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Abstract

Large-scale machine learning models are of-
ten trained by parallel stochastic gradient
descent algorithms. However, the commu-
nication cost of gradient aggregation and
model synchronization between the master
and worker nodes becomes the major obstacle
for efficient learning as the number of work-
ers and the dimension of the model increase.
In this paper, we propose DORE, a DOu-
ble REsidual compression stochastic gradient
descent algorithm, to reduce over 95% of the
overall communication such that the obstacle
can be immensely mitigated. Our theoreti-
cal analyses demonstrate that the proposed
strategy has superior convergence properties
for both strongly convex and nonconvex ob-
jective functions. The experimental results
validate that DORE achieves the best com-
munication efficiency while maintaining simi-
lar model accuracy and convergence speed in
comparison with start-of-the-art baselines.

1 Introduction

Stochastic gradient algorithms (Bottou, 2010) are effi-
cient at minimizing the objective function f : R? — R
which is usually defined as f(x) = Esupll(x,§)],
where £(x,£) is the objective function defined on data
sample £ and model parameter x. A basic stochastic
gradient descent (SGD) repeats the gradient “descent”
step x*T1 = x* — yg(x*) where x;, is the current iter-
ation and ~ is the step size. The stochastic gradient
g(x"?) is computed based on an i.i.d. sampled mini-
batch from the distribution of the training data D and
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serves as the estimator of the full gradient V f(x*). In
the context of large-scale machine learning, the num-
ber of data samples and the model size are usually very
large. Distributed learning utilizes a large number of
computers/cores to perform the stochastic algorithms
aiming at reducing the training time. It has attracted
extensive attention due to the demand for highly effi-
cient model training (Abadi et al., 2016; Chen et al.,
2015; Li et al., 2014; You et al., 2018).

In this paper, we focus on the data-parallel SGD (Dean
et al., 2012; Lian et al., 2015; Zinkevich et al., 2010),
which provides a scalable solution to speed up the
training process by distributing the whole data to mul-
tiple computing nodes. The objective can be written
as:
minimize f(x) + A(x) = } 3 Bgup, [605,€)] +R(x),
X =] N e
=fi(x)

where each f;(x) is a local objective function of the
worker node 7 defined based on the allocated data un-

der distribution D; and R : RY — R is usually a closed
convex regularizer.

In the well-known parameter server framework (Li
et al., 2014; Zinkevich et al., 2010), during each it-
eration, each worker node evaluates its own stochastic
gradient {V f;(x*)}7_, and send it to the master node,
which collects all gradients and calculates their average
(1/n) Y7, Vfi(x¥). Then the master node further
takes the gradient descent step with the averaged gra-
dient and broadcasts the new model parameter x**+!
to all worker nodes. It makes use of the computa-
tional resources from all nodes. In reality, the network
bandwidth is often limited. Thus, the communication
cost for the gradient transmission and model synchro-
nization becomes the dominating bottlenecks as the
number of nodes and the model size increase, which
hinders the scalability and efficiency of SGD.

One common way to reduce the communication cost is
to compress the gradient information by either gradi-
ent sparsification or quantization (Alistarh et al., 2017;
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Seide et al., 2014; Stich et al., 2018; Strom, 2015; Wang
et al., 2017; Wangni et al., 2018; Wen et al., 2017; Wu
et al., 2018) such that many fewer bits of information
are needed to be transmitted. However, little attention
has been paid on how to reduce the communication
cost for model synchronization and the corresponding
theoretical guarantees. Obviously, the model shares
the same size as the gradient, so does the communica-
tion cost. Thus, merely compressing the gradient can
reduce at most 50% of the communication cost, which
suggests the importance of model compression. No-
tably, the compression of model parameters is much
more challenging than gradient compression. One key
obstacle is that its compression error cannot be well
controlled by the step size v and thus it cannot dimin-
ish like that in the gradient compression (Tang et al.,
2018). In this paper, we aim to bridge this gap by in-
vestigating algorithms to compress the full communi-
cation in the optimization process and understanding
their theoretical properties. Our contributions can be
summarized as:

e We proposed DORE, which can compress both the
gradient and the model information such that more
than 95% of the communication cost can be reduced.

e We provided theoretical analyses to guarantee the
convergence of DORE under strongly convex and
nonconvex assumptions without the bounded gradi-
ent assumption.

e Our experiments demonstrate the superior efficiency
of DORE comparing with the state-of-art baselines
without degrading the convergence speed and the
model accuracy.

