
Jonathan Lorraine, Paul Vicol, David Duvenaud

Optimizing Millions of Hyperparameters by Implicit Differentiation
Appendix

A Extended Background

In this section we provide an outline of our notation
(Table 5), and the proposed algorithm. Here, we assume
we have access to to a finite dataset D = {(xi,yi)|i =
1 . . . n}, with n examples drawn from the distribution
p(x,y) with support P . We denote the input and target
domains by X and Y , respectively. Assume y : X ! Y

is a function and we wish to learn ŷ : X ⇥ W ! Y

with a NN parameterized by w 2 W, s.t. ŷ is close
to y. We measure how close a predicted value is to a
target with the prediction loss L : Y ⇥ Y ! R. Our
goal is to minimize the expected prediction loss or
population risk: argminw Ex⇠p(x)[L(ŷ(x,w),y(x))].
Since we only have access to a finite num-
ber of samples, we minimize the empirical risk:
argminw 1/n

P
x,y2D L(ŷ(x,w),y(x)).

Due to a limited size dataset D, there may be a signifi-
cant difference between the minimizer of the empirical
risk and the population risk. We can estimate this
difference by partitioning our dataset into training and
validation datasets— Dtrain,Dvalid. We find the min-
imizer over the training dataset Dtrain, and estimate
its performance on the population risk by evaluating
the empirical risk over the validation dataset Dvalid.
We introduce modifications to the empirical training
risk to decrease our population risk, parameterized by
� 2 ⇤. These parameters for generalization are called
the hyperparameters. We call the modified empirical
training risk our training loss for simplicity and denote
it LT(�,w). Our validation empirical risk is called
validation loss for simplicity and denoted by LV(�,w).
Often the validation loss does not directly depend on
the hyperparameters, and we just have LV(w).

The population risk is estimated by plugging the
training loss minimizer w⇤(�) = argminw LT(�,w)
into the validation loss for the estimated population
risk L

⇤
V
(�) = LV(�,w⇤(�)). We want our hyperpa-

rameters to minimize the estimated population risk:
�⇤ = argmin� L

⇤
V
(�). We can create a third partition

of our dataset Dtest to assess if we have overfit the
validation dataset Dvalid with our hyperparameters �.

B Extended Related Work

Independent HO: A simple class of HO algorithms
involve making a number of independent hyperparam-

eter selections, and training the model to completion
on them. Popular examples include grid search and
random search [Bergstra and Bengio, 2012]. Since each
hyperparameter selection is independent, these algo-
rithms are trivial to parallelize.

Global HO: Some HO algorithms attempt to find a
globally optimal hyperparameter setting, which can be
important if the loss is non-convex. A simple example
is random search, while a more sophisticated example
is Bayesian optimization Močkus [1975], Snoek et al.
[2012], Kandasamy et al. [2019]. These HO algorithms
often involve re-initializing the hyperparameter and
weights on each optimization iteration. This allows
global optimization, at the cost of expensive re-training
weights or hyperparameters.

Local HO: Other HO algorithms only attempt to find
a locally optimal hyperparameter setting. Often these
algorithms will maintain a current estimate of the best
combination of hyperparameter and weights. On each
optimization iteration, the hyperparameter is adjusted
by a small amount, which allows us to avoid excessive
re-training of the weights on each update. This is be-
cause the new optimal weights are near the old optimal
weights due to a small change in the hyperparameters.

Learned proxy function based HO : Many HO
algorithms attempt to learn a proxy function for opti-
mization. The proxy function is used to estimate the
loss for a hyperparameter selection. We could learn a
proxy function for global or local HO . We can learn
a useful proxy function over any node in our compu-
tational graph including the optimized weights. For
example, we could learn how the optimized weights
change w.r.t. the hyperparameters Lorraine and Duve-
naud [2018], how the optimized predictions change w.r.t.
the hyperparameters MacKay et al. [2019], or how the
optimized validation loss changes w.r.t. the hyperpa-
rameters as in Bayesian Optimization. It is possible to
do gradient descent on the proxy function to find new
hyperparameters to query as in Bayesian optimization.
Alternatively, we could use a non-differentiable proxy
function to get cheap estimates of the validation loss
like SMASH Brock et al. [2018] for architecture choices.



