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Supplementary Material for Mitigating Overfitting in Supervised
Classification from Two Unlabeled Datasets:
A Consistent Risk Correction Approach

A Proofs

In this appendix, we prove all theorems.

A.1 Proof of Lemma 2

Let

ptr(Xtr) = ptr(x1) · · · ptr(xn), p′tr(X ′tr) = p′tr(x
′
1) · · · p′tr(x′n′)

be the probability density functions of Xtr and X ′tr (due to the i.i.d. sample assumption). Then, the measure of
D−(g) is defined by

Pr(D−(g)) =

∫
(Xtr,X ′tr)∈D−(g)

ptr(Xtr)p
′
tr(X ′tr)dXtrdX ′tr,

where Pr denotes the probability, dXtr = dx1 · · · dxn and dX ′tr = dx′1 · · · dx′n′ . Since R̂uu(g) is unbiased and
R̂cc(g)− R̂uu(g) = 0 on D+(g), the bias of R̂cc(g) can be formulated as:

E[R̂cc(g)]−R(g) = E[R̂cc(g)− R̂uu(g)]

=

∫
(Xtr,X ′tr)∈D+(g)

(
R̂cc(g)− R̂uu(g)

)
ptr(Xtr)p

′
tr(X ′tr)dXtrdX ′tr

+

∫
(Xtr,X ′tr)∈D−(g)

(
R̂cc(g)− R̂uu(g)

)
ptr(Xtr)p

′
tr(X ′tr)dXtrdX ′tr

=

∫
(Xtr,X ′tr)∈D−(g)

(
R̂cc(g)− R̂uu(g)

)
ptr(Xtr)p

′
tr(X ′tr)dXtrdX ′tr

Thus we have E[R̂cc(g)] − R(g) > 0 if and only if
∫

(Xtr,X ′tr)∈D−(g)
ptr(Xtr)p

′
tr(X ′tr)dXtrdX ′tr > 0 due to the fact

that R̂cc(g) − R̂uu(g) > 0 on D−(g). That is, the bias of R̂cc(g) is positive if and only if the measure of D−(g)
is non-zero.

Next we study the probability measure of D−(g) by the method of bounded differences. Since R+
p (g) ≥ αg/πp

and R−n (g) ≥ βg/πn, then

E[A− C] = πpR
+
p (g) ≥ αg, E[D −B] = πnR

−
n (g) ≥ βg.

We have assumed that 0 ≤ `(z) ≤ C`, and thus the change of aR̂+
u (g) and bR̂−u (g) will be no more than aC`/n

and bC`/n if some xi ∈ Xtr is replaced, or the change of cR̂+
u′(g) and dR̂−u′(g) will be no more than cC`/n′ and

dC`/n
′ if some x′j ∈ X ′tr is replaced. Subsequently, McDiarmid’s inequality (McDiarmid, 1989) implies

Pr{πpR
+
p (g)− (A− C) ≥ αg} ≤ exp

(
−

2α2
g

n(aC`/n)2 + n′(cC`/n′)2

)

= exp

(
−

2α2
g/C

2
`

a2/n+ c2/n′

)
,
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and

Pr{πnR
−
n (g)− (D −B) ≥ βg} ≤ exp

(
−

2β2
g

n′(dC`/n′)2 + n(bC`/n)2

)

= exp

(
−

2β2
g/C

2
`

b2/n′ + d2/n

)
.

Then the probability measure of D−(g) can be bounded by

Pr(D−(g)) ≤ Pr{A− C ≤ 0}+ Pr{D −B < 0}
≤ Pr{A− C ≤ πpR

+
p (g)− αg}+ Pr{D −B ≤ πnR

−
n (g)− βg}

= Pr{πpR
+
p (g)− (A− C) ≥ αg}+ Pr{πnR

−
n (g)− (D −B) ≥ βg}

≤ exp

(
−

2α2
g/C

2
`

a2/n+ c2/n′

)
+ exp

(
−

2β2
g/C

2
`

b2/n′ + d2/n

)
,

we complete the proof.

