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A Proof of Lemma 1

To prove Lemma 1, we will first upper bound the cumulative online Bayesian loss associated with OI-EGP,PT
t=1 `t|t�1, relative to that incurred by any RF-based GP expert s, namely

PT
t=1 l

s
t|t�1. Reorganizing (23), we

have exp(�`t|t�1)/ exp(�lst|t�1) = ws
t�1/w

s
t , and after multiplying (23) from t = 1 to T , it follows that
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=
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0
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T
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whose logarithm yields

TX

t=1

`t|t�1 =
TX

t=1

lst|t�1 + logS + logws
T

(a)


TX

t=1

lst|t�1 + logS (41)

where (a) holds because ws
T 2 [0, 1]. Thus,

PT
t=1 `t|t�1 �

PT
t=1 l

s
t|t�1 is upper bounded by logS.

Next, we bound the di↵erence between
PT

t=1 l
s
t|t�1 and the loss incurred by any fixed strategy ✓s

⇤
, for any expert

s 2 S. To this end, we prove an intermediate lemma where we drop s for notational brevity; see also (Kakade
and Ng, 2005). Upon defining the cumulative loss over T slots with a fixed strategy ✓ as

L✓ := � log p(yT |✓;XT ) =
TX

t=1

L(�>

v (xt)✓; yt)

the expected cumulative loss over q(✓), a pdf of the fixed strategy ✓, can be defined as

L̄q✓ := Eq[L✓] =

Z

✓
q(✓)L✓d✓ .

Now we are ready to establish the following intermediate lemma.

Lemma 2: With p(✓) denoting the prior of ✓ and KL the Kullback-Leibler divergence, it holds for any q(✓)

TX

t=1

`t|t�1  L̄q✓ +KL(q(✓)kp(✓)) . (42)

Proof: Based on Bayes rule, the following equality holds for the cumulative online Bayesian loss

TX

t=1

`t|t�1 =
TX

t=1

� log p(yt|yt�1;Xt) = � log p(yT ;XT )

which after employing the definition of the KL divergence, leads to

TX
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lt|t�1 � L̄q✓ =

Z
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p(yT |✓;XT )

p(yT ;XT )
d✓ . (43)

Further, since p(yT ,✓;XT ) = p(yT |✓;XT )p(✓) = p(yT ;XT )p(✓|yT ;XT ), the RHS of (43) can be rewritten as
Z

✓
q(✓) log
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p(yT ;XT )
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which completes the proof of Lemma 2.

To prove Lemma 1, we will use Lemma 2, and let q(✓) = N (✓;✓⇤, ⇠2I2D), where ⇠ is a variational parameter we
will tune later, and p(✓) = N (✓;0,�2

✓I2D). It then follows that (42) becomes

TX
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Let zt = �>

v (xt)✓ and z⇤t = �>

v (xt)✓⇤. Taking the Taylor’s expansion of L(zt; yt) around z⇤t , yields

L(zt; yt) = L(z⇤t ; yt) +
dL(z⇤t ; yt)
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where h(zt) is some function lying between zt and z⇤t . Taking the expectation of (45) wrt q(✓), leads to
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where (a) makes use of
��� d2

dz2L(z; y)
��� < c 8z in (as1), and (b) relies on the bound k�v(xt)k2  1.

Summing (46) from t = 1 to T , we have

L̄q✓  L✓⇤ +
Tc⇠2

2
. (47)

Further leveraging (44), the following inequality holds

TX

t=1

lt|t�1  L✓⇤ +
Tc⇠2

2
+ 2D log �✓ +

1

2�2
✓

�
k✓⇤k2 + 2D⇠2

�
�D � 2D log ⇠ (48)

whose RHS is a convex function of ⇠ with minimal value taken at ⇠2 = 2D�2
✓

2D+Tc�2
✓
. Next, replacing the RHS with

its mininal value, simplifies (48) to
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for any expert s 2 S. With (49) and (41), Lemma 1 follows readily.

B Proof of Theorem 1

For a given shift-invariant standardized kernel ̄s, the maximum point-wise error of the RF kernel approximant

is uniformly bounded with probability at least 1� 28(�s
✏ )

2 exp
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4d+8

⌘
by (Rahimi and Recht, 2008)
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where ✏ is a given constant, D is the number of spectral feature vectors, d is the dimension of x, and �2
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[kvsk2] is the second-order moment of the RF vector vs.
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Figure 3: OI-EGP inference on a synthetic
dataset. Shaded regions indicate 95% confi-
dence intervals.

