—-1/2?,
where X is the p-inverse random variable. Then we scale each coordinate of \3:|1/ Py by a random variable drawn



Yingyu Liang, Zhao Song, Mengdi Wang, Lin F. Yang, Xin Yang

Algorithm 3 PoLySuMm(z, p,€)

1: procedure INITIALIZE(z, p) >x>0,2€Z>p,0<p<2
2 Let p-inverse distribution be defined as Pr[z < 2] =1 — %

3 Let D denote the pairwise independent p-inverse distribution.

4 Let k + O(e72)

5: Implicitly store n x k matrix Z, where Z, ; ~ D > Ounly needs ©(logn) bits
6 Initialize CS as a count-sketch instance with space ©(e~2 polylogn)

7: end procedure

8: procedure UPDATE(i, A) >ien,AeR
9: for j=1—kdo

10: CS.UPDATE((4, 5), |z:[/P Z; j - A)

11: end for

12: end procedure

13: procedure QUERY

14: y +CS.QUERY()

15: z < (%)-th largest coordinates of |(y)|

16: return z/2/P

17: end procedure

from the p-inverse distribution. After this, we run a count-sketch to find the largest few coordinates in the
updating scaled vector. It can be shown that the median value of these output coordinates serve as a good
estimation for the p-norm of the vector |z|'/Py. A similar idea of this kind can be found in [And17]. For the
\/-case, we simply chose p = 1/2 then [|y[|} is a good estimation to », [x;|\/|yil.

Theorem B.2. Given a fized vector x € R™ and number p € (0,2]. There exists an one-pass streaming algorithm
that makes a single pass over the stream updates to an underlying vector y € R™, and outputs a number Z, such
that, with probability at least 1 — 4,

1Z — (@, yP) < € fail |yl
i=1
The algorithm uses space O(e~2 poly(log(n/d))) (excluding the space of z).

Proof. The proof of the this theorem is a straightforward application of the results in [BVWY17] by splitting x
into positive and negative parts. O

B.3 More General Functions f

Furthermore, our framework can be applied to a more general set of functions. This set of function includes
nearly all “nice” functions for n variables. For the ease of representation, we neglect the formal definition of the
this set. It can be understood that a function in this set satisfies three properties: slow-jumping, slow-dropping
and predictable. Readers that are interested, please refer to [BCWY16]. Here we give three examples for the

the functions that we are able to approximate. For example, 2% - 2V1°8% (2 + sinz)22,1/log(1 + x). Using our
proposed general framework and [BCWY16], we have the following result,

Theorem B.3. Given a vector x € {—1,0,1}", and a function [ that satisfies the above regularity condition,
then there exists a one-pass streaming algorithm that makes a single pass over the stream updates to an underlying
vector y € R"™, and outputs a number Z, such that, with probability at least 1 — 6,

1Z = (=, f(ly) < er(lyil)-

The algorithm uses space O(poly(e~!log(n/d))) (excluding the space of z).
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Proof. The proof is a straightforward application of [BCWY16] by considering the positive part and negative
part of x separately. O

Remark B.4. We remark that the algorithm in [BCWY16] is quite complicated but has the potential to be
simplified. We also note that x is not necessarily restricted on {—1,0,—1}, but the complezity depends on ratio
of the absolute values of the maximum non-zero entry and minimum non-zero entry (in absolute value) of x.

B.4 From Vector Product Sketch to Matrix Product Sketch

With the f-vector product sketch tools established, we are now ready to present the result for sketching the
matrix product, M = f(A)B. Notice that each entry M, ; := (f(A;),B;) is an inner product. Thus our
algorithm for the matrix sketch is simply maintaining a f-vector product sketch for each M; ;. In our algorithm,
we assume that matrix B is given, i.e., hardwired in the algorithm. Thus, if B € R™** for some k < n, we
only need to keep up to O(nk) inner product sketches, which cost in total O(nk) words of space. For the ease of
representation, we present our guarantee for matrix product for f(x) := log®(|z|) for some c or for f(x) = «P for
0 < p <2, and for matrix B € {—1,0,1}"**. Our results can be generalized to a more general set of functions

and matrix B using the results presented in Section B.3.

Theorem B.5. Given a matriz B € {—1,0,1}"** and a function f(z) :=log®(|z|) for some c or f(x) := |z|P
for some 0 < p < 2, then there exists a one-pass streaming algorithm that makes a single pass over the stream
updates to an underlying matriz A € R™ with updates of absolute value at least 1° and outputs a matriz M, such
that, with probability at least 1 — 6, for all i, 7,

My — Mgl < e f(lAi).
k=1

The algorithm uses space O(e~2nk poly(log(n/d))).

Proof. The proof of this theorem is a straightforward application of Theorem 4.2 and Theorem B.2. O

C Application in Low Rank Approximations

C.1 Leverage score and its application on samping

Classic approaches of low rank approximation first compute the leverage scores of the matrix M, and then sample
rows of M based these scores.