A.2 Proof of Theorem 3

Based on Lemma 2, we can show the exponential decay of the bias and also the consistency of the proposed
non-negative risk estimator R̂cc(g). It has been proved in Lemma 2 that

E[R̂cc(g)]−R(g) =

∫
(Xtr,X ′tr)∈D−(g)

(
R̂cc(g)− R̂uu(g)

)
ptr(Xtr)p

′
tr(X ′tr)dXtrdX ′tr.

Therefore the exponential decay of the bias can be obtained via

E[R̂cc(g)]−R(g) ≤ sup(Xtr,X ′tr)∈D−(g)

(
R̂cc(g)− R̂uu(g)

)
·
∫

(Xtr,X ′tr)∈D−(g)

ptr(Xtr)p
′
tr(X ′tr)dXtrdX ′tr

= sup(Xtr,X ′tr)∈D−(g)(f1(A− C) + f2(D −B)− (A− C)− (D −B)) · Pr(D−(g))

≤ sup(Xtr,X ′tr)∈D−(g)(|f1(A− C)|+ |f2(D −B)|+ |A− C|+ |D −B|) · Pr(D−(g))

≤ sup(Xtr,X ′tr)∈D−(g)(Lf |A− C|+ Lf |D −B|+ |A− C|+ |D −B|) · Pr(D−(g))

= sup(Xtr,X ′tr)∈D−(g)((Lf + 1)|A− C|+ (Lf + 1)|D −B|) · Pr(D−(g))

≤ sup(Xtr,X ′tr)∈D−(g)((Lf + 1)(a+ c)C` + (Lf + 1)(d+ b)C`) · Pr(D−(g))

= (Lf + 1)(a+ b+ c+ d)C`∆g,

where we employed the Lipschitz condition, i.e., |f1(x)−f1(y)| ≤ Lf |x−y| (also holds for f2), and the assumption
f(0) = 0 in Definition 1. Then the deviation bound (9) is due to

|R̂cc(g)−R(g)| ≤ |R̂cc(g)− E[R̂cc(g)]|+ |E[R̂cc(g)]−R(g)|

≤ |R̂cc(g)− E[R̂cc(g)]|+ (Lf + 1)(a+ b+ c+ d)C`∆g.

Denote by A′, B′, C ′ and D′ that differs from A, B ,C and D on a single example. Then

|f1(A− C) + f2(D −B)− f1(A′ − C)− f2(D −B′)|
≤ |f1(A− C)− f1(A′ − C)|+ |f2(D −B)− f2(D −B′)|
≤ Lf |A− C −A′ + C|+ Lf |D −B −D +B′|
= Lf |A−A′|+ Lf |B′ −B|
≤ (a+ b)LfC`/n. (12)

Similarily, we can obtain

|f1(A− C) + f2(D −B)− f1(A− C ′)− f2(D′ −B)| ≤ (c+ d)LfC`/n
′. (13)
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Therefore the change of R̂cc(g) will be no more than (a+ b)LfC`/n if some xi ∈ Xtr is replaced, or it will be no
more than (c+ d)LfC`/n

′ if some x′j ∈ X ′tr is replaced, and McDiarmid’s inequality gives us

Pr{|R̂cc(g)− E[R̂cc(g)]| ≥ ε} ≤ 2 exp

(
− 2ε2

n((a+ b)LfC`/n)2 + n′((c+ d)LfC`/n′)2

)
.

Setting the above right-hand side to be equal to δ and solving for ε yields immediately the following bound. For
any δ > 0, the following inequality holds with probability at least 1− δ,

|R̂cc(g)− E[R̂cc(g)]| ≤

√
ln(2/δ)C2

`L
2
f

2

(
(a+ b)2

n
+

(c+ d)2

n′

)
≤ Cδ

(
(a+ b)√

n
+

(c+ d)√
n′

)
= Cδ · χn,n′ ,

where Cδ = C`Lf
√

ln(2/δ)/2 and χn,n′ = (a+ b)/
√
n+ (c+ d)/

√
n′. Thus we obtain

|R̂cc(g)−R(g)| ≤ Cδ · χn,n′ + (Lf + 1)(a+ b+ c+ d)C`∆g.

