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Proofs
The main quantity of interest is the mean expected log pointwise predictive
density, which we want to use for model evaluation and comparison.

Definition 1 (elpd). The mean expected log pointwise predictive density for a
model p is defined as

elpd =

∫
pt(x) log p(x) dx

where pt(x) = p(x|θ0) is the true density at a new unseen observation x and
log p(x) is the log predictive density for observation x.

We estimate elpd using leave-one-out cross-validation (loo).

Definition 2 (Leave-one-out cross-validation). The loo estimator elpdloo is
given by

elpdloo =
1

n

n∑
i=1

πi, (1)

where πi = log p(yi|y−i) =
∫

log p(yi|θ)p(θ|y−i)dθ.

To estimate elpdloo in turn, we use difference estimator. Definitions follow.

Definition 3. Let π̃i be any approximation of πi. The difference estimator of
elpdloo based on π̃i is given by

êlpdloo,diff =
1

n

 n∑
i=1

π̃i +
n

m

∑
j∈S

(πj − π̃j)

 ,

where S is the subsample set, m is the subsampling size, and the probability of
subsampling observation i is 1/n, i.e. the subsample is uniform with replacement.
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One important estimator of πi among others is the importance sampling
estimator

log p̂(yi|y−i) = log

(
1
S

∑S
s=1 p(yi|θs)r(θs)
1
S

∑S
s=1 r(θs)

)
, (2)

where r(θ) is any suitable weight function such that 0 < r(θ) < ∞ for all
θ ∈ Θ and (θ1, . . . , θS) is a sample from a suitable approximation of the posterior
p(θ|y). We are in particular interested in the weight function

r(θs) =
p(θs|y−i)
p(θs|y)

p(θs|y)

q(θs|y)

∝ 1

p(yi|θs)
p(θs|y)

q(θs|y)
(3)

and where q(·|y) is an approximation of the posterior distribution that satisfies
for each y that q(θ|y) iff θ ∈ Θ , θs is a sample point from q and S is the total
posterior sample size. (The condition on q makes sure that 0 < r(θ) <∞ for all
θ.)

In the case of truncated importance sampling, we instead truncate these
weights and replace r with rτ given by

rτ (θs) = min(r(θs), τ) , (4)

where τ > 0 is the weight truncation [see Ionides, 2008, for a more elaborate
discussion on the choice of τ ].

Proof of Proposition 1

Proposition 1. The estimators êlpddiff and σ̂2
loo are unbiased with regard to

elpddiff and σ2
loo.

Proof. We start out by proving unbiasedness for the general estimator. Write
the difference estimator as

êlpdloo,diff =

n∑
i=1

π̃i +
n

m

n∑
i=1

∑
j∈S

Iij(πj − π̃j),

where Iij is the indicator that data point i is chosen as the j’th point of the
subsample. Since E[Iij ] = 1/n, the expectation of the double sum is

∑
i(πi − π̃i)

and E[êlpdloo,diff ] =
∑
i πi as desired.

Next we prove unbiasedess of σ̂2
loo,diff . We are interested in estimating the

finite sampling variance using the difference estimator. This can be done as
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σ2
loo =

1

n

n∑
i=1

(πi − π̄)2 (5)

=
1

n

n∑
i=1

π2
i︸ ︷︷ ︸

a

−

(
1

n

n∑
i=1

πi

)
︸ ︷︷ ︸

b

2

(6)

We can estimate a and b separately as follows. The first part can be estimated
using the difference estimator with π̃2

i as auxiliary variable. Let tε =
∑n
i εi =∑n

i π
2
i − π̃2

i = tπ2 − tπ̃2 , the we can estimate a as

â =
1

n
(tπ̃2 + t̂ε) ,

where
t̂ε =

n

m

∑
j∈S

(
π2
j − π̃2

j

)
.