Definition C.1 (Leverage scores, [Wool4, BSS12]). Let U € R™** have orthonormal columns with n > k. We
will use the notation p; = u?/k, where u? = |le; U||% is referred to as the i-th leverage score of U.

Definition C.2 (Leverage score sampling, [Wool4, BSS12]). Given A € R™*? with rank k, let U € R™** be an
orthonormal basis of the column span of A, and for each i let p; be the squared row norm of the i-th row of U.
Let k - p; denote the i-th leverage score of U. Let 8> 0 be a constant and ¢ = (q1,- - ,¢n) denote a distribution
such that, for each i € [n], ¢; > Bp;. Let s be a parameter. Construct an n X s sampling matriz B and an
s X s rescaling matriz D as follows. Initially, B = 0"*° and D = 0°*%. For the same column index j of B and
of D, independently, and with replacement, pick a row index i € [n] with probability ¢;, and set B; ; = 1 and
D;; =1/\/q;5. We denote this procedure LEVERAGE SCORE SAMPLING according to the matriz A.

However approximating these scores is highly non-trivial, especially in the streaming setting. Fortunately, it
suffices to compute the so-called generalized leverage scores, i.e., the leverage scores of a proxy matrix. We
describe the resulting algorithm (Algorithm 2) and the intuition here and provide the complete analysis later.

Definition C.3 (generalized leverage score). Consider two accuracy parameters o € (0,1),6 € (0,1), and two
positive integers q and k with ¢ > k. If there is a matrix E € R™*™ with rank q and that approzimates the row
space of M € R™™"™ as follows,

X | XE = Mllp < (14 a)[[M = [M]y]lr + 6,

2This gurantees that if A;; # 0, then |A; ;| > 1
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then the leverage scores of E are called a set of (1 + «,0,q, k)-generalized leverage scores of A. Suppose E has
an SVD decomposition ULV T, where U € R™*9,V € R™9 are orthonormal matrices, then its leverage scores
are £; = ||V||3 where V' is the i-th row of V, Vi € [n].

These scores can be computed easier. We first need to find such an matrix E. Let S be a subspace embedding
matriz (i.e.,

ISMz|2 € (1+a)||Mz|2, VzeR",

a sufficient large matrix with random +1, —1 entries will have this property).

Then E = SM satisfies the requirement in Definition C.3, and thus we can simply use our sketching method
to approximate SM and then compute its leverage scores. In Algorithm 2, we will use the concatenation of the
positive and negative parts of .S, since it also satisfies the requirement and empirically has better accuracy than
S. The quality of the generalized scores (i.e., a and §) will depend on the parameter s in the algorithm that are
specified in our final Theorem 5.1.

The scores then can be used for sampling. Let P be a set of columns of M sampled based on these scores (defined
in Line 11 of Algorithm 2). It is known that, when the scores are (O(1),0, ¢, k)-generalized leverage scores, then
the span of a P with Q(gloggq) columns will contain a rank-¢ matrix which provides a O(1)-approximation to
M [DMIMW12, BSS12, BW14, CEM™15, SWZ19b]. It is tempting to set ¢ = k to match our final goal of rank-k
approximation, but all existing fast methods require ¢ > k. To improve the rank-q to rank-k, we use adaptive
sampling.

Adaptive sampling samples some extra columns from M according to their squared distances to the span of P.
For a column M,;, we thus need to use our sketching method to estimate ||[M,;|3 — ||Txil|3, where T,; is its
projection on to the span of P. This introduces some additive errors but they can be handled by thresholding.
Let Y be the sampled columns. Adaptive sampling ensures that there is a good rank-k approximation in the span
of Y := Y UP as long as we have sampled sufficiently many columns. To obtain our final rank-k approximation,
it suffices to project M to the span of Y and compute the top k singular vectors. The projection can be done by
sketching and the errors are, again, small.

C.2 Proof of Theorem 5.1

Recall that there are three steps in computing the top singular vectors (see Algorithm 2):

e Compute the generalized leverage scores and sample a set P according to the scores,
e Adaptive sampling to get a set Y,

e Project to the span of Y and compute the approximation solution there.

Below we present the complete proofs for each step.

For simplicity, we use the following notion.

Definition C.4. We say that the span of P has a (1 + €, A)-approzimation subspace for M if there exists C
such that

[1PC—M|p < (1+e)|M—[M|r+ A

C.3 Sampling by Generalized Leverage Scores

First, recall the definition of generalized leverage scores and related property from [BLS™16].

Lemma C.5 (Lemma 2 in [BLST16]). Suppose 0 < k < g<m <n, a >0, A >0, and A € R"™". Let
B € R be b= O(a2qlogq) columns sampled from A according to a set of (1+a, A, q, k)-generalized leverage
scores of A. Then with probability > 0.99, the col-span of B € R™*® has a rank-q (1 + 2a,2A)-approzimation
subspace for A. That is, there exists C € RP™ such that

IBC = Allp < (14 20)[|A = [Alx]|lF + 2A.
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We need the following result about subspace embedding.