Figure 4: OI-EGP regret in (38) on the syn-
thetic test.

where (a) follows from the triangle inequality; (b) makes use of (as2), which establishes the convexity and bounded
derivative of L(z; y) wrt z, and (c) results from the Cauchy-Schwarz inequality. Combining with (50), we find
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where C := max
s2S
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On the other hand, the uniform convergence bound in (50) and (as3) imply that
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which leads to
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Hence, combining (55), (53) and Lemma 1, it follows for any s 2 S that
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thus completing the proof of Theorem 1 upon setting s = s⇤.

Table 1: Statistics of the datasets

Datasets Tom’s hardware SARCOS Air Quality Twitter
T 9725 44484 7322 98704
d 96 21 12 77
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(a) (b)

(c) (d)

Figure 5: Predictive negative log-likelihood on (a) “Tom’s hardware;” (b) SARCOS; (c) “Air quality”; and, (d)
“Twitter” datasets.

C Additional real data tests

The statistics of the four datasets are summarized in Table 1. The nMSE performance and normalized running
times of the competing approaches on the “Twitter” dataset are depicted in Figs. 6 and 7.

To further demonstrate (D)OI-EGP’s uncertainty quantification performance, tests were conducted among GP-
based approaches regarding the predictive negative log-likelihood (pnLL) as pnLLt := � log p(yt|yt�1;Xt), which
is computable from (20). As illustrated in Fig. 5, (D)OI-EGP always outperform I-SSGPR; while they outperform
SSGP in SARCOS and air-quality datasets; they are comparable in the Twitter dataset; and perform inferior to
SSGP on the Tom’s hardware dataset, even though SSGP is two orders of magnitude slower than (D)OI-EGP.

D Synthetic tests

To assert the expected convergence characteristics, scalar input data {xt}30t=1 were randomly drawn from a normal
distribution, and outputs were generated as yt = sin(2xt) + sin(3xt) + ✏t, where ✏t ⇠ N (0, 0.01). The inferred
mean function as well as (approximate) 95% confidence intervals are shown in Fig. 3. As expected, regions
populated with training examples correspond to tighter confidence bands relative to unpopulated ones.

To validate the regret bound for OI-EGP (cf. (38)), datasets of increasing size T were generated from the
aforementioned synthetic model, albeit with xt ⇠ N (0, 100). It is evident from Fig. 4 that the regret can be
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Figure 6: nMSE performance on the “Twitter”
dataset. Notice the logarithmic scale.

Figure 7: Normalized running times on the
“Twitter” dataset. Notice the logarithmic
scale.
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Figure 8: Classification error on the “Banana”
dataset.
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Figure 9: Running time on the “Banana”
dataset. Notice the logarithmic scale.

upper bounded by O(log T ), as predicted by the theory.

E OI-EGP for Classification

Coupled with the logistic likelihood, our OI-EGP was tested for binary classification on the “Banana” dataset
with 2-dimensional features (d = 2). The performance of OI-EGP was also compared with AdaRaker (Shen et al.,
2019) and SSGP (Bui et al., 2017) in terms of classification error and running time. For OI-EGP and AdaRaker,
the value of D was set to 15, and the kernel dictionary consisted of radial basis functions with lengthscales
chosen from {10�2, . . . , 102}. As for SSGP, the ARD kernel was employed, the number of inducing points was
30, the batch size was chosen to be 200, and the first 1000 samples was used for model initialization. Targeting
a tractable classification algorithm, each expert s in OI-EGP relies on Gaussian (Laplace) approximation of the
posterior p(✓s|yt, s;Xt) (Rasmussen and Williams, 2006) to evaluate the integrals involved in (18)-(24) per slot
t.

The cumulative classification error and running time of the three competing approaches are plotted in Figs. 8–9.
While SSGP showcases the lowest classification error due to the more powerful ARD kernel, it is much more time-
consuming than the other two RF-based alternatives, among which our novel OI-EGP outperforms AdaRaker in
both classification error and running time.