From the previous section, it follows directly that

E(â) =
1

n
tπ2 =

1

n

n∑
i=1

π2
i ,

The second part, b, can then be estimated as

b̂ =
1

n2

[
t̂2e − v(t̂e) + 2tπ̃ t̂π − t2π̃

]
, (7)

with the expectation

E(b̂) =
1

n2

[
E(t̂2e)− E(v(t̂e)) + 2tπ̃E(t̂π)− t2π̃

]
(8)

=
1

n2

[
V (t̂e) + E(t̂e)

2 − V (t̂e) + 2tπ̃tπ − t2π̃
]

(9)

=
1

n2

[
t2e + 2tπ̃tπ − t2π̃

]
(10)

=
1

n2

[
(tπ − tπ̃)2 + 2tπ̃tπ − t2π̃

]
(11)

=
1

n2
t2π =

(
1

n

n∑
i

πi

)2

(12)

Using that

E(v(t̂e)) = n2
(

1− m

n

) E(s2
e)

m
= n2

(
1− m

n

) S2
e

m
= V (t̂e) . (13)
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Combining the results we have that

E(â− b̂) =
1

n

n∑
i=1

π2
i −

(
1

n

n∑
i=1

πi

)2

= σ2
loo . (14)

Remark. We believe this has probably been proven before, and hence this
is probably not a new theoretical result.

Proof of Proposition 2 and 3
The proof follows, in general, the proof of Magnusson et al. [2019]. A generic
Bayesian model is considered; a sample (y1, y2, . . . , yn), yi ∈ Y ⊆ R, is drawn
from a true density pt = p(·|θ0) for some true parameter θ0. The parameter θ0

is assumed to be drawn from a prior p(θ) on the parameter space Θ, which we
assume to be an open and bounded subset of Rd.

Several conditions are used. They are as follows.

(i) the likelihood p(y|θ) satisfies that there is a function C : Y → R+, such
that Ey∼pt [C(y)2] <∞ and such that for all θ1 and θ2, |p(y|θ1)−p(y|θ2)| ≤
C(y)p(y|θ2)‖θ1 − θ2‖.

(ii) p(y|θ) > 0 for all (y, θ) ∈ Y ×Θ,

(iii) There is a constant M <∞ such that p(y|θ) < M for all (y, θ),

(iv) all assumptions needed in the Bernstein-von Mises (BvM) Theorem [Walker,
1969],

(v) for all θ,
∫
Y(− log p(y|θ))p(y|θ)dy <∞.

Remarks.

• There are alternatives or relaxations to (i) that also work. One is to
assume that there is an α > 0 and C with Ey[C(y)2] < ∞ such that
|p(y|θ1) − p(y|θ2)| ≤ C(y)p(y|θ2)‖θ1 − θ2‖α. There are many examples
when (i) holds, e.g. when y is normal, Laplace distributed or Cauchy
distributed with θ as a one-dimensional location parameter.

• The assumption that Θ is bounded will be used solely to draw the conclusion
that Ey,θ‖θ − θ0‖ → 0 as n → ∞, where y is the sample and θ is either
distributed according to the true posterior (which is consistent by BvM)
or according to a consistent approximate posterior. The conclusion is valid
by the definition of consistency and the fact that the boundedness of Θ
makes ‖θ− θ0‖ a bounded function of θ. If it can be shown by other means
for special cases that Ey,θ‖θ − θ0‖ → 0 despite Θ being unbounded, then
our results also hold.
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Proposition 2. For any approximation π̃i that converges in L1 to πi, we have
that êlpdloo,diff converges in L1 to elpdloo.

Proof. For convenience we will write ê := êlpdloo,diff , which for our purposes is
more usefully expressed as

ê =
1

n

 n∑
i=1

log π̃i +
n

m

n∑
i=1

m∑
j=1

Iij(πi − π̃i)

 ,

where Iij is the indicator that sample point yi is chosen in draw j for the
subsample used in ê.

We then get, with respect to all randomness involved (i.e. the randomness in
generating y and the randomness in choosing the subsample in ê)

E|ê− elpdloo| ≤
1

n
E

 n∑
1

|π̃i − πi|+
n

m

n∑
i=1

m∑
j=1

Iij |πi − π̃i|


= E| log π̃i − πi|+

1

m

n∑
i=1

m∑
j=1

1

n
E|πi − π̃i|

= 2E|π̃i − πi|
→ 0.

Proposition 3. Let the subsampling size m and the number of posterior draws
S be fixed at arbitrary integer numbers, let the sample size n grow, assume that
(i)-(vi) hold and let q = qn(·|y) be any consistent approximate posterior. Write
θ̂q = arg max{q(θ) : θ ∈ Θ} and assume further that θ̂q is a consistent estimator
of θ0. Then

π̃i → πi

in L1 for any of the following choices of πi, i = 1, . . . , n.

(a) π̃i = log p(yi|y),

(b) π̃i = Ey[log p(yi|y)],

(c) π̃i = Eθ∼q[log p(yi|θ)],

(d) π̃i = log p(yi|Eθ∼q[θ]),

(e) π̃i = log p(yi|θ̂q).