Lemma C.6 (Lemma 3 in [BLST16]). We say S is a (1 + €,A)-good subspace embedding if it satisfies the
following.
(Subspace Embedding). For any orthonormal V. € R™* (i.e. VIV =1 ),

(L= o)|[Va| < [[SVz| < (1 + )|Vl

where ¢ € (0,1) is a sufficiently small constant.
(Approzimate Matriz Product). For any fived A € R™*"™ and B € R"*F

€
|ATSTSB — ATB| < —||All% - | BlF + A.

We are going to show that in Algorithm 2, the span of P has a good approximation subspace. Intuitively,
E = R- M € R?>*™ approximates the row space of M € R™*" and F € R25X" gpproximates £ € R%*" so
by the definition, the leverage scores {/;} of E € R**™ are the generalized leverage scores of M. Then the
conclusion follows from Lemma C.5. Formally, we have the following lemma.

Lemma C.7 (Sampling leverage scores). Let s = O(klogk). Let di = O(klog®k). Recall that P € R™ % is the
matriz sampled with the leverage score of (S - M) € R**™, as constructed in Line 11 as in Algorithm 2.

There exists matriz S € R**"™ such that there exists C' satisfying
IPC = M| < 5| M — [M]yF + A

where Ay = 0(62/8)||MH%2

Proof. First, s is large enough so that S € R**™ is a 0.1-subspace embedding matrix for subspace of dimension
k; see [BLST16, Wool4]. Then it is known that there exists Z € R™*¢ satisfying

|ZSM — M||p < (14 0.1)||M — [M]]|r.

Clearly, there exists X = [Z, Z] € R"*?% such that
IXRM = My < (14 0.1)|M — [M]g]|F- 2)
Let E = RM € R***". Then
IM — XE| < 2|M - XE|3 +2|XE - XE|;
< 3||M — [M]e][7 +2|XE — XE|3.

where the first step follows from the inequality |A + B||% < (|| Allr + || Bllr)? < 2||4]|% + 2||B||%, the second

step follows from Eq. (2) and the definition £ = RM € R?$*",
Consider the second term.
|IXE - XE|lp < [|X[2llE - Elr
< 22|12 B - E|lr.
where the last step we use X = [Z, Z] € R"*2s.

Hence we have

IE—E|r <O0(c) max |R;l[|M
i€[2s],5€[n]

< O(e/Vs)lIM

where the first step follows from our guarantee on our sketching method in Theorem 4.2, the second step follows
from the construction of R, i.e. the range of each entry of the CountSketch matrix.

1,2

1,2
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By Lemma C.6, we can rewrite Z as follows:

Z = [M]i(S[M];,)"

= [M][M]] 5T,
We can upper bound ||Z]|2 by O(1),
12112 < M) [M]E ]2 - 11STl2

= [15™]l2

= 0(1).
Putting it all together, we have

IM — XE|% < 3[|M — [M]i]|% + O(e/s) | M| ».

This satisfies the definition of generalized leverage scores. Then the statement follows from Lemma C.5. O

C.4 Adaptive Sampling

Lemma C.8 (Adaptive). Let d; = O(klog®k) and dy = O(k/e). With probability > 0.99, there exists C' €
R+d2)xn gych that Y C is rank-k and

IYC — M7 < 5IM — [M]i][F + A1 + A,
where Ay is defined as Lemma C.7, and Ay = O(ey/dy + €2d1)||M||%.

Proof. If p;’s are larger than a constant times the true square distances s;’s, then the statement follows from
Theorem A.5. So consider the difference between s; and s;.

Let I' = QI M € R4*" where is obtained from QR-decomposition as in Line 13 of Algorithm 2.
P P
18 = sil = [ITall3 = ITall3 + 1Mall3 — [1M513)-

By our guarantee in Theorem 4.2,

Dji = Tjil < ell(@p)ill P I1Mill = €l M2 (3)
where the last inequality follows since (Q));’s are basis vectors and have length 1.
So
‘F?i ~I5| = ’(Fji = Tji) - (Tji + Tja)
= ’Fji — Tyl - ’Fji + Ty,
< ’sz' ~Tji| - (‘Fji —Tji| + Q\Fyﬂ)
~ ~ |2
=2 ‘Fﬁ — Lyl - [Tyl + ‘Fji — Ly
< 2¢|| Mi|2[Tji] + €| M3 (4)

where the third step follows from triangle inequality, and the last step follows Eq. (3).
And

IR I S Sy

J€ldi]
< 2€||Milla D |Tjil + O(e*dn) || M]3
J€ldi]
< O(ey/dy) | Mil[2]|Ts |2 + O(e?dy) || M;]3
< O(ev/dy)||M;][3 + O(e*dy ) || M3 3
= O(e/dy + €dy) | M;]J3.
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where the first step follows from triangle inequality, the second step follows from (4), the third step follows form
Cauchy-Swartz inequality, the fourth step follows I'; = Q;,'— M; € R4 and Qp € R¥1*™ i an orthonormal matrix.