Jonathan Lorraine, Paul Vicol, David Duvenaud

Table 5: Notation

HO Hyperparameter optimization
NN Neural network
IFT Implicit Function Theorem

HVP / JVP Hessian/Jacobian-vector product
�,w Hyperparameters and NN parameters/weights
n,m Hyperparameter and NN parameter dimensionality

⇤✓Rn
,W✓Rm Hyperparameters and NN parameter domains

�0
,w0 Arbitrary, fixed hyperparameters and weights

LT(�,w),LV(�,w) Training loss & validation loss
w⇤(�) Best-response of the weights to the hyperparameters
cw⇤(�) An approximate best-response of the weights to the hyperparameters

L
⇤
V
(�)= LV(�,w⇤(�)) The validation loss with best-responding weights

Red (Approximations to) The validation loss with best-responding weights
W⇤ = w⇤(⇤) The domain of best-responding weights

�⇤ The optimal hyperparameters
x,y An input and its associated target
X ,Y The input and target domains respectively
D A data matrix consisting of tuples of inputs and targets

y(x,w) A predicted target for a input data and weights
@LV
@� ,

@LV
@w The (validation loss hyperparameter / parameter) direct gradient

Green (Approximations to) The validation loss direct gradient.
@w⇤

@� The best-response Jacobian
Blue (Approximations to) The (Jacobian of the) best-response of the weights

to the hyperparameters
@LV
@w

@w⇤

@� The indirect gradient
@L⇤

V
@� A hypergradient: sum of validation losses direct and indirect gradienth

@2LT
@w@w

i�1
The training Hessian inverse

Magenta (Approximations to) The training Hessian inverse
@LV
@w

h
@2LT
@w@w

i�1
The vector - Inverse Hessian product.

Orange (Approximations to) The vector - Inverse Hessian product.
@2LT
@w@� The training mixed partial derivatives
I The identity matrix



Jonathan Lorraine, Paul Vicol, David Duvenaud

C Implicit Function Theorem

Theorem (Augustin-Louis Cauchy, Implicit Function Theorem). Let @LT
@w (�,w) : ⇤⇥W ! W be a continuously

differentiable function. Fix a point (�0
,w0) with @LT

@w (�0
,w0) = 0. If the Jacobian J

@LT
@ww (�0

,w0) is invertible, there
exists an open set U ✓ ⇤ containing �0 s.t. there exists a continuously differentiable function w⇤ : U ! W s.t.:

w⇤(�0) = w0 and 8� 2 U,
@LT

@w
(�,w⇤(�))) = 0

Moreover, the partial derivatives of w⇤ in U are given by the matrix product:

@w⇤

@�
(�) = �

"
J

@LT
@ww (�,w⇤(�))

#�1

J

@LT
@w

� (�,w⇤(�)))

Typically the IFT is presented with @LT
@w = f , w⇤ = g, ⇤ = Rm, W = Rn, � = x, w = y, �0 = a, w0 = b.



Jonathan Lorraine, Paul Vicol, David Duvenaud

D Proofs

Lemma (1). If the recurrence given by unrolling SGD optimization in Eq. 5 has a fixed point w1 (i.e.,
0 = @LT

@w |�,w1(�)), then:
@w1
@�

= �

h
@2LT
@w@w

i�1
@2LT
@w@�

����
w1(�)

Proof.

)
@
@�

✓
@LT
@w

���
�,w1(�)

◆
= 0 given

)

⇣
@2LT
@w@� I +

@2LT
@w@w

@w1
@�

⌘����
�,w1(�)

= 0 chain rule through |�,w1(�)

)
@2LT
@w@w

@w1
@�

���
�,w1(�)

= �
@2LT
@w@�

���
�,w1(�)

re-arrange terms

)
@w1
@�

���
�
= �

h
@2LT
@w@w

i�1
@2LT
@w@�

����
�

left-multiply by
h

@2LT
@w@w

i�1
����
�,w1(�)

Lemma (2). Given the recurrence from unrolling SGD optimization in Eq. 5 we have:

@wi+1

@�
= �

X

ji

0

@
Y

k<j

I �
@2LT
@w@w

���
�,wi�k(�)

1

A @2LT
@w@�

���
�,wi�j(�)

Proof.