2 Background

Recently, many works try to reduce the communica-
tion cost to speed up the distributed learning, espe-
cially for deep learning applications, where the size
of the model is typically very large (so is the size of
the gradient) while the network bandwidth is relatively
limited. Below we briefly review relevant papers.

Gradient quantization and sparsification. Re-
cent works (Alistarh et al., 2017; Seide et al., 2014;
Wen et al., 2017; Mishchenko et al., 2019; Bernstein
et al., 2018) have shown that the information of the
gradient can be quantized into a lower-precision vec-
tor such that fewer bits are needed in communication
without loss of accuracy. Seide et al. (2014) proposed
1Bit SGD that keeps the sign of each element in the
gradient only. It empirically works well, and Bern-
stein et al. (2018) provided theoretical analysis sys-
tematically. QSGD (Alistarh et al., 2017) utilizes an

unbiased multi-level random quantization to compress
the gradient while Terngrad (Wen et al., 2017) quan-
tizes the gradient into ternary numbers {0,+1}. In
DIANA (Mishchenko et al., 2019), the gradient differ-
ence is compressed and communicated contributing to
the estimator of the gradient in the master node.

Another effective strategy to reduce the communica-
tion cost is sparsification. Wangni et al. (2018) pro-
posed a convex optimization formulation to minimize
the coding length of stochastic gradients. A more ag-
gressive sparsification method is to keep the elements
with relatively larger magnitude in gradients, such as
top-k sparsification (Stich et al., 2018; Strom, 2015;
Aji and Heafield, 2017).

Model synchronization. The typical way for model
synchronization is to broadcast model parameters to
all worker nodes. Some works (Wang et al., 2017;
Jordan et al., 2019) have been proposed to reduce
model size by enforcing sparsity, but it cannot be ap-
plied to general optimization problems. Some alter-
natives including QSGD (Alistarh et al., 2017) and
ECQ-SGD (Wu et al., 2018) choose to broadcast all
quantized gradients to all other workers such that ev-
ery worker can perform model update independently.
However, all-to-all communication is not efficient since
the number of transmitted bits increases dramatically
in large-scale networks. DoubleSqueeze (Tang et al.,
2019) applies compression on the averaged gradient
with error compensation to speed up model synchro-
nization.

Error compensation. Seide et al. (2014) applied er-
ror compensation on 1Bit-SGD and achieved negligible
loss of accuracy empirically. Recently, error compen-
sation was further studied (Wu et al., 2018; Stich et al.,
2018; Karimireddy et al., 2019) to mitigate the error
caused by compression. The general idea is to add the
compressed error to the next compression step:

g=CQ(g+e), e=(g+e)—8g

However, to the best of our knowledge, most of the
algorithms with error compensation (Wu et al., 2018;
Stich et al., 2018; Karimireddy et al., 2019; Tang et al.,
2019) need to assume bounded gradient, i.e., E|/g||? <
B, and the convergence rate depends on this bound.

Contributions of DORE. The most related papers
to DORE are DIANA (Mishchenko et al., 2019) and
DoubleSqueeze (Tang et al., 2019). Similarly, DIANA
compresses gradient difference on the worker side and
achieves good convergence rate. However, it doesn’t
consider the compression in model synchronization, so
at most 50% of the communication cost can be saved.
DoubleSqueeze applies compression with error com-
pensation on both worker and server sides, but it only
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considers non-convex objective functions. Moreover,
its analysis relies on a bounded gradient assumption,
i.e., E|lg||> < B, and the convergence error has a de-
pendency on the gradient bound like most existed error
compensation works.

In general, the uniform bound on the norm of the
stochastic gradient is a strong assumption which might
not hold in some cases. For example, it is violated in
the strongly convex case (Nguyen et al., 2018; Gower
et al., 2019). In this paper, we design DORE, the
first algorithm which utilizes gradient and model com-
pression with error compensation without assuming
bounded gradients. Unlike existing error compensa-
tion works, we provide a linear convergence rate to the
O(o) neighborhood of the optimal solution for strongly
convex functions and a sublinear rate to the stationary
point for nonconvex functions with linear speedup. In
Table 1, we compare the asymptotic convergence rates
of different quantized SGDs with DORE.