Therefore,

|5i — si| < O(en/dy + €2dy)|| M3 = 6;.

Suppose that the algorithm sets 1 := O(ev/d; + €2dy) such that the threshold §; < nz; < 26;.

If 5; <6, then s; < 2§;, and thus p; > s;/2. If 5; > 0;, then s; < 5; + 6; < 25; < 2p;, and thus p; > s;/2. Now,
if =, pi is not too large compared to ), s;, then we are done by applying Theorem A.5.

Let C' C [n] denote the set of indices i such that 5; > &;. If > ;e 8 =23, 0i, then
~ I -
ZSiZZSi—‘ 5iZ§ZSi (5)
ieC ieC i€[n] e’
and thus

Yoy E+2Y

i€[n] e i€[n]

IN

where the first step follows from the definition of p;, i.e. p; = max{s;,nz;} and the assumption nz; < 24;, the
second step follows from the assumption ), 8; > 2 Zie[n] 0;, the third step uses (5), the fourth step is because
s; > 0and C C [n].

So we are done in this case.

In the other case when ;. 5; <23, i, We have

Z 8; < Z S; + 0;
i€[n

] i€[n]
<) 28+ )26
ieC igC
<4 Z d;
i€[n]

= O(e\/dy + €dy) | M||% := As.

where the first step follows from 0; = |s; — §;| and triangle inequality, the second step uses the construction of
the set C' and the third step uses the assumption } ;e 8 <2320, 6i-

This means that I' is close to M, and thus [I']; (the best rank-k approximation to I') will be the desired
approximation in the span of P (and thus the span of ¥ since P C Y'). This completes the proof. O

C.5 Computing Approximation Solutions
Lemma C.9. Let d; = O(klog® k) and dy = O(k/€). There is an algorithm that outputs a matriz L , such that
ILLTM — M3 < 10[|M — [M]3[|F + 241 + 242 + Ay

where Ay is defined as Lemma C.7, Ay is defined as Lemma C.8 and Az = O(e?(dy + d2))||M||%.
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Proof. Since Q € R™*(d1+d2) g orthonormal, Q' Q = Ig,+4,. We need the following auxiliary result: for any
A c R(d1+d2)><n’

IQAM — M||% = |QAM — QQ"M||% + ||M — QQ M||%. (6)
This is because

(QAM —QQ"M) " (M —QQ"M)
_ MTATQTM _ MTQQTM _ MTATQTQQTM—FMQQTQQTM
=MTATQ"™ M -—M"QQ"M -—MTATQ" M+ MQQ™ M
=0

where the second step uses Q' Q = I4, 1d,-
Then (6) simply follows from Theorem A.4.

We also need the following result: for any A € R(d1+dz2)xn
1QAIE = [|AllF (7)
This is because
1QAIR: = tr{ATQTQA] = AT 4] = | A

where the second step we uses the fact that QT Q = I, 14,

Let X € R*"*" denote the YC € R™ " in Lemma C.8. Recall that @, is obtained from QR-decomposition of
Y € RM*(di+d2) 5o we can write Y = QyR,. For simplicity, let () denote @), and R denote R,. Then we have

1QIQ ™M — M|} =[QIQT M), — QQ M]3 + |QQT M — M|%
=Q"M]x — Q" M|f% + |QQTM — M|%
<|RC - Q"M%+ QQTM — M|%
=|QRC —QQM|% + |QQTM — M|%
=[|QRC — M|%-
=X — M7 (8)

where the first step uses (6) by setting A = [QT M|y, the second step uses (7), the third step uses the fact
that rank(RC) < rank(QRC) = rank(Y) < k and [Q M];, € R(@1+42)X7 ig the best rank-k approximation for
Q"M € R(ditd2)xn the fourth step again uses Eq. (7), the fifth step uses the Eq. (6) by setting A = RC, and
the last step uses that QRC =Y (C = X € R"*",

Therefore,

IQIQ " M1y, — M|[F < ||M — X
< 5|M — [M]|3 + Ay + As. 9)

where the first step follows from (8), the second step follows from Lemma C.8.