(f) π̃i = log p(yi|y) + Vθ∼p(·|y)(log p(yi|θ)).

(g) π̃i = log p(yi|y) −∇ log p(yi|θ̂)TΣθ∇ log p(yi|θ̂) for any given fixed θ̂ and
where the covariance matrix is with respect to θ ∼ p(·|y).
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(h) π̃i = log p(yi|y)−∇ log p(yi|θ̂)TΣθ∇ log p(yi|θ̂)− 1
2 tr(Hθ̂ΣθHθ̂)Σθ) for any

given fixed θ̂ and where the covariance matrix is as in (g)

(i) π̃i = log p(yi|θ̂q)−∇ log p(yi|θ̂)TΣθ∇ log p(yi|θ̂) for any given fixed θ̂ and
where the covariance matrix is as in (g)

(j) π̃i = log p(yi|y)−∇ log p(yi|θ̂)TΣθ∇ log p(yi|θ̂)− 1
2 tr(Hθ̂ΣθHθ̂)Σθ) for any

given fixed θ̂ and where the covariance matrix is as in (g)

(k) π̃i = log p̂(yi|y−i) as defined in (2) for any weight function r such that
r(θ) > 0 for all θ ∈ Θ.

Note. Part (k) holds in particular for the weight functions (3) and (4).

Remark. By the variational BvM Theorems of Wang and Blei [2019], q can
be taken to be either qLap, qMF or qFR, i.e. the approximate posteriors of the
Laplace, mean-field or full-rank variational families respectively in Proposition
3, provided that one adopts the mild conditions in their paper.

The proof of Proposition 3 will be focused on proving (a) and then (b)-(e)
will follow easily and (f)-(l) with only a few simple observations on the posterior
variance of θ. Note that parts (a)-(e) are contained in Magnusson et al. [2019]
and the proof of them is identical to that. Proposition 3 follows immediately
from the following lemma.

Lemma 4. With all quantities as defined above,

Ey∼pt |πi − log p(yi|θ0)| → 0, (15)

with any of the definitions (a)-(e) of πi of Proposition 3. Furthermore,

Ey∼pt | log p(yi|y−i)− log p(yi|θ0)| → 0, (16)

as n→∞.

Proof. To avoid burdening the notation unnecessarily, we write throughout the
proof Ey for Ey∼pt . For now, we also write Eθ as shorthand for Eθ∼p(·|y−i).
Recall that x+ = max(x, 0) = ReLU(x).

Hence

Ey

[(
log

p(yi|y−i)
p(yi|θ0)

)
+

]
= Ey

[(
log

Eθ[p(yi|θ)]
p(yi|θ0)

)
+

]

≤ Ey
[
log

(
1 +

Eθ [C(yi)p(yi|θ0)‖θ − θ0‖]
p(yi|θ0)

)]
≤ Ey,θ[C(yi)‖θ − θ0‖]

≤
(
Eyi [C(yi)

2]Ey,θ
[
‖θ − θ0‖2

])1/2
→ 0 as n→∞.
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Here the first inequality follows from condition (i) and the second inequality
from the fact that log(1 + x) < x for x ≥ 0. The third inequality is Schwarz
inequality. The limit conclusion follows from the consistency of the posterior
p(·|y−i) and the definition of weak convergence, since ‖θ − θ0‖2 is a continuous
bounded function of θ (recall that Θ is bounded) and that the first factor is
finite by condition (i).

For the reverse inequality,

Ey

[(
log

p(yi|θ0)

p(yi|y−i)

)
+

]
= Ey

[(
logEθ

[
p(yi|θ0)]

p(yi|θ)

])
+

]

≤ Ey
[
log

(
1 + Eθ

[
C(yi)p(yi|θ)‖θ − θ0‖

p(yi|θ)

])]
≤
(
Eyi [C(yi)

2]Ey,θ
[
‖θ − θ0‖2

])1/2
→ 0 as n→∞.

This proves (16) and an identical argument (now letting Eθ stand for Eθ∼p(·|y))
proves (15) for π̃i = p(yi|y).