@wi+1

@�

���
�
= @

@�

✓
wi(�)�

@LT
@w

���
�,wi(�)

◆
take derivative w.r.t. �

= @wi
@�

���
�
�

@
@�

✓
@LT
@w

���
�,wi(�)

◆
chain rule

= @wi
@�

���
�
�

⇣
@2LT
@w@w

@wi
@� + @2LT

@w@�

⌘����
�,wi(�)

chain rule through |�,wi(�)

= �
@2LT
@w@�

���
�,wi(�)

+
⇣
I �

@2LT
@w@w

⌘
@wi
@�

����
�,wi(�)

re-arrange terms

= �
@2LT
@w@�

���
�,wi(�)

+
⇣
I �

@2LT
@w@w

⌘����
�,wi(�)

·

✓⇣
I �

@2LT
@w@w

⌘
@wi�1

@� �
@2LT
@w@�

◆�����
�,wi�1(�)

expand @wi
@�

= �
@2LT
@w@�

���
�,wi(�)

�

✓
I �

@2LT
@w@w

���
�,wi(�)

◆
@2LT
@w@�

���
�,wi�1(�)

+

2

4
Y

k<2

I �
@2LT
@w@w

���
�,wi�k(�)

3

5 @wi�1

@�

���
�

re-arrange terms

= · · ·

So, @wi+1

@� = �

X

ji

2

4
Y

k<j

I �
@2LT
@w@w

���
�,wi�k(�)

3

5 @2LT
@w@�

���
�,wi�j(�)

telescope the recurrence



Jonathan Lorraine, Paul Vicol, David Duvenaud

Theorem (Neumann-SGD). Given the recurrence from unrolling SGD optimization in Eq. 5, if w0 = w⇤(�):

@wi+1

@�
= �

0

@
X

ji

h
I �

@2LT
@w@w

ij
1

A @2LT
@w@�

������
w⇤(�)

and if I + @2LT
@w@w is contractive:

lim
i!1

@wi+1

@�
= �

h
@2LT
@w@w

i�1
@2LT
@w@�

����
w⇤(�)

Proof.

lim
i!1

@wi+1

@�

���
�

take lim
i!1

= lim
i!1

0

B@�

X

ji

2

4
Y

k<j

I �
@2LT
@w@w

���
�,wi�k(�)

3

5 @2LT
@w@�

���
�,wi�j(�)

1

CA by Lemma 2

= � lim
i!1

0

B@
X

ji

2

4
Y

k<j

I �
@2LT
@w@w

3

5 @2LT
@w@�

1

CA

�������
�,w⇤(�)

w0 = w⇤(�) = wi

= � lim
i!1

0

@
X

ji

h
I �

@2LT
@w@w

ij
1

A @2LT
@w@�

������
�,w⇤(�)

simplify

= �


I �

⇣
I �

@2LT
@w@w

⌘��1
@2LT
@w@�

�����
�,w⇤(�)

contractive & Neumann series

= �

h
@2LT
@w@w

i�1
@2LT
@w@�

����
�,w⇤(�)

simplify



Jonathan Lorraine, Paul Vicol, David Duvenaud

E Experiments

We use PyTorch Paszke et al. [2017] as our computa-
tional framework. All experiments were performed on
NVIDIA TITAN Xp GPUs.

For all CNN experiments we use the following optimiza-
tion setup: for the NN weights we use Adam Kingma
and Ba [2014] with a learning rate of 1e-4. For the
hyperparameters we use RMSprop Hinton et al. [2012]
with a learning rate of 1e-2.