Let W € R(©1+d2)xk denote the top k singular vectors of QT M € R(d1+d2)xn Gince I € R(d1+d2)%k are the top
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Table 1: Table of parameters

Notation | Choice Location Comment

s O(klog k) Lemma C.7 | size of oblivious sketching matrix

dq O(klog” k) Lemma C.7 | size of column sampling matrix

do O(k/e) Lemma C.8 | size of adaptive column sampling

Ay O(e?/s)IM]]F 5 Lemma C.7 | error from oblivious sketching matrix
AP O(\/e2d1 + e2d1)||MHF Lemma C.8 | error from column sampling matrix
Aj O(e2(dy + do)) [ M|% Lemma C.9 | error from adaptive column sampling

k singular vectors of II € R(41+d2)xn e have
IWWT —DQ"M|% (10)
< QW’VW — DI} +2|(WW T - 1)(Q"M —TI)|3
<2/(Ww' - DI +2|(WWT —1)(QM —TD)||}
< 2||<WWT —DQTM|E+2|(WW T - D)(QTM — )|} + 2|(WW T —1)(Q"M — 0|3,

<2[Q My — Q" M|E +2WW T —I|3I(QTM — )|} +2|WW T — I|3|(QTM —T)|3

<2)[QT My — Q"M% + 4(QT M — )|}

< 2/|[Q My — QT M3 + O(A)QII% M]3

<2/[Q" Mk — Q"M%+ O(¢?) - (dy + do)[| M3

= 2[Q" My — QT M3 + O(e*(d1 + da))||M |3 (11)

where the first step uses the fact that ||[A+ B||% < 2||A||% + 2|/ B||%, the second step uses the fact that WwT —
NQ™ = Q"M — Q"M and [QT M];, is the best rank k approximation of Q' M, the third step uses the
fact that ||AB||r < ||A]l2 - ||B||r for any matrices A, B, and WW Q"M = [QT M|y, since W are the top k
singular vectors of QT M, the fourth step uses |[AAT — I|| < 1 for all orthonormal matrix A € R(¢1+42)xk gince
(AAT —1)?2 =1 — AAT, the fifth step uses convergence grantee in Theorem 4.2, the sixth step follows from Q is
an orthonormal matrix with d; + do columns.

We now bound the error using the above two claims.
Noting L = QW € R(&1+d2)xk Tence by (7) we have
ILLTM — QQ T M|% = [WW Q™M — Q" M| (12)

Therefore

ILLTM — M|z = |[LLTM - QQ"M|% + |M - QQ" M||%
2|QIQ" My — QQTM|% + O((di + d2)) | M||F + M — QQT M||3
2|QIQ " Ml — M|[% + O(*(di + da)) || M| %
10[|M — [M]i||3 + 241 + 245 + O(€*(dy + do))|| M |3
= 10||M — [M]i||% + 241 4 242 + As,

IAIACIA

where the first step uses the fact that L = QW and (6) with A = WLT, the second step uses (12) and (10),
the third step uses (6) with A = [Q T M];,, the fourth step uses Lemma C.8, and the last step is the definition of
As. O

C.6 Main result

Theorem C.10. There exists an algorithm (procedure LOWRANKAPPROX in Algorithm 2) that with parameter
settings as in Table 1, runs in query time nkpoly(logn,1/€) and space O(nk/€?), outputs a matriz L € R™** 5o
that

ILLTM — M||% < 10| M — [M]i |3 + O(edi) | M[[% + O(e? /) [ M][7 -
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holds with probability at least 9/10.

Proof of guarantee.
ILLTM — M]3
< 10[[M — [M]g||% + 2481 + 242 + Ag
= 10| M — [M]i||F + O(?/9)IM|]F 2 + O(Ve2dy + 2dr) | M| + O(€*(dr + da)) || M |3
= 10[|M — [M]i[l5 + O(e2/s)|M 7, + O(Ve2dy + €dr) | M| T + Oeda) | M|[3
= 10|M — [M]ill% + O(e*/)[IM]]% 5 + O(ed) | M|

where the first step uses Lemma C.9, the third step uses the definition of d; = O(klog® k) and dy = O(k/¢) so
dq +d2=0(d1/6). O

Proof of time and space. The largest matrix we ever need to store during the process has size n x (dy + d3) =
O(e 'nklog® k). The space needed by LoGSUM is bounded by O(e~2nk) by Theorem 4.2. So the overall space
used is at most O(e~2nk).

Since we only call LocSuM 4 times in the whole process, the query time hence follows from Theorem 4.2. O

Notice that | M|1,2 > |M||r > ||M — [M]g| r, so we can rescale € to get Theorem 5.1.

D Examples Demonstrating the Differences Between A and log(A)

D.1 rank(A) > rank(log A)

In this section, we provide a matrix A € R"*" with rank-n, however, the rank(log A) = 1.

Recall the definition of Vandermonde matrix.

Definition D.1. An m x n Vandermonde matriz usually is defined as follows

1 a o - ot
2 n—1
1 a a3 - o X
2 n—
v=I|1l a a3 - ay
2 n—1
1 an o, o

or Vig =l Vi€ [l j € [

Theorem D.2. Let A denote a n x n Vandermonde matriz with o; # «;,Vi # j. Then rank(A) = n and
rank(log(A)) = 1.

Proof. By definition of A, we have,

—1
1 a of af
1 ay o ah~t
—1
1 as o} ag
1 a, a2 an—1

Note that, we can compute the determinant of matrix A,

det(A) = H (0 — ay).