On the other hand, the deviation bound (10) is due to

|R̂cc(g)−R(g)| ≤ |R̂cc(g)− R̂uu(g)|+ |R̂uu(g)−R(g)|,

where |R̂cc(g) − R̂uu(g)| > 0 with probability at most ∆g, and |R̂uu(g) − R(g)| shares the same concentration
inequality with |R̂cc(g)− E[R̂cc(g)]|.

A.3 Proof of Theorem 4

First, we introduce the definitions of Rademacher complexity.
Definition 6 (Rademacher complexity). Let G = {g : Z → R} be a class of measurable functions, X =
{x1, . . . , xn} be a fixed sample of size n i.i.d. drawn from a probability distribution p, and ε = (ε1, . . . , εn)T be
Rademacher variables, i.e., independent uniform random variables taking values in {−1,+1}. For any integer
n ≥ 1, the Rademacher complexity of G (Mohri et al., 2012; Shalev-Shwartz and Ben-David, 2014a) is defined
as

Rn,p(G) = EXEε

[
supg∈G

1

n

∑
xi∈X

εig(xi)

]
.

An alternative definition of the Rademacher complexity (Koltchinskii, 2001; Bartlett and Mendelson, 2002) will
be used in the proof is:

R′n,p(G) = EXEε

[
supg∈G

∣∣∣∣ 1n∑xi∈X
εig(xi)

∣∣∣∣] .
Then, we list all the lemmas that will be used to derive the estimation error bound in Theorem 4.
Lemma 7. For arbitrary G, R′n,p(G) ≥ Rn,p(G); if G is closed under negation, R′n,p(G) = Rn,p(G).
Lemma 8 (Theorem 4.12 in Ledoux and Talagrand (1991)). If ψ : R → R is a Lipschitz continuous function
with a Lipschitz constant Lψ and satisfies ψ(0) = 0, we have

R′n,p(ψ ◦ G) ≤ 2LψR
′
n,p(G),

where ψ ◦ G = {ψ ◦ g|g ∈ G} and ◦ is a composition operator.
Lemma 9. Under the assumptions of Theorem 4, for any δ > 0, with probability at least 1− δ,

supg∈G |R̂cc(g)−R(g)| ≤ 4(a+ b)LfL`Rn,ptr(G) + 4(c+ d)LfL`Rn′,p′tr
(G)

+ (Lf + 1)(a+ b+ c+ d)C`∆ + C ′δ · χn,n′ . (14)
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Proof. Firstly, we deal with the bias of R̂cc(g). Noticing that the assumptions infg∈G R
+
p (g) ≥ α/πp > 0 and

infg∈G R
−
n (g) ≥ β/πn > 0 imply ∆ = supg∈G ∆g. By (8) we have:

supg∈G |R̂cc(g)−R(g)| ≤ supg∈G |R̂cc(g)− E[R̂cc(g)]|+ supg∈G |E[R̂cc(g)]−R(g)|

≤ supg∈G |R̂cc(g)− E[R̂cc(g)]|+ (Lf + 1)(a+ b+ c+ d)C`∆. (15)

Secondly, we consider the double-sided uniform deviation supg∈G |R̂cc(g) − E[R̂cc(g)]|. Denote by Xs =
{(Xtr,X ′tr)}, and X ′s that differs from Xs on a single example. Then we have∣∣ supg∈G

∣∣R̂cc(g;Xs)− EXs
[R̂cc(g;Xs)]

∣∣− supg∈G
∣∣R̂cc(g;X ′s)− EX ′s [R̂cc(g;X ′s)]

∣∣∣∣
≤ supg∈G

∣∣|R̂cc(g;Xs)− EXs
[R̂cc(g;Xs)]| − |R̂cc(g;X ′s)− EX ′s [R̂cc(g;X ′s)]|

∣∣
≤ supg∈G |R̂cc(g;Xs)− R̂cc(g;X ′s)|,

where we applied the triangle inequality. According to (12) and (13), we see that the change of supg∈G |R̂cc(g)−
E[R̂cc(g)]| will be no more than (a+b)LfC`/n if some xi ∈ Xtr is replaced, or it will be no more than (c+d)LfC`/n

