
Maryam Majzoubi, Anna Choromanska

Logarithm-depth Streaming Multi-label Decision Trees
(Supplementary material)

Abstract

This Supplement presents additional details in support of the full article. These include the proofs of the theoretical
statements from the main body of the paper and additional theoretical results. We also provide additional
algorithm’s pseudo-codes. The Supplement also contains the description of the experimental setup, and additional
experiments and figures to provide further empirical support for the proposed methodology.

7 ADDITIONAL THEORETICAL RESULTS

Next lemma shows that in isolation, when the purity of the split is perfect, decreasing the value of the objective leads to
recovering more balanced splits.

Lemma 6. If a node split is perfectly pure, then
β ≤ J − J∗. (6)

Next lemma shows that in isolation, when the balancedness of the split is perfect, decreasing the value of the objective leads
to recovering more pure splits.

Lemma 7. If a node split is perfectly balanced and assuming that the following condition holds: λ1(M−1) ≥ λ2 ≥ λ1M−12 ,
then

α ≤ (J + λ2)
2

M(2λ2 − λ1(M − 1))
. (7)

Below we provide a new assumption and corresponding theorem that generalizes Theorem 2, by removing the balancedness
assumption.

Assumption 7.1. γ-Weak Hypothesis Assumption: for any distribution P over the data, at each node of the tree T there
exist a partition such that

∑
i πi

∣∣∣P iRPR − P iL
PL

∣∣∣ ≥ γ, where γ ∈ (0, 1].

Theorem 3. Under the Weak Hypothesis Assumptions 7.1 and 3.2 for any α ∈ [0, 1] to obtain er(T) ≤ α it suffices to have

a tree with t internal nodes that satisfy (t+ 1) ≥ (1
α)

16 lnK
cr2γ2(1−b) log2(e) , where b = |PR + PL − 1|.

Below we consider the weak hypothesis assumption that generalizes the Assumption 3.1 to the M -ary case and prove
corresponding lemma that generalizes Lemma 5.

Assumption 7.2 (Generalization of Assumption 3.1). γ-Weak Hypothesis Assumption: for any distribution P over the data,
at each node n of the tree T there exist a partition such that

∑K
i=1

∑M
j=1

∑M
l=1 πi

∣∣P ij − P il ∣∣ ≥ γ, where γ ∈ (0, 1].

Lemma 8 (Generalization of Lemma 5). Under the Weak Hypothesis Assumption 7.2, the er(T) is monotonically decreasing
with every split of the tree.

7.1 Relation of the Objective to Shannon Entropy and Error Bound (Binary Tree Case)

In this section we first show the relation of the objective J to a classical decision-tree criterion, Shannon entropy, and
specifically we demonstrate that minimizing the objective leads to the reduction of this criterion. We restrict ourselves to the
case of binary tree. We omit the analysis for the M -ary to avoid over-complicating the notation. The entropy of tree leaves
in the case when examples can be sent to multiple directions can be calculated as:

G =
∑
L̃⊂L

wL̃

K∑
i=1

ρL̃i ln(
1

ρL̃i
) (8)

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

,where L is the set of all tree leaves, L̃ is a subset of the leaves (the summation is taken over all the possible subsets), ρL̃i
is the probability that example with label i reaches all the leaves in L̃, and wL̃ is the weight of subset of leaves. This
weight is defined as the probability that a randomly chosen point from distribution P reaches all leaves in L̃. Also note that∑
L̃⊂L wL̃ = 1 and wL̃=∅ = 0.

Theorem 4. Under the Weak Hypothesis Assumptions 3.1 and 3.2, and an additional assumption that each node produces
perfectly balanced split, for any κ ∈ [0, lnK] to obtain Get ≤ κ it suffices to have a tree with t internal nodes that satisfy

(t+ 1) ≥ (
G1

κ
)

16 lnK
cr2γ2(1−b) log2(e) ,

where b = |PR + PL − 1|.