1<i<j<n

Since o # «;, Vi # 4, thus det(A) # 0 which implies rank(A) = n.
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By definition of log(A), we have,

0 log(ar) 2log(ar) -+ (n—1)log(as)
0 log(az) 2log(az) -+ (n—1)log(az)

log(A) = 0 log(as) 2log(as) -+ (n—1)log(as)
0 log(an) 2log(an) - (n—1)log(an)
[log(a)
log(arz)

— |loglas)| .0 1 2 (n—1)].
| log (o)
Therefore rank(log(A4)) = 1. O

D.2 rank(A) < rank(logA)

In this section, we provide a matrix A € R™*" with rank-n/2, however, the rank(log A) = n.

Theorem D.3. There is a matriz A € R™*"™ such that rank(A) = n/2 and rank(log(A)) = n.
Proof. Let B denote a 2 x 2 matrix as follows
1 2
v=[s ]

It is not hard to see that rank(B) = 2 and rank(log(B)) = 1. We define matrix A by copying B by n/2 times on
A’s diagonal blocks,

B 0 0 --- 0
0o B 0 --- 0
A_lo 0o B - 0
o o 0 --- B
Then we have rank(A4) = n/2 and rank(log(A)) = n. O

Due to the following fact, copying rank-1 matrix several times won’t give a better theorem D.3.
Fact D.4. For any rank-1 matriz A, the rank(log(A)) < 2.
Proof. Without loss of generality, let’s assume A can be written as
g
T o2
A=a f=1].]" By B2 -]

Qo

Let B denote log(A), then it is easy to that B; ; = log(a;) + log(8;). Therefore matrix B can be decomposed
into the following case

B =log(a) -1+1" log(5)"

Thus, rank(B) < 2. O
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Algorithm 4 Linear regression by f-matrix product sketch

1: procedure LINEARREGRESSION(M, b, n, d,)
2: Implicitly form A = log M

3 s « poly(d/e)

4 Choosing a sketching matrix S € R**"
5: SA <+ SKETCHLOG(S, M)

6: T ¢ min,cga |SAz — Sb||

7 return =
8: end procedure

> Theorem E.1
> A e Rnxd

E Application of f-Matrix Product Sketch in Linear Regression

In this section, we consider the application to linear regression. Linear regression is a fundamental problem in
machine learning, and there is a long line of work using sketching/hashing idea to speed up the running time

[CW13, MM13, PSW17, LHW17, ALS"18, DSSW18, SWZ19b, CWW19].

Recall that for a matrix M € R"*?  we use log(M) to denote the n x d matrix where the entry at i-th row and

Jj-th column of matrix log M is log(1M; ;).

Theorem E.1 (Linear regression). Given matriz M € R"*¢ and vector b € R? where n > d. Let A =log M €
R"¥4. There is an one-pass algorithm (Algorithm /) that uses poly(d,logn,1/¢€) space, receives the update of M

in the stream, and outputs vector T € R? such that
|AZ — b]|]2 < (1 +€) min ||Az — b||2 + T,
z€R
holds with probability at least 9/10 and where T = ||b||2/ poly(d/e).
Proof. Without loss of generality, we assume that ||Al|2 = 1 in the proof.
Let 2* € R? denote the optimal solution of this problem,

min || Az — bl|2.
z€R4

Let OPT denote ||Az* — b||2. Let 2’ € R? denote the optimal solution of this problem,

min ||SAz — Sb||2.
zERd

By property of sketching matrix, we have
[Az" = bll2 < (1+ €)|| Az — b]|2.
Note that 2’ = (SA)TSb. Let 7 € R? denote the optimal solution of

min ||SAz — Sb|.
z€eR4

It means 7 = (SA)TSb. We have
|AZ — b|2
< [|Az’ = bll2 + [|AT — Az'||;
< (1+¢€) OPT +| Az — A2'||>
= (14 ¢)OPT + ||A(SA)'Sb — A(SA)TSb|,

Ch

(13)

where the first step follows by triangle inequality, the second step follows by ||[Az’ —b||s < (1+€) OPT, the third

step follows by definition of 2’ and z*.
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Now the question is how to bound the term C; in Eq. (13). We can upper bound C' in the following way,

Cy = ||A(SA)TSb — A(SA)TSb|2
< | Al2lI(SA)! = (SA)![2]|Sb]|2

I(SA) — (SA) 215012

< (SA)T = (SA) 2 [b]l2

Cy

the third step follows by ||A]|2 = 1, and the the last step follows by [|Sb||s = O(1) - ||b||2. Next, we show how to
bound the term C5 in the above equation, using Lemma F.1, F.3 and F.2, we have

Cy = |[(SA)T = (S4)!],

max(||(SA)T2, 1(SA)T3) - [ISA — SAl2
I(SA)Y 3 1SA - SA|

S IAT)3 - 1SA - SA|)

< || AY3/52 poly(d/e)

=||A[|3/ poly(d/e)

< 1/ poly(d/e)

where the second step follows by Lemma F.1, the third step follows by Lemma F.3, the fourth step follows
by property of sketching matrix S, the fifth step follows by size of S and Lemma F.2 the last step follows by
[All2 = 1. O

A

A

F Tools

In this section, we introduce several basic perturbation results.