′

if some x′j ∈ X ′tr is replaced. Similar to the proof technique of Theorem 3, by applying McDiarmid’s inequality
to the uniform deviation we have with probability at least 1− δ,

supg∈G |R̂cc(g)− E[R̂cc(g)]| − E[supg∈G |R̂cc(g)− E[R̂cc(g)]|]

≤

√
ln(1/δ)C2

`L
2
f

2

(
(a+ b)2

n
+

(c+ d)2

n′

)
= C ′δ · χn,n′ , (16)

where C ′δ = C`Lf
√

ln(1/δ)/2. Thirdly, we make symmetrization (Vapnik, 1998). Suppose that (X ghtr ,X
′gh
tr ) is a

ghost sample, then

E[supg∈G |R̂cc(g)− E[R̂cc(g)]|]

= E(Xtr,X ′tr)[supg∈G |R̂cc(g;Xtr,X ′tr)− E
(Xgh

tr ,X
′gh
tr )

R̂cc(g;X ghtr ,X
′gh
tr )|]

≤ E(Xtr,X ′tr)[supg∈G E(Xgh
tr ,X

′gh
tr )
|R̂cc(g;Xtr,X ′tr)− R̂cc(g;X ghtr ,X

′gh
tr )|]

≤ E
(Xtr,X ′tr),(X

gh
tr ,X

′gh
tr )

[supg∈G |R̂cc(g;Xtr,X ′tr)− R̂cc(g;X ghtr ,X
′gh
tr )|],

where we applied Jensen’s inequality twice since the absolute value and the supremum are convex. By decom-
posing the difference |R̂cc(g;Xtr,X ′tr)− R̂cc(g;X ghtr ,X

′gh
tr )|, we can know that

|R̂cc(g;Xtr,X ′tr)− R̂cc(g;X ghtr ,X
′gh
tr )|

=
∣∣∣f1

(
aR̂+

u (g;Xtr)− cR̂+
u′(g;X ′tr)

)
− f1

(
aR̂+

u (g;X ghtr )− cR̂+
u′(g;X

′gh
tr )

)
+ f2

(
−bR̂−u (g;Xtr) + dR̂−u′(g;X ′tr)

)
− f2

(
−bR̂−u (g;X ghtr ) + dR̂−u′(g;X

′gh
tr )

) ∣∣∣
≤
∣∣∣f1

(
aR̂+

u (g;Xtr)− cR̂+
u′(g;X ′tr)

)
− f1

(
aR̂+

u (g;X ghtr )− cR̂+
u′(g;X

′gh
tr )

) ∣∣∣
+
∣∣∣f2

(
−bR̂−u (g;Xtr) + dR̂−u′(g;X ′tr)

)
− f2

(
−bR̂−u (g;X ghtr ) + dR̂−u′(g;X

′gh
tr )

) ∣∣∣
≤
∣∣∣Lf (aR̂+

u (g;Xtr)− cR̂+
u′(g;X ′tr)− aR̂+

u (g;X ghtr ) + cR̂+
u′(g;X

′gh
tr )

) ∣∣∣
+
∣∣∣Lf (−bR̂−u (g;Xtr) + dR̂−u′(g;X ′tr) + bR̂−u (g;X ghtr )− dR̂−u′(g;X

′gh
tr )

) ∣∣∣
≤
∣∣∣aLf (R̂+

u (g;Xtr)− R̂+
u (g;X ghtr )

) ∣∣∣+
∣∣∣cLf (R̂+

u′(g;X ′tr)− R̂+
u′(g;X

′gh
tr )

) ∣∣∣
+
∣∣∣bLf (R̂−u (g;Xtr)− R̂−u (g;X ghtr )

) ∣∣∣+
∣∣∣dLf (R̂−u′(g;X ′tr)− R̂−u′(g;X

′gh
tr )

) ∣∣∣,
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where we employed the Lipschitz condition. This decomposition results in