E.1 Overfitting a Small Validation Set

We see our algorithm’s ability to overfit the valida-
tion data (see Fig. 8). We use 50 training input, and
50 validation input with the standard testing parti-
tion for both MNIST and CIFAR-10. We check per-
formance with logistic regression (Linear), a 1-Layer
fully-connected NN with as many hidden units as in-
put size (ex., 28 ⇥ 28 = 784, or 32 ⇥ 32 ⇥ 3 = 3072),
LeNet LeCun et al. [1998], AlexNet Krizhevsky et al.
[2012], and ResNet44 He et al. [2016]. In all examples
we can achieve 100% training and validation accuracy,
while the testing accuracy is significantly lower.

C
la

ss
ifi

ca
ti

on
E

rr
or MNIST

Iteration

CIFAR-10

Iteration

Figure 8: Overfitting validation data. Algorithm 1
can overfit the validation dataset. We use 50 training
input, and 50 validation input with the standard testing
partition for both MNIST and CIFAR-10. We check
the performance with logistic regression (Linear), a
1-Layer fully-connected NN with as many hidden units
as input size (ex., 28⇥28 = 784, or 32⇥32⇥3 = 3072),
LeNet LeCun et al. [1998], AlexNet Krizhevsky et al.
[2012], and ResNet44 He et al. [2016]. Separate lines are
plotted for the training, validation, and testing error. In
all examples we achieve 100% training and validation
accuracy, while the testing accuracy is significantly
lower.

E.2 Dataset Distillation

With MNIST we use the entire dataset in validation,
while for CIFAR we use 300 validation data points.

E.3 Learned Data Augmentation

Augmentation Network Details: Data augmenta-
tion can be framed as an image-to-image transformation
problem; inspired by this, we use a U-Net Ronneberger
et al. [2015] as the data augmentation network. To
allow for stochastic transformations, we feed in random
noise by concatenating a noise channel to the input im-
age, so the resulting input has 4 channels. For training,
validation, and testing we evaluate the accuracy with
an average over 10 augmented samples.

E.4 RNN Hyperparameter Optimization

We base our implementation on the AWD-LSTM code-
base 1. Similar to Gal and Ghahramani [2016] we used
a 2-layer LSTM with 650 hidden units per layer and
650-dimensional word embeddings.

Overfitting Validation Data: We used a subset
of 10 training sequences and 10 validation sequences,
and tuned separate weight decays per parameter. The
LSTM architecture we use has 13 280 400 weights, and
thus an equal number of weight decay hyperparameters.

Optimization Details: For the large-scale experi-
ments, we follow the training setup proposed in Merity
et al. [2018]: for the NN weights, we use SGD with learn-
ing rate 30 and gradient clipping to magnitude 0.25.
The learning rate was decayed by a factor of 4 based on
the nonmonotonic criterion introduced by Merity et al.
[2018] (i.e., when the validation loss fails to decrease
for 5 epochs). To optimize the hyperparameters, we
used Adam with learning rate 0.001. We trained on
sequences of length 70 in mini-batches of size 40.

1https://github.com/salesforce/awd-lstm-lm



Jonathan Lorraine, Paul Vicol, David Duvenaud

CIFAR-10 Distillation
Plane Car Bird Cat Deer Dog Frog Horse Ship Truck

MNIST Distillation

CIFAR-100 Distillation
Apple Fish Baby Bear Beaver Bed Bee Beetle Bicycle Bottle

Bowl Boy Bridge Bus Butterfly Camel Can Castle Caterpillar Cattle
Figure 9: Distilled datasets for CIFAR-10, MNIST, and CIFAR-100. For CIFAR-100, we show the first 20
classes—the rest are in Appendix Fig. 10. We learn one distilled image per class, so after training a logistic
regression classifier on the distillation, it generalizes to the rest of the data.



Jonathan Lorraine, Paul Vicol, David Duvenaud

CIFAR-100 Distillation

Figure 10: The complete dataset distillation for CIFAR-100. Referenced in Fig. 9.



Jonathan Lorraine, Paul Vicol, David Duvenaud

Original Sample 1 Sample 2 Pixel Std.

Figure 11: Learned data augmentations. The original
image is on the left, followed by two augmented samples
and the standard deviation of the pixel intensities from
the augmentation distribution.