[Wed73] presented a perturbation bound of Moore-Penrose inverse the spectral norm,

Lemma F.1 ([Wed73], Theorem 1.1 in [MZ10]). Given two matrices A, B € R%>*92 with full column rank, we
have

1A = B2 < max(| A3, | BY3) - [ A — B>

Lemma F.2 (Latala’s theorem [Lat05], Theorem 5.37 in [Ver10]). Let A be a random n x d matriz whose entries
A; ;,Y(i,7) € [n] x [d] are independent centered random variables with finite fourth moment. Then

1/2

d n 1/2 n d
BllAL] S | EAL] ) <ZE[A?,A> +| XX EAL)

jeld
aeld \i= 1

1/4

=17
Lemma F.3. Let B=A+E, if |E; ;| <€, where € = ¢/(d1d2r(A)10), then

(1= e)llAT < [ BY < (1 +¢)[| AT

Proof. Given the definition of B, we can rewrite BB into four terms,
BBT = (A+E)(A+E)" =AA" + EAT + AET + EE".
Since we can bound

|EAT + AET + EET||5 < 3| E| p||Al.2
< 3€'dydyo1(A)
< €omin(4)/3
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Thus,
AAT —€omin(A)/3-1 < BBT < AAT + eopmin(A)/3 -1
Thus,
1
Bif= ——
1B oo (D)
1
<
" Omin (A) — Omin (A)6/3
< (1 _—
o ( + 6) Umin(A)
= (14l Alo.
This completes the proof. O

Theorem F.4 (Generalized rank-constrained matrix approximations, Theorem 2 in [FTO07]). Given matrices
AeR™4 BeR™ and C € RI*Y let the SVD of B be B=UgXpVy and the SVD of C be C = UcSc Vg .
Then,

BYUBUR AVeVA ), Ct = argmin  ||A — BXC||r
rank —k X €RPXx4

where (UBU}:E;FAVCVJ);c € RPX? 4s of rank at most k and denotes the best rank-k approrimation to
UBU;AVCVCT e R"*4 in Frobenius norm.

G Complete Experimental Results

To demonstrate the advantage of our proposed method, we complement the theoretical analysis with empirical
study on synthetic and real data. We consider the low rank approximation task with f(z) = log(z) and
f(z) = \/x, vary the amount of space used by our method, and compare the errors of the solutions obtained
to the optimum. The we provide additional experiments testing some other aspects of the method such as
robustness to the parameter values.

Setup Given a data stream in the form of (i, j¢, 0;), we use the algorithm in Section 5 to compute the top
k = 10 singular vectors L, and then compare the error of this solution to the error of the optimal solution (i.e.,
the true top k singular vectors). Let A denote the accumulated matrix, M = f(A) denote the transformed one,
and U denote the top k singular vectors of M. Then the evaluation criterion is

M—-LL™M
error-ratio(L) = ||||M — UUTM|||I;'

Clearly, the error ratio is at least 1, and a value close to 1 demonstrates that our solution is nearly optimal.

Besides demonstrating the effectiveness, we also exam the tradeoff between the solution quality and the space
used. Recall that there is a parameter in the the sketching methods controlling the amount of space used (line 20
in LogSuMm and line 6 in PoLySuM). We vary its value, and set the parameters in other steps of our algorithm
so that the amount of space used is dominated by that of the sketching. We then plot how the error ratios change
with the amount of space used. The plotted results are the average of 5 runs; the variances are too small to plot.

Finally, we also report the results of a baseline method: uniformly at random sample a subset T of columns from
A, and then compute the top k singular vectors of f(T'). The space occupied by the columns sampled is similar
to the space required by our algorithm for fair comparison. Since our algorithm is randomized, the expected
amount of space occupied is used to determine the sample size of the baseline, and is also used for the plots. In
the experiments, the actual amount occupied is within about 10% of the expected value.
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(a) LoGDATA, n = 10* (b) LocDaATA, n = 3 - 10* (c) LogDaATA, n =5 - 10*

Figure 2: Error ratios on the synthetic data LOGDATA. The z-axis is the ratio between the amount of space used
by the algorithms and the total amount of space occupied by the data matrix. The y-axis is the ratio between
the error of the solutions output by the algorithms and the optimal error.

Implementation and Parameter Setting. In our algorithm for low rank approximation, an FJLT matrix
S is used [Ach03, AC06]. In the step of adaptive sampling, instead of setting the threshold n, for simplicity we
let ¢; = max{5;,0} and set p; = ¢; + >, ¢;/n.