E[supg∈G |R̂cc(g)− E[R̂cc(g)]|] ≤ aLfEXtr,Xgh
tr

[
supg∈G

∣∣∣ (R̂+
u (g;Xtr)− R̂+

u (g;X ghtr )
) ∣∣∣]

+ cLfEX ′tr,X
′gh
tr

[
supg∈G

∣∣∣ (R̂+
u′(g;X ′tr)− R̂+

u′(g;X
′gh
tr )

) ∣∣∣]
+ bLfEXtr,Xgh

tr

[
supg∈G

∣∣∣ (R̂−u (g;Xtr)− R̂−u (g;X ghtr )
) ∣∣∣]

+ dLfEX ′tr,X
′gh
tr

[
supg∈G

∣∣∣ (R̂−u′(g;X ′tr)− R̂−u′(g;X
′gh
tr )

) ∣∣∣].
Fourthly, we relax those expectations to Rademacher complexities. The original ` may miss the origin, i.e.,
`(0, y) 6= 0, with which we need to cope. Let

¯̀(t, y) = `(t, y)− `(0, y)

be a shifted loss so that ¯̀(0, y) = 0. Hence,

R̂+
u (g;Xtr)− R̂+

u (g;X ghtr ) = (1/n)
∑
xi∈Xtr

`(g(xi),+1)− (1/n)
∑
xgh
i ∈X

gh
tr
`(g(xghi ),+1)

= (1/n)
∑n
i=1(`(g(xi),+1)− `(g(xghi ),+1))

= (1/n)
∑n
i=1(¯̀(g(xi),+1)− ¯̀(g(xghi ),+1)).

This is already a standard form where we can attach Rademacher variables to every ¯̀(g(xi),+1)− ¯̀(g(xghi ),+1),
so we have

EXtr,Xgh
tr

[supg∈G |R̂+
u (g;Xtr)− R̂+

u (g;X ghtr )|]

= EXtr,Xgh
tr

[
supg∈G

∣∣∣(1/n)

n∑
i=1

(¯̀(g(xi),+1)− ¯̀(g(xghi ),+1))
∣∣∣]

= Eε,Xtr,Xgh
tr

[
supg∈G

∣∣∣(1/n)

n∑
i=1

εi(¯̀(g(xi),+1)− ¯̀(g(xghi ),+1))
∣∣∣]

≤ Eε,Xtr

[
supg∈G

∣∣∣(1/n)

n∑
i=1

εi(¯̀(g(xi),+1)
∣∣∣]

+ Eε,Xgh
tr

[
supg∈G

∣∣∣(1/n)

n∑
i=1

εi(¯̀(g(xghi ),+1)
∣∣∣]

= 2Eε,Xtr

[
supg∈G

∣∣∣(1/n)

n∑
i=1

εi(¯̀(g(xi),+1)
∣∣∣]

= 2R′n,ptr(
¯̀(·,+1) ◦ G)

The other three expectations can be handled analogously. As a result,

E[supg∈G |R̂cc(g)− E[R̂cc(g)]|] ≤ 2aLfR
′
n,ptr(

¯̀(·,+1) ◦ G) + 2cLfR
′
n′,p′tr

(¯̀(·,+1) ◦ G)

+ 2bLfR
′
n,ptr(

¯̀(·,−1) ◦ G) + 2dLfR
′
n′,p′tr

(¯̀(·,−1) ◦ G).

Finally, we transform the Rademacher complexities of composite function classes to the original function class.
It is obvious that ¯̀ shares the same Lipschitz constant L` with `, and consequently

R′n,ptr(
¯̀(·,+1) ◦ G) ≤ 2L`R

′
n,ptr(G) = 2L`Rn,ptr(G)

R′n′,p′tr(
¯̀(·,+1) ◦ G) ≤ 2L`R

′
n′,p′tr

(G) = 2L`Rn′,p′tr
(G)

R′n,ptr(
¯̀(·,−1) ◦ G) ≤ 2L`R

′
n,ptr(G) = 2L`Rn,ptr(G)

R′n′,p′tr(
¯̀(·,−1) ◦ G) ≤ 2L`R

′
n′,p′tr

(G) = 2L`Rn′,p′tr
(G)
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where we used the assumption that G is closed under negation, Lemma 7 and Lemma 8. So we have

E[supg∈G |R̂cc(g)− E[R̂cc(g)]|] ≤ 4(a+ b)LfL`Rn,ptr(G) + 4(c+ d)LfL`Rn′,p′tr
(G). (17)

Combining (15), (16) and (17) finishes the proof of the uniform deviation bound (14).