3 Double Residual Compression SGD

In this section, we introduce the proposed DOuble
REsidual compression SGD (DORE) algorithm. Be-
fore that, we introduce a common assumption for the
compression operator.

In this work, we adopt an assumption from (Alistarh
et al., 2017; Wen et al., 2017; Mishchenko et al., 2019)
that the compression variance is linearly proportional
to the magnitude.

Assumption 1. The stochastic compression operator
Q : RY — R? is unbiased, i.e., EQ(x) = x and satis es

E[lQ(x) — x[I* < C|1x]1%, (1)

for a nonnegative constant C' that is independent of x.
We use x to denote the compressed x, i.e., X ~ Q(x).

Many feasible compression operators can be applied to
our algorithm since our theoretical analyses are built
on this common assumption. Some examples of feasi-
ble stochastic compression operators include:

e No Compression: C' = 0 when there is no compres-
sion.

e Stochastic Quantization: A real number z €
[a,b],(a < b) is set to be a with probability l;:—i
and b with probability ==, where a and b are pre-
defined quantization levels (Alistarh et al., 2017).
It satisfies Assumption 1 when ab > 0 and a < b.

e Stochastic Sparsi cation: A real number z is set to
be 0 with probability 1 —p and % with probability
p (Wen et al., 2017). Tt satisfies Assumption 1 with
C=(1/p) -1

Master

Worker

Figure 1: An Hlustration of DORE

e p-norm Quantization: A vector x is quantized
element-wisely by Q,(x) = ||x||, sign(x) o £, where
o is the Hadamard product and ¢ is a Bernoulli ran-
dom vector satisfying &; ~ Bernoulli(%). It sat-

isfies Assumption 1 with C' = max,cga % —
2

1 (Mishchenko et al., 2019). To decrease the con-
stant C for a higher accuracy, a vector x € R?
can be further decomposed into blocks, i.e., x =
(x()T,x(2) ", -+ ,x(m)")T with x(I) € R% and
Sty di = d, and the blocks can be compressed
independently.

3.1 The Proposed DORE

Many previous works (Alistarh et al., 2017; Seide et al.,
2014; Wen et al., 2017) reduce the communication cost
of P-SGD by quantizing the stochastic gradient before
sending it to the master node, but there are several
intrinsic issues.

First, these algorithms will incur extra optimization
error intrinsically. Let’s consider the case when the
algorithm converges to the optimal point x* where
we have (1/n)>." , Vfi(x*) = 0. However, the
data distributions may be different for different worker
nodes in general, and thus we may have Vf;(x*) #
Vfi(x*),Vi,j € {1,...,n} and i # j. In other words,
each individual V f;(x*) may be far away from zero.
This will cause large compression variance according to
Assumption 1, which indicates that the upper bound
of compression variance E||Q(x) — x||? is linearly pro-
portional to the magnitude of x.

Second, most existing algorithms (Seide et al., 2014;
Alistarh et al., 2017; Wen et al., 2017; Bernstein et al.,
2018; Wu et al., 2018; Mishchenko et al., 2019) need
to broadcast the model or gradient to all worker nodes
in each iteration. It is a considerable bottleneck for ef-
ficient optimization since the amount of bits to trans-
mit is the same as the uncompressed gradient. Dou-
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bleSqueeze (Tang et al., 2019) is able to apply com-
pression on both worker and server sides. However, its
analysis depends on a strong assumption on bounded
gradient. Meanwhile, no theoretical guarantees are
provided for the convex problems.