For the sketching subroutine, instead of specifying the desired €, we directly set the size of the data structure,
so as to exam the tradeoff between space and accuracy. Then we set s = d; = ds and set their value so that
the space used in the corresponding step is at most that used by the sketch method. In particular, we set them
equal to the size upper bounds in line 20 in LOGSUM or line 6 in PoLySuM.

G.1 Synthetic Data

Data Generation. The following data sets are generated. Note that although we don’t provide theoretical
analysis for f(x) = \/z, one could follow that for f(z) = log(z) to get similar guarantees, and we also generate
synthetic data to test our method in this case.

1. LoagDATA: This is for the experiments with f(z) = log(x). First generate a matrix M of n x n where the
entries are i.i.d. Gaussians. To break the symmetry of the columns, scale the length of the i-th column to
4/i. Finally, generate matrix A with A;; = exp(M;;). Each entry A;; is divided into equally into 5 updates
(4,7, Ai;/5), and all the updates arrive in a random order. The size n can be 10000, 30000, and 50000.

2. SQRTDATA: This is for the experiments with f(z) = \/x. The data and update stream are generated
similarly as LOGDATA, except that A;; = ij We tested on sizes n = 10000 and n = 30000.

Results. Figure 2 shows the results on the synthetic data LOGDATA, and Figure 3 shows those on SQRTDATA.
In general, the error ratio of our method is much better than that of the uniform sampling baseline: ours is close
to 1 while that of uniform sampling is about 4. It also shows that our method can greatly reduces the amount
of space needed by orders while merely comprising the solution quality, and this advantage is more significant
on larger data sets. For example, when n = 50000, using space about 5% of the matrix size leads to only about
5% extra error over the optimum. Finally, we note that these observations are consistent on both f(z) = log(x)

and f(x) = /x.

G.2 Real Data

We exam our method on the real world data from the NLP application word embedding, which is a motivating
example for proposing our approach. Our method with f(x) = log(z + 1) is used. The parameters are set in a
similar way as for the synthetic data.
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Figure 3: Error ratios on the synthetic data SQRTDATA. The z-axis is the ratio between the amount of space
used by the algorithms and the total amount of space occupied by the data matrix. The y-axis is the ratio
between the error of the solutions output by the algorithms and the optimal error.
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Figure 4: Error ratios on the real data (Wikipedia). The z-axis is the ratio between the amount of space used
by the algorithms and the total amount of space occupied by the data matrix. The y-axis is the ratio between
the error of the solutions output by the algorithms and the optimal error.

Data Collection. The data set is the entire Wikipedia corpus [Wik12] consisting of about 3 billion tokens.
Details can be found in the appendix and only a brief description is provided here. The matrix to be factorized
is M with M;; = p;log x”]\],\]’ where N;; is the number of times words ¢ and j co-occur in a window of size 10,
N; is the number of times word ¢ appears, N is the total number of words in the corpus, and p; is a weighting
factor depending set to p; = max{1, (N, /N19)?}, which puts larger weights on more frequent words since they
are less noisy [PSM14, LG14]. Note that N;’s and N can be computed easily, so essentially the only dynamically

update part is log V;;.

The data stream is generated as a window of size 10 slides along the sentences in the corpus and we collect the
co-occurrence counts of the word pairs in the window. Here the count is weighted, i.e., if two words appear in a
distance of ¢ inside the window, then the count update value is 1/t as in [PSM14]. We consider the matrix for
the most frequent n words, where n = 10000, 30000, and 50000.

Results. Figure 4 shows the results on the real data. The observations are similar to those on the synthetic
data: the errors of our method are much better than the baseline, and are close to the optimum; the method is
very space efficient without increasing the error much. These results again demonstrate its effectiveness.
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Figure 5: Error ratios when using different sample size in the algorithm. The x-axis is the ratio between the
amount of space used by the algorithms and the total amount of space occupied by the data matrix. The y-axis
is the ratio between the error of the solutions output by the algorithms and the optimal error.

G.3 The Effect of the Sample Size

In our algorithm we have parameters s = d; = do that determine the sample sizes in different steps of the
algorithm. In previous experiments, we set them equal to the size upper bounds in line 20 in LoGSuUM or line 6
in PoLySuM. Here we consider varying their values. In particular, we use the Wikipedia data with n = 10000
and f(z) = log(z) and set the size upper bound of the sketch method to be 200. Then we set s = d; = dy =«
and vary the value of ~.

Results. Figure 5 shows the results with various sample sizes. It is observed that smaller sample sizes lead
to worse errors as expected, but overall the results are quite stable across different sizes. This demonstrates the
robustness of our method to these parameters. It is also observed that after a certain value, increasing the sample
size doesn’t lead to better error, which should be due to the approximation error introduced by the sketch. The
results suggest that in general the sample size should be set approximately equal to the size upper bound in the
sketch method.