We are now ready to prove our estimation error bound based on the uniform deviation bound in Lemma 9.

R(ĝcc)−R(g∗) =
(
R̂cc(ĝcc)− R̂cc(g∗)

)
+
(
R(ĝcc)− R̂cc(ĝcc)

)
+
(
R̂cc(g∗)−R(g∗)

)
≤ 0 + 2 supg∈G |R̂cc(g)−R(g)|
≤ 8(a+ b)LfL`Rn,ptr(G) + 8(c+ d)LfL`Rn′,p′tr

(G)

+ 2(Lf + 1)(a+ b+ c+ d)C`∆ + 2C ′δ · χn,n′ ,

where R̂cc(ĝcc) ≤ R̂cc(g∗) by the definition of g∗ and ĝcc.

A.4 Proof of Corollary 5

We further get bounds on the Rademacher complexity of deep neural networks by the following Theorem.
Theorem 10 (Theorem 1 in Golowich et al. (2017)). Assume the Frobenius norm of the weight matricesWj are at
most MF (j), and the activation function σ satisfying the assumption that it is 1-Lipschitz, positive-homogeneous
which is applied element-wise (such as the ReLU). Let x is upper bounded by Cx. Then,

Rn,p(G) ≤ 1

n

m∏
j=1

MF (j) · (
√

2m log 2 + 1)

√√√√ n∑
i=1

‖xi‖2 ≤
Cx(
√

2m log 2 + 1)
∏m
j=1MF (j)

√
n

. (18)

Based on Theorem 10, we proved

R(ĝcc)−R(g∗) ≤ 8(a+ b)LfL`Rn,ptr(G) + 8(c+ d)LfL`Rn′,p′tr
(G)

+ 2(Lf + 1)(a+ b+ c+ d)C`∆ + 2C ′δ · χn,n′

≤ 8(a+ b)LfL`
Cx(
√

2m log 2 + 1)
∏m
j=1MF (j)

√
n

+ 8(c+ d)LfL`
Cx(
√

2m log 2 + 1)
∏m
j=1MF (j)

√
n′

+ 2(Lf + 1)(a+ b+ c+ d)C`∆ + 2C ′δ · χn,n′

=

8LfL`Cx(
√

2m log 2 + 1)

m∏
j=1

MF (j) + 2C ′δ

 · χn,n′
+ 2(Lf + 1)(a+ b+ c+ d)C`∆.

B Supplementary information on Figure 1

In Sec. 3.1, we illustrated the overfitting issue of state-of-the-art unbiased UU method using different datasets,
different models, different optimizers and different loss functions. The details of these demonstration results are
presented here.

In the upper row, the dataset used was MNIST and we artifically corrupt it into a binary classification dataset:
even digits form the P class and odd digits form the N class. The models used were a linear-in-input model (Lin-
ear) g(x) = ωTx+b where ω ∈ R784 and b ∈ R, and a 5-layer multi-layer perceptron (MLP): d-300-300-300-300-1.
And the optimizer was SGD with momentum (momentum=0.9) with logistic loss `log(z) = ln(1 + exp(−z)) or
sigmoid loss `sig(z) = 1/(1 + exp(z)). For linear model experiments, the batch size was fixed to be 1000 and the
initial learning rate was 5e− 2. For MLP model experiments, the batch size was fixed to be 3000 and the initial
learning rate was 1e− 3.