For π̃i = −Ey[log p(yi|y)], note first that

Ey |Ey[log p(yi|y)]− Ey[log p(yi|y−i)]| = |Ey[log p(yi|y)− log p(yi|y−i)]|
≤ Ey |log p(yi|y)− log p(yi|y−i)]|

which goes to 0 by (16) and (a). Hence we can replace π̃i = −E[log p(yi|y)]
with π̃i = −E[log p(yi|y−i)] when proving (b). To that end, observe that

(Ey[log p(yi|y−i)]− log p(yi|θ0))+ =

(
Eyi

[
Ey−i

[
log

p(yi|y−i)
p(yi|θ0)

]])
+

≤ Ey

[(
log

p(yi|y−i)
p(yi|θ0)

)
+

]
.

where the inequality is Jensen’s inequality used twice on the convex function
x → x+. Now everything is identical to the proof of (16) and the reverse
inequality is analogous.

The other choices of π̃i follow along very similar lines. For π̃i = − log p(yi|θ̂q),
we have on mimicking the above that

Ey

(log
p(yi|θ̂q)
p(yi|θ0)

)
+

 ≤ (Eyi [C(yi)
2]Ey

[
‖θ̂q − θ0‖2

])1/2

and Ey[‖θ̂q− θ0‖2]→ 0 as n→∞ by the assumed consistency of θ̂q. The reverse
inequality is analogous and (15) for πi = p(yi|θ̂q) is established.

For the case π̃i = − log p(yi|Eθ∼qθ), the analogous analysis gives

Ey

[(
log

p(yi|Eθ∼qθ)
p(yi|θ0)

)
+

]
≤ Eyi [C(yi)

2]Ey[‖Eθ∼qθ − θ0‖2].

7



Since x → ‖x − θ0‖2 is convex, the second factor on the right hand side is
bounded by Ey,θ∼q[‖θ − θ0‖2] which goes to 0 by the consistency of q and the
boundedness of Θ. The reverse inequality is again analogous.

For π̃i = −Eθ∼q[log p(yi|θ)],

Ey
[
(Eθ∼q[log p(yi|θ)]− log p(yi|θ0))+

]
= Ey

[(
Eθ∼q

[
log

p(yi|θ)
p(yi|θ0)

])
+

]

≤ Ey,θ∼q

[(
log

p(yi|θ)
p(yi|θ0)

)
+

]
≤
(
Eyi [C(yi)

2]Ey,θ∼q[‖θ − θ0‖2]
)1/2 → 0

as n→∞ by the consistency of q. Here the first inequality is Jensen’s inequality
applied to x → x+ and the second inequality follows along the same lines as
before.

To prove (f) it suffices by the triangle inequality to prove that Ey[Vθ∼p(·|y)(log p(yi|θ))]→
0 as n→∞. This follows from

Ey
[
Eθ∼p(·|y)

[
(log p(yi|θ)− log p(yi|θ0))2

+

]]
≤ Ey,θ

[
log

(
1 +

C(yi)p(yi|θ)‖θ − θ0‖
p(yi|θ0)

)2
]

≤ Ey,θ[2C(yi)‖θ − θ0‖]
≤ 2Ey,θ[C(yi)

2]1/2Ey,θ[‖θ − θ0‖2]1/2 → 0.

To prove that Ey[Eθ∼p(·|y)

[
(log p(yi|θ0)− log p(yi|θ))2

+

]
→ 0 is analogous.

For (g) and (h) it suffices to observe that maxi,j |Cov(θ(i), θ(j))| → 0. How-
ever

|max
i,j

Cov(θ(i), θ(j))| = max
i
V (θ(j))

≤ max
i

E[|θ(i)− θ0(i)|2]

→ 0

where the final conclusion follows from the consistency of θ ∼ p(·|y) and the
boundedness of Θ. Hence (g) and (h) are established. Similarly (g2) and (h2)
follows from (g), (h) and (e).

For (k), write r′(θs) = r(θs)/
∑S
j=1 r(θj) for the random weights given to the

individual θs:s in the expression for p̂(yi|y−i). Then we have, with θ = (θ1, . . . , θS)
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chosen according to q,

Ey

[(
log

p̂(yi|y−i)
p(yi|θ0)

)
+

]
= Ey,θ

(log

∑S
s=1 r

′(θs)p(yi|θs)
p(yi|θ0)

)
+


≤ Ey,θ

[
log

(
1 +

∑S
s=1 r

′(θs)|p(yi|θs)− p(yi|θ0)|
p(yi|θ0)

)]

≤ Ey,θ

[
log

(
1 + C(yi)

S∑
s=1

r′(θs)‖θs − θ0‖

)]

≤ Ey,θ

[
log

(
1 + C(yi)

S∑
s=1

‖θs − θ0‖

)]

≤ Ey,θ

[
C(yi)

S∑
s=1

‖θs − θ0‖

]