We proposed DORE to address all aforementioned
issues. Our motivation is that the gradient should
change smoothly for smooth functions so that each
worker node can keep a state variable h¥ to track its
previous gradient information. As a result, the resid-
ual between new gradient and the state h¥ should de-
crease, and the compression variance of the residual
can be well bounded. On the other hand, as the algo-
rithm converges, the model would only change slightly.
Therefore, we propose to compress the model resid-
ual such that the compression variance can be mini-
mized and also well bounded. We also compensate the
model residual compression error into next iteration to
achieve a better convergence. Due to the advantages of
the proposed double residual compression scheme, we
can derive the fastest convergence rate through analy-
ses without the bounded gradient assumption. Below
are some key steps of our algorithm as showed in Al-
gorithm 1 and Figure 1:

[lines 4-9]: each worker node sends the compressed
gradient residual (A¥) to the master node and updates
its state h¥ with Ak;

[lines 13-15]: the master node gathers the com-
pressed gradient residual ({A%)} from all worker nodes
and recovers the averaged gradient gF based on its
state h*;

[lines 16]: the master node applies gradient descent
algorithms (possibly with the proximal operator);

[lines 18-22]: the master node broadcasts the com-
pressed model residual with error compensation (§*)
to all worker nodes and updates the model;

[lines 10-11]: each worker node receives the com-
pressed model residual (§*) and updates its model x¥.

In the algorithm, the state hf serves as an exponen-
tial moving average of the local gradient in expec-
tation, i.e., ]Eth'*'1 = (1 — a)h® + agF, as proved
in Lemma 1. Therefore, as the iteration approaches
the optimum, hf will also approach the local gradi-
ent V f;(x*) rapidly which contributes to small gradi-
ent residual and consequently small compression vari-
ance. Similar difference compression techniques are
also proposed in DIANA and its variance-reduced vari-
ant (Mishchenko et al., 2019; Horvéth et al., 2019).

'Equations in the curly bracket are just notations for
the proof but does not need to computed actually.

3.2 Discussion

In this subsection, we provide more detailed dis-
cussions about DORE including model initialization,
model update, the special smooth case as well as the
compression rate of communication.

Initialization. It is important to take the identical
initialization X° for all worker and master nodes. It is
easy to be ensured by either setting the same random
seed or broadcasting the model once at the beginning.
In this way, although we don’t need to broadcast the
model parameters directly, every worker node updates
the model %* in the same way. Thus we can keep their
model parameters identical. Otherwise, the model in-
consistency needs to be considered.

Model update. It is worth noting that although we
can choose an accurate model x**1 as the next itera-
tion in the master node, we use X**! instead. In this
way, we can ensure that the gradient descent algorithm
is applied based on the exact stochastic gradient which
is evaluated on X at each worker node. This dispels
the intricacy to deal with inexact gradient evaluated

on x* and thus it simplifies the convergence analysis.

Smooth case. In the smooth case, i.e., R = 0, Algo-
rithm 1 can be simplified. The master node quantizes
the recovered averaged gradient with error compensa-
tion and broadcasts it to all worker nodes. The details
of this simplified case can be found in Appendix A.4.

Compression rate. The compression of the gradient
information can reduce at most 50% of the commu-
nication cost since it only considers compression dur-
ing gradient aggregation while ignoring the model syn-
chronization. However, DORE can further cut down
the remaining 50% communication.

Taking the blockwise p-norm quantization as an exam-
ple, every element of x can be represented by % bits us-
ing the simple ternary coding {0, +1}, along with one
magnitude for each block. For example, if we consider
the uniform block size b, the number of bits to repre-
sent a d-dimension vector of 32 bit float-point numbers
can be reduced from 32d bits to 32% + %d bits. As long
as the block size b is relatively large with respect to
the constant 32, the cost 32% for storing the float-point
number is relatively small such that the compression
rate is close to 32d/(3d) ~ 21.3 times (for example,
19.7 times when b = 256).

Applying this quantization, QSGD, Terngrad, MEM-
SGD, and DIANA need to transmit (32d + 324 + 2d)
bits per iteration and thus they are able to cut down
47% of the overall 2 x 32d bits per iteration through
gradient compression when b = 256. But with DORE,
we only need to transmit 2(32% + 3d) bits per itera-
tion. Thus DORE can reduce over 95% of the total
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Algorithm 1 The Proposed DORE.!

1: Input: Step51ze a,ﬁ 7,7, initialize h® = hY =04, X? =%°, Vi e {1,...,n}.