Nan Lu Tianyi Zhang Gang Niu Masashi Sugiyama

In the bottom row, the dataset used was CIFAR-10 and we artifically corrupt it into a binary classification dataset:
the P class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘ship’ and ‘truck’, and the N class is composed of ‘airplane’,
‘automobile’, ‘cat’ and ‘horse’. The models used were all convolutional net (AllConvNet) (Springenberg et al.,
2015) as follows:

0th (input) layer: (32*32*3)-
1st to 3rd layers: [C(3*3, 96)]*2-C(3*3, 96, 2)-
4th to 6th layers: [C(3*3, 192)]*2-C(3*3, 192, 2)-
7th to 9th layers: C(3*3, 192)-C(1*1, 192)-C(1*1, 10)-

10th to 12th layers: 1000-1000-1

where C(3*3, 96) means 96 channels of 3*3 convolutions followed by ReLU, [ · ]*2 means 2 such layers, C(3*3,
96, 2) means a similar layer but with stride 2, etc; and a 32-layer residual networks (ResNet32) (He et al., 2016)
as follows:

0th (input) layer: (32*32*3)-
1st to 11th layers: C(3*3, 16)-[C(3*3, 16), C(3*3, 16)]*5-
12th to 21st layers: [C(3*3, 32), C(3*3, 32)]*5-
22nd to 31st layers: [C(3*3, 64), C(3*3, 64)]*5-

32nd layer: Global Average Pooling-1

where [ ·, · ] means a building block (He et al., 2016). Batch normalization (Ioffe and Szegedy, 2015) was applied
before hidden layers. An `2-regularization was added, where the regularization parameter was fixed to 5e-3. The
models were trained by Adam (Kingma and Ba, 2015) with the default momentum parameters (β1 = 0.9 and
β2 = 0.999) and the loss function was `sig(z) or `log(z). For AllConvNet experiments, the batch size and the
learning rate were fixed to be 500 and 1e − 5 respectively. For ResNet32 experiments, the batch size and the
learning rate were fixed to be 3000 and 3e− 5 respectively.

The two training distributions were created following (3) with class priors θ = 0.6 and θ′ = 0.4. Subsequently, the
two sets of U training data were sampled from those distributions with sample sizes n = 30000 and n′ = 30000.

The results demonstrate the concurrence of empirical training risk going negative (blue dashed line) and the test
accuracy overfitting (green dashed line) regardless of datasets, models, optimizers and loss functions.

C Supplementary information on the experiments

MNIST (LeCun et al., 1998) This is a grayscale image dataset of handwritten digits from 0 to 9 where the
size of the images is 28*28. It contains 60,000 training images and 10,000 test images. See http://yann.lecun.
com/exdb/mnist/ for details. Since it has 10 classes originally, we used the even digits as the P class and the
odd digits as the N class, respectively.

The simple model used for training MNIST was a linear-in-input model g(x) = ωTx+b where ω ∈ R784 and b ∈ R
with `2-regularization (the regularization parameter was fixed to be 1e − 4). The batch size and learning rate
were set to be 3000 and 1e−3 respectively. The deep model uased was a 5-layer FC with ReLU as the activation
function: d-300-300-300-300-1 with `2-regularization (the regularization parameter was fixed to be 5e− 3). The
batch size and learning rate were set to be 3000 and 5e− 5 respectively. For both models, batch normalization
(Ioffe and Szegedy, 2015) with the default momentum = 0.99 and ε = 1e− 3 was applied before hidden layers,
and the model was trained by Adam with the default momentum parameters β1 = 0.9 and β2 = 0.999. For all
the experiments, the generalized leaky ReLU hyperparameter λ was selected from −0.01 to 1.

Fashion-MNIST (Xiao et al., 2017) This is also a grayscale fashion image dataset similarly to MNIST,
but here each data is associated with a label from 10 fashion item classes. See https://github.com/
zalandoresearch/fashion-mnist for details. It was converted into a binary classification dataset as follows:

• the P class is formed by ‘T-shirt’, ‘Trouser’, ‘Shirt’, and ‘Sneaker’;
• the N class is formed by ‘Pullover’, ‘Dress’, ‘Coat’, ‘Sandal’, ‘Bag’, and ‘Ankle boot’.