≤

Eyi [C(yi)
2]Ey,θ

( S∑
s=1

‖θs − θ0‖

)2
1/2

,

where the second inequality is condition (i) and the limit conclusion follows
from the consistency of q. For the reverse inequality to go through analogously,
observe that

|p(yi|θ0)−
∑
s r
′(θs)p(yi|θs)|∑

s r
′(θs)p(yi|θs)

≤
∑
s r
′(θs)|p(yi|θs)− p(yi|θ0)|∑

s r
′(θs)p(yi|θs)

≤
∑
s r
′(θs)p(yi|θs)‖θs − θ0‖∑
s r
′(θs)p(yi|θs)

≤ max
s
‖θs − θ0‖

≤
∑
s

‖θs − θ0‖.

Equipped with this observation, mimic the above.

Reproducing results

The arsenic data
For the spline model comparison we use the rstanarm R package [Goodrich
et al., 2018] with the following R script.
#’ **Load data**
url <-

"http://stat.columbia.edu/~gelman/arm/examples/arsenic/wells.dat"
wells <- read.table(url)
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wells$dist100 <- with(wells , dist / 100)
wells$y <- wells$switch

#’ **Centering the input variables**
wells$c_dist100 <- wells$dist100 - mean(wells$dist100)
wells$c_arsenic <- wells$arsenic - mean(wells$arsenic)
wells$c_educ4 <- wells$educ/4 - mean(wells$educ/4)

#* **Latent linear model no interactions**
fit_1 <- stan_glm(y ~ c_dist100 + c_arsenic + c_educ4 ,

family = binomial(link="logit"),
data = wells ,
iter = 1500,
warmup = 1000,
chains = 4)

#* **Latent linear model**
fit_2 <- stan_glm(y ~ c_dist100 + c_arsenic + c_educ4 +

c_dist100:c_educ4 + c_arsenic:c_educ4 ,
family = binomial(link="logit"),
data = wells ,
iter = 1500,
warmup = 1000,
chains = 4)

#* **Latent GAM**
fit_3 <- stan_gamm4(y ~ s(dist100) + s(arsenic) + s(dist100 , c_educ4),

family = binomial(link="logit"),
data = wells ,
iter = 1500,
warmup = 1000,
chains = 4)

Generating data and fitting regularized horse-shoe and nor-
mal model

library(arm)
library(rstanarm)

n <- 1e6

set.seed (1656)
x <- rnorm(n)
xn <- matrix(rnorm(n*99),nrow=n)
a <- 2
b <- 3
sigma <- 10
y <- a + b*x + sigma*rnorm(n)
fake <- data.frame(x, xn, y)

fit1 <- stan_glm(y ~ ., data=fake ,
mean_PPD=FALSE ,
refresh=0,
seed=SEED ,
chains = 4,
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warmup = 1000,
iter = 1500)

fit2 <- stan_glm(y ~ ., prior=hs(), data=fake ,
mean_PPD=FALSE ,
refresh=0,
seed=SEED ,
chains = 4,
warmup = 1000,
iter = 1500)

Models

Stan Models
Bayesian linear regression (BLR)

data {
int <lower=0> N;
int <lower=0> D;
matrix [N, D] X;
vector [N] y;

}

parameters {
vector [D] beta;
real <lower=0> sigma;

}

model {
// prior
target += normal_lpdf(beta | 0, 10);
target += normal_lpdf(sigma | 0, 1);
// likelihood
target += normal_lpdf(y | X * beta , sigma );

}

Pooled model (1)

data {
int <lower=0> N;
vector[N] floor_measure;
vector[N] log_radon;

}

parameters {
real alpha;
real beta;
real <lower=0> sigma_y;

}

model {
vector[N] mu;

// priors
sigma_y ~ normal(0, 1);
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alpha ~ normal(0, 10);
beta ~ normal(0, 10);

// likelihood
mu = alpha + beta * floor_measure;
for(n in 1:N){

target += normal_lpdf(log_radon[n]| mu[n], sigma_y );
}

}

Partially pooled model (2)

data {
int <lower=0> N;
int <lower=0> J;
int <lower=1,upper=J> county_idx[N];
vector[N] log_radon;

}
parameters {

vector[J] alpha_raw;
real mu_alpha;
real <lower=0> sigma_alpha;
real <lower=0> sigma_y;

}

transformed parameters {
vector[J] alpha;
// implies: alpha ~ normal(mu_alpha , sigma_alpha );
alpha = mu_alpha + sigma_alpha * alpha_raw;