2: fork=1,2,- —1do

3:  For each worker 1e€{1,2,--- ,n}: 12:  For the master:

4:  Sample g¥ such that E[gl’|$( 1= sz( ) 13: Receive {AF} from workers

5. Gradient residual: A¥ = gF — h! 14: AP =1/n YT AY

6:  Compression: A¥ = Q(AF) 15: g =hF+A* {=1/n > g8
7 hi™h =hi 4+ A} 16:  x**' = prox g (X" — ")

8 {g'=hi+Af} 17: M= b adl

9:  Send A¥ to the master 18:  Model residual: q = xFHL _x* 4 et
10:  Receive §* from the master 19:  Compression: §* = Q(g*)

1: P =xi + 69" 20: el =g - $;

21: XM =x" 4+ gt

23: end for 22:  Broadcast §* to workers

24: Output: ¥ or any x¥

communication by compressing both the gradient and
model transmission. More efficient coding techniques
such as Elias coding (Elias, 1975) can be applied to
further reduce the number of bits per iteration.

4 Convergence Analysis

To show the convergence of DORE, we will make the
following commonly used assumptions when needed.

Assumption 2. Each worker node samples an un-
biased estimator of the gradient stochastically with
bounded variance, i.e., fori =1,2,--- ,n and ¥x € R¢,

Elgilx] = Vfi(x), Elgi—~Vix)|*<af, (2)

where gl is the estimator of Vf; at x. In addition, we
de neo?=21%" o2

Assumptlon 3. Each f; is L-Lipschitz di erentiable,
i.e., fori=1,2,--- ,nand Vx,y € R?,

fix) < fiy) + (Vy).x—y)+ Slx—y[?  (3)

Assumption 4. Each f; is u-strongly convex (1 > 0),
i.e., fori=1,2,--- ,nand Vx,y € R?,

fix) = fily) +(Vfily), x —y) + §lx —y[* (4)
For simplicity, we use the same compression operator
for all worker nodes, and the master node can apply
a different compression operator. We denote the con-
stants in Assumption 1 as C; and C" for the worker
and master nodes, respectively. Then we set a and

in both algorithms to satisfy

- [«
1— 1_4cq(nccq+1) 1 1_4cq(:,’jcq+1)
2(Cq+1) == 2(Cq+1) )
0<fB< 5
/6 — C;n+1? ( )
. 4C, (Cy+1 . ..
with ¢ > % We consider two scenarios in the

following two subsections: f is strongly convex with a
convex regularizer R and f is non-convex with R = 0.

4.1 The strongly convex case

Theorem 1. Under Assumptions 1-4, if « and 3 in
Algorithm 1 satisfy (5), n and ~ satisfy

—m™ m)2 _ m
0 < min( Cr4,/(Cy )2;3(1 (C7 +1),@)’
ApL
W +L)2(1ica)f4uL)’ (6)
n(p+L)
Al <7 < TFea D) (7)
then we have
(14n)(14+nca)
VEH < gy nines) googz (g)
with
k _ m k—1)12 Sk * |12
VP =81 - (C7" + DBE[q" [|* + E[x" — x*||
C 2 n
e Dol | VR FHCSII
2+ Cm,
p:max(%,l—i—nﬂ—%,l—a) < 1.

Corollary 1. When there is no error compensation

and we set ) = 0, then p = max(1 — 2224L 1 —a). If
we further set
- 1 __1 _ 4C4(Cq+1)
a=se 1 Py =5 09)
H _ 2
and choose the largest step-size v = (TESAIEE=TemymE
the convergent factor is
_ m L)? C,
(1=p)~F = max (2(Cy+1), (Cpr+1) S (14 S2) ).
(10)
Remark 1. In particular, suppose {A;}! , are com-

pressed using the Bernoulli p-norm quantization with
the largest block size dpax, then C, = % — 1, with

= Ming_xcRrdmax m < 1. Similarly, q is com-
pressed using the Bernoulli p-norm quantization with

av

C" = == — 1. Then the linear convergent factor is
(1—p)~" = max { Z, At (%fi 2 ) } (11)
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While the result of DIANA in (Mishchenko et al.,
2019) is max { 2, 55 (3 — L 212 ) |, which is bet-
ter than (11) with o™ =1 (no compression for the
model). When there is no compression for A,, i.e.,
a™ =1, the algorithm reduces to the gradient descent,
and the linear convergent factor is the same as that of
the gradient descent for strongly convex functions.

Remark 2. Although error compensation often im-
proves the convergence empirically, in theory, no com-
pensation, i.e., n = 0, provides the best convergence
rate. This is because we don’t have much information
of the error being compensated. Filling this gap will be
an interesting future direction.