The models and optimizers were the same as MNIST, where the learning rate for the simple and deep models
were set to be 5e− 3 and 3e− 5 and the other hyperparameters remain the same.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/
https://github.com/zalandoresearch/fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
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Kuzushiji-MNIST (Clanuwat et al., 2018) This is another variant of MNIST dataset consisting of 60,000
training images and 10,000 test images of cursive Japanese (Kuzushiji) characters. See https://github.com/
rois-codh/kmnist for details. For Kuzushi-MNIST dataset,

• ‘ki’, ‘re’, ‘wo’ made up the P class;
• ‘o’, ‘su’, ‘tsu’, ‘na’, ‘ha’, ‘ma’, ‘ya’ made up the N class.

The models and optimizers were the same as MNIST, where the learning rate for the deep models was set to be
3e− 5 and the other hyperparameters remain the same.

CIFAR-10 (Krizhevsky, 2009) This dataset consists of 60,000 32∗32 color images in 10 classes, and there are
5,000 training images and 1,000 test images per class. See https://www.cs.toronto.edu/~kriz/cifar.html
for details. For CIFAR-10 dataset,

• the P class is composed of ‘bird’, ‘deer’, ‘dog’, ‘frog’, ‘ship’ and ‘truck’;
• the N class is composed of ‘airplane’, ‘automobile’, ‘cat’ and ‘horse’.

The simple model used for training CIFAR-10 was also a linear-in-input model g(x) = ωTx+ b where ω ∈ R3072

and b ∈ R with `2-regularization (the regularization parameter was fixed to be 5e − 3). The batch size and
learning rate were set to be 3000 and 5e− 3 respectively. The deep model was again ResNet-32 (He et al., 2016)
that can be find in Appendix B. The batch size and learning rate were set to be 3000 and 5e−3 respectively. For
both models, batch normalization (Ioffe and Szegedy, 2015) with the default momentum = 0.99 and ε = 1e− 3
was applied before hidden layers, and the model was trained by Adam with the default momentum parameters
β1 = 0.9 and β2 = 0.999.

D Supplementary experiments on general-purpose regularization

Regularization is the most common technique that lower the complexity of a neural network model during
training, and thus prevent the overfitting (Goodfellow et al., 2016). In this section, we demonstrate that the
general-purpose regularization methods fail to mitigate the overfitting in UU classification scenario.

We tested the unbiased UU method using two most popular regularization techniques, i.e., dropout and weight
decay. The dataset and model used were again MNIST (the class priors θ and θ′ were set to be 0.6 and 0.4)
and the 5-layer MLP d-300-300-300-300-1 with `2-regularization, where dropout layers were added between the
existing layers. The optimizer was SGD with momentum (momentum = 0.9) and logistic loss. Batch size was
fixed to be 3000 and the initial learning rate was 1e − 3. For dropout experiments, we fixed the weight decay
parameter to be 1e− 4 and change the dropout parameter from 0 to 0.8. For weight decay experiments, we fix
the dropout parameter to be 0.2 and change the weight decay parameter from 0.0005 to 5.

Empirical results in Figure 3 show that the unbiased UU method with slightly strong regularizations outperforms
the one with weaker regularizations, but still suffers from overfitting. It is because adding strong regularization
may prohibit the high representation power of deep models, which in turn may cause underfitting.

Discussion Instead of the general-purpose regularization, our proposed method explicitly utilizes the additional
knowledge that the empirical risk goes negative. By that, we can more "effectively" constrain the model without
too much sacrificing the representation power of deep models. Note that our correction can also be regarded as
a regularization in its general sense for fighting against overfitting, but differently from weight decay or dropout,
it is exclusively designed for UU classification and hence it is no surprising that our regularization fits UU
classification better than other regularizations as discussed in Sec. 3 theoretically and demonstrated in Sec. 4
empirically.

https://github.com/rois-codh/kmnist
https://github.com/rois-codh/kmnist
https://www.cs.toronto.edu/~kriz/cifar.html
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Figure 3: Supplementary experimental results on general regularization. Left: dropout. Right: weight decay.
Solid curves are R̂uu(g) on test data and dashed curves are R̂uu(g) on training data.
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