8 THEORETICAL PROOFS

Proof of Lemma 1. We rewrite the objective using the total law of probability:

J =

∣∣∣∣∣
K∑
i=1

πi(P
i
R − P iL)

∣∣∣∣∣− λ1
K∑
i=1

πi
∣∣P iR − P iL∣∣+ λ2

∣∣∣∣∣
K∑
i=1

πi(P
i
R + P iL)− 1

∣∣∣∣∣ , (9)

where P iR, P
i
L ∈ [0, 1] for all i = 1, 2, . . . ,K. The objective admits optimum on the extremes of the [0, 1] interval.

Therefore, we define the following:

L1 = {i : i ∈ {1, . . . ,K}, P iR = 1 & P iL = 1}, L2 = {i : i ∈ {1, . . . ,K}, P iR = 0 & P iL = 0}, (10)

L3 = {i : i ∈ {1, . . . ,K}, P iR = 1 & P iL = 0}, L4 = {i : i ∈ {1, . . . ,K}, P iR = 0 & P iL = 1} (11)

By substituting the above in the objective we have:

J =

∣∣∣∣∣∑
i∈L3

πi −
∑
i∈L4

πi

∣∣∣∣∣− λ1 ∑
i∈(L3∪L4)

πi + λ2

∣∣∣∣∣∣
∑

i∈(L3∪L4)

πi +
∑
i∈L1

2πi − 1

∣∣∣∣∣∣ . (12)

We send each example either to the right, left or both directions:∑
i∈(L1∪L3∪L4)

πi =
∑
i∈L1

πi +
∑
i∈L3

πi +
∑
i∈L4

πi = 1. (13)

Thus we can further write

J =

∣∣∣∣∣1−∑
i∈L1

πi − 2
∑
i∈L4

πi

∣∣∣∣∣− λ1(1−
∑
i∈L1

πi) + λ2
∑
i∈L1

πi. (14)

For ease of notation, we define a :=
∑
i∈L4

πi, a′ :=
∑
i∈L3

πi, and b :=
∑
i∈L1

πi. Therefore

J = |1− b− 2a| − λ1(1− b) + λ2b = |b+ 2a′ − 1| − λ1(1− b) + λ2b, (15)

where a, b ∈ [0, 1]. Since we are interested in bounding J , we consider the values of a and b at the extremes of [0, 1] interval:

if a = 1 then b = 0 → J = 1− λ1, if b = 1 then a = 0 → J = λ2 (16)

if a = 0 then
{ b = 0 (a′ = 1) → J = 1− λ1
b = 1 → J = λ2

(17)

if b = 0 then

{ a = 0 (a′ = 1) → J = 1− λ1
a = 1 → J = 1− λ1
a = 0.5 → J = −λ1

(18)

Maryam Majzoubi, Anna Choromanska

Therefore J ∈ [−λ1, λ2].
Next, we show that the perfectly balanced and pure split is attained at the minimum of the objective. The perfectly balanced
split is achieved when PR = PL and then the balancing term in the objective becomes zero. The perfectly pure split is
achieved when the class integrity term in the objective satisfies

∑K
i=1 πi

∣∣P iR − P iL∣∣ =
∑K
i=1 πi = 1. Simultaneously, the

following holds
∑K
i=1 πi(P

i
R +P iL) = 1, and therefore the multi-way penalty is zero as well. Thus, J = 0−λ1 + 0 = −λ1.

In order to prove the opposite direction of the claim, recall that the minimum of the objective occurs for b = 0 and a = 0.5.
Since a+ a′ + b = 1, therefore a′ = 0.5. This corresponds to the perfectly pure and balanced split.