4.2 The nonconvex case with R =0

Theorem 2. Under Assumptions 1-3 and the addi-
tional assumption that each worker samples the gra-
dient from the full dataset, we set o and 8 according
o (5). By choosing

|
48L2;32(cgl +1)2

) -1+ 1+ om 1
v < mln{ 12LA(Cr+1) P 6LB(14ca) (O +1) }’
we have
8 _3(1+ ca)(Cr + 1)L
2 i ZEHW )2
1_AK+L  3(0™ 1 1)(1 242
SA A + ( q + )( +TLCOL) 5077 (12)
K n
where

=+ DLA g + f(&F) - £

1 n
+3c(C + 1)L6272£ > E[hf. (13)

i=1

and ¢ =

Corollary 2. Let a =
4C,(Cq+1)

1 _ 1
2(Cq+1)’ﬁ — Cr+l
, then 1 + nca is a xed constant. If v =
YT PP ey gt when K is relatively large, we have

1
P - - (14)

ZEHW v/

Remark 3. The dominant term in (14) is
O(1/v/Kn), which implies that the sample com-
plexity of each worker node is O(1/(ne?)) in average
to achieve an e-accurate solution. It shows that,
same as DoubleSqueeze in Tang et al. (2019), DORE
is able to perform linear speedup. Furthermore,
this convergence result is the same as the P-SGD
without compression. Note that DoubleSqueeze has an
extra term (1/K)3, and its convergence requires the
bounded variance of the compression operator.

5 Experiment

In this section, we validate the theoretical results
and demonstrate the superior performance of DORE.
Our experimental results demonstrate that (1) DORE
achieves similar convergence speed as full-precision
SGD and state-of-art quantized SGD baselines and (2)
its iteration time is much smaller than most existing
algorithms, supporting the superior communication ef-
ficiency of DORE.

To make a fair comparison, we choose the same
Bernoulli co-norm quantization as described in Sec-
tion 3 and the quantization block size is 256 for all
experiments if not being explicitly stated because oo-
norm quantization is unbiased and commonly used.
The parameters «, 3,17 for DORE are chosen to be
0.1,1 and 1, respectively.

The baselines we choose to compare include SGD,
QSGD (Alistarh et al., 2017), MEM-SGD (Stich
et al., 2018), DIANA (Mishchenko et al., 2019), Dou-
bleSqueeze and DoubleSqueeze (topk) (Tang et al.,
2019). SGD is the vanilla SGD without any compres-
sion and QSGD quantizes the gradient directly. MEM-
SGD is the QSGD with error compensation. DIANA,
which only compresses and transmits the gradient dif-
ference, is a special case of the proposed DORE. Dou-
bleSqueeze quantizes both the gradient on the work-
ers and the averaged gradient on the server with error
compensation. Although DoubleSqueeze is claimed to
work well with both biased and unbiased compression,
in our experiment it converges much slower and suffers
the loss of accuracy with unbiased compression. Thus,
we also compare with DoubleSqueeze using the Top-k
compression as presented in Tang et al. (2019).

5.1 Strongly convex

To verify the convergence for strongly convex and
smooth objective functions, we conduct the experi-
ment on a linear regression problem: f(x) = ||Ax —
b||? + A|x/|>. The data matrix A € R1200x500 44
optimal solution x, € R®% are randomly synthesized.
Then we generate the prediction b by sampling from a
Gaussian distribution whose mean is Ax,. The rows
of the data matrix A are allocated evenly to 20 worker
nodes. To better verify the linear convergence to the
O(o) neighborhood around the optimal solution, we
take the full gradient in each node for all algorithms
to exclude the effect of the gradient variance (o = 0).

As showed in Figure 3, with full gradient and a con-
stant learning rate, DORE converges linearly, same
as SGD and DIANA, but QSGD, MEM-SGD, Doub-
leSqueeze, as well as DoubleSqueeze (topk) converge
to a neighborhood of the optimal point. This is be-
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Algorithm Compression | Compression Assumed | Linear rate | Nonconvex Rate
QSGD Grad 2-norm Quantization N/A % + B
DIANA Grad p-norm Quantization X [1(” + %

DoubleSqueeze | Grad+Model Bounded Variance N/A \/% +wnst
DORE Grad+Model Assumption 1 X \/% + 11(

Table 1: A comparison between related algorithms. DORE is able to converges linearly to the O(o) neighborhood
of optimal point like full-precision SGD and DIANA in the strongly convex case while achieving much better

communication efficiency.