}

model {
vector[N] mu;

// priors
sigma_y ~ normal (0,1);
sigma_alpha ~ normal (0 ,1);
mu_alpha ~ normal (0 ,10);
alpha_raw ~ normal(0, 1);

// likelihood
for(n in 1:N){

mu[n] = alpha[county_idx[n]];
target += normal_lpdf(log_radon[n] | mu[n], sigma_y );

}
}

No pooled model (3)

data {
int <lower=0> N;
int <lower=0> J;
int <lower=1,upper=J> county_idx[N];
vector[N] floor_measure;
vector[N] log_radon;

}
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parameters {
vector[J] alpha;
real beta;
real <lower=0> sigma_y;

}

model {
vector[N] mu;
// Prior
sigma_y ~ normal(0, 1);
alpha ~ normal(0, 10);
beta ~ normal(0, 10);

// Likelihood
for(n in 1:N){

mu[n] = alpha[county_idx[n]] + beta * floor_measure[n];
target += normal_lpdf(log_radon[n] | mu[n], sigma_y );

}
}

Variable intercept model (4)

data {
int <lower=0> J;
int <lower=0> N;
int <lower=1,upper=J> county_idx[N];
vector[N] floor_measure;
vector[N] log_radon;

}
parameters {

vector[J] alpha_raw;
real beta;
real mu_alpha;
real <lower=0> sigma_alpha;
real <lower=0> sigma_y;

}

transformed parameters {
vector[J] alpha;
// implies: alpha ~ normal(mu_alpha , sigma_alpha );
alpha = mu_alpha + sigma_alpha * alpha_raw;

}

model {
vector[N] mu;

// Prior
sigma_y ~ normal (0,1);
sigma_alpha ~ normal (0 ,1);
mu_alpha ~ normal (0 ,10);
beta ~ normal (0 ,10);
alpha_raw ~ normal(0, 1);

for(n in 1:N){
mu[n] = alpha[county_idx[n]] + floor_measure[n]*beta;
target += normal_lpdf(log_radon[n]|mu[n],sigma_y );

}
}
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Variable slope model (5)

data {
int <lower=0> J;
int <lower=0> N;
int <lower=1,upper=J> county_idx[N];
vector[N] floor_measure;
vector[N] log_radon;

}

parameters {
real alpha;
vector[J] beta_raw;
real mu_beta;
real <lower=0> sigma_beta;
real <lower=0> sigma_y;

}

transformed parameters {
vector[J] beta;
// implies: beta ~ normal(mu_beta , sigma_beta );
beta = mu_beta + sigma_beta * beta_raw;

}

model {
vector[N] mu;
// Prior
alpha ~ normal (0 ,10);
sigma_y ~ normal (0,1);
sigma_beta ~ normal (0,1);
mu_beta ~ normal (0 ,10);
beta_raw ~ normal(0, 1);

for(n in 1:N){
mu[n] = alpha + floor_measure[n] * beta[county_idx[n]];
target += normal_lpdf(log_radon[n]|mu[n],sigma_y );

}
}

Variable intercept and slope model (6)

data {
int <lower=0> N;
int <lower=0> J;
int <lower=1,upper=J> county_idx[N];
vector[N] floor_measure;
vector[N] log_radon;

}

parameters {
real <lower=0> sigma_y;
real <lower=0> sigma_alpha;
real <lower=0> sigma_beta;
vector[J] alpha_raw;
vector[J] beta_raw;
real mu_alpha;
real mu_beta;
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}
transformed parameters {

vector[J] alpha;
vector[J] beta;
// implies: alpha ~ normal(mu_alpha , sigma_alpha );
alpha = mu_alpha + sigma_alpha * alpha_raw;
// implies: beta ~ normal(mu_beta , sigma_beta );
beta = mu_beta + sigma_beta * beta_raw;

}

model {
vector[N] mu;
// Prior
sigma_y ~ normal (0,1);
sigma_beta ~ normal (0,1);
sigma_alpha ~ normal (0 ,1);
mu_alpha ~ normal (0 ,10);
mu_beta ~ normal (0 ,10);
alpha_raw ~ normal(0, 1);
beta_raw ~ normal(0, 1);

// Likelihood
for(n in 1:N){

mu[n] = alpha[county_idx[n]] + floor_measure[n] * beta[county_idx[n]];
target += normal_lpdf(log_radon[n] | mu[n], sigma_y );

}
}
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