DORE also admits linear speedup in the nonconvex case like DoubleSqueeze but

DORE doesn’t require the assumptions of bounded compression error or bounded gradient.

25 —— SGD
—— QSGD

50 —— DORE

0.5

0.0
0.0010 0.0015 0.0020 0.0025 0.0030 0.0035 0.0040 0.0045 0.0050
Bandwidth (1s/Mbit)

Figure 2: Per iteration time cost on Resnet18 for SGD,
QSGD, and DORE. It is tested in a shared cluster
environment connected by Gigabit Ethernet interface.
DORE speeds up the training process significantly by
mitigating the communication bottleneck.

cause these algorithms assume the bounded gradient
and their convergence errors depend on that bound.
Although they converge to the optimal solution using
a diminishing step size, their converge rates will be
much slower.

In addition, we also validate that the norms of the gra-
dient and model residual decrease exponentially, which
explains the linear convergence behavior of DORE. For
more details, please refer to Appendix A.1.

5.2 Nonconvex

To verify the convergence in the nonconvex case, we
test the proposed DORE with two classical deep neu-
ral networks on two representative datasets, respec-
tively, i.e., LeNet (Lecun et al., 1998) on MNIST and
Resnet18 (He et al., 2016) on CIFAR10. In the exper-
iment, we use 1 parameter server and 10 workers, each
of which is equipped with an NVIDIA Tesla K80 GPU.
The batch size for each worker node is 256. We use
0.1 and 0.01 as the initial learning rates for LeNet and
Resnet18, and decrease them by a factor of 0.1 after
every 25 and 100 epochs, respectively. All parameter
settings are the same for all algorithms.

Figures 4 and 5 show the training loss and test loss
for each epoch during the training of LeNet on the
MNIST dataset and Resnet1l8 on CIFARI10 dataset.
The results indicate that in the nonconvex case, even
with both compressed gradient and model information,
DORE can still achieve similar convergence speed as
full-precision SGD and other quantized SGD variants.
DORE achieves much better convergence speed than
DoubleSqueeze using the same compression method
and converges similarly with DoubleSqueeze with Topk
compression as presented in (Tang et al., 2019). We
also validate via parameter sensitivity in Appendix A.3
that DORE performs consistently well under differ-
ent parameter settings such as compression block size,
«, [ and 7.

5.3 Communication efficiency

In terms of communication cost, DORE enjoys the
benefit of extremely efficient communication. As one
example, under the same setting as the Resnet18 ex-
periment described in the previous section, we test
the time cost per iteration for SGD, QSGD, and
DORE under varied network bandwidth. We didn’t
test MEM-SGD, DIANA, and DoubleSqueeze because
MEM-SGD, DIANA have similar time cost as QSGD
while DoubleSqueeze has similar time cost as DORE.
The result showed in Figure 2 indicates that as the
bandwidth becomes worse, with both gradient and
model compression, the advantage of DORE becomes
more remarkable compared to the baselines that don’t
apply compression for model synchronization. In Ap-
pendix A.2, we also demonstrate the communication
efficiency in terms of communication bits and running
time, which clearly suggests the benefit of the proposed
algorithm.

6 Conclusion

Communication cost is the severe bottleneck for dis-
tributed training of modern large-scale machine learn-
ing models. Extensive works have compressed the gra-
dient information to be transferred during the training
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Figure 5: Resnetl8 trained on CIFAR10. DORE achieves similar convergence and accuracy as most baselines.
DoubeSugeeze converges slower and suffers from the higher loss but it works well with topk compression.

process, but model compression is rather limited due
to its intrinsic difficulty. In this paper, we proposed
the Double Residual Compression SGD named DORE
to compress both gradient and model communication
that can mitigate this bottleneck prominently. The

theoretical analyses suggest good convergence rate of
DORE under weak assumptions. Furthermore, DORE
is able to reduce 95% of the communication cost while
maintaining similar convergence rate and model accu-
racy compared with the full-precision SGD.
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