Proof of Lemma 2. P ij ∈ [0, 1] for all i = 1, 2, . . . ,K and j = 1, 2, . . . ,M . The objective admits optimum on the extremes
of the [0, 1] interval. In the following proof we consider a different approach than in the proof of Lemma 1. In order to
get the minimum of the objective, we try to minimize each of its terms separately and on the top of that incorporate their
correlations. For now, we assume that the first term, the balancing term, is minimized and therefore is equal to zero. We
define case Cn as the scenario when for any i = 1, 2, . . . ,K, P ij = 1 for n “directions” (n ≤M), i.e. n distinct js such
that j ∈ {1, 2, . . . , M}, and P ij = 0 for the remaining j’s. The class integrity and multi-way penalty terms can then be
derived as follows:

Jclass integrity term|Cn = λ1

K∑
i=1

M∑
j=1

M∑
l=j+1

πi
∣∣P ij − P il ∣∣ = n(M − n), (19)

Jmulti-way penalty term|Cn = λ2

 M∑
j=1

Pj

− 1 = n− 1. (20)

Therefore, the objective value would then become: J = −λ1n(M − n) + λ2(n− 1). We aim to have the minimum of the
objective for perfectly pure split. The perfectly pure split is achieved when case C1 holds. Therefore, we need:

− λ1(M − 1) < −λ1n(M − n) + λ2(n− 1) for n ∈ {2, . . . ,M}. (21)

The lower-bound of the right side is achieved for n = 2:

− λ1(M − 1) < −λ12(M − 2) + λ2 → M − 3 <
λ2
λ1
. (22)

With the above condition, the minimum of the objective is equal to −λ1(M − 1). Note that our first assumption on the
balancing term can still hold for all Cn cases. Therefore, we have shown that the minimum of the objective corresponds to
the perfectly pure and balanced split.
In order to get the upper-bound for J , we first show that Jbalancing term ≤ Jclass integrity term as follows:

Jbalancing term =

M∑
j=1

M∑
l=j+1

|Pj − Pl| =
M∑
j=1

M∑
l=j+1

∣∣∣∣∣
K∑
i=1

πi(P
i
j − P il)

∣∣∣∣∣ (23)

≤
M∑
j=1

M∑
l=j+1

K∑
i=1

πi
∣∣P ij − P il ∣∣ = Jclass integrity term. (24)

Therefore, the maximum of the summation of the terms is achieved when Jbalancing term = Jclass integrity term. The maximum
of the multi-way penalty term is attained when sending all examples to every direction, resulting in Jmulti-way penalty term =
(M − 1). In this case, Jbalancing term = Jclass integrity term = 0, and thus, J = λ2(M − 1). Hence, we have J ∈ [−λ1(M −
1), λ2(M − 1)].

Proof of Lemma 6. The perfectly pure split is attained when P ij = 1 for only one value of j, and P ij = 0 for the remaining
j’s. This leads the class integrity term to satisfy

∑M
j=1

∑M
l=j+1

∑K
i=1 πi

∣∣P ij − P il ∣∣ = (M − 1) and the multi-way penalty

term to satisfy
∑k
i=1 πi

∑M
j=1 P

i
j − 1 = 0. Thus we have:

J − J∗ =

M∑
j=1

M∑
l=j+1

|Pj − Pl| (25)

=

M∑
j=1

M∑
l=j+1

∣∣∣∣∣
(
Pj −

∑M
i=1 Pi
M

)
−

(
Pl −

∑M
i=1 Pi
M

)∣∣∣∣∣ . (26)

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Let j∗ = argmaxj∈{1,2,...,M}|Pj −
∑M
i=1 Pi
M |. Without loss of generality assume Pj∗ −

∑M
i=1 Pi
M ≥ 0 and in that case there

exists an l∗ such that Pl∗ −
∑M
i=1 Pi
M ≤ 0. Therefore we have:

J − J∗ ≥

∣∣∣∣∣
(
Pj∗ −

∑M
i=1 Pi
M

)
−

(
Pl∗ −

∑M
i=1 Pi
M

)∣∣∣∣∣ (27)

≥

∣∣∣∣∣(Pj∗ −
∑M
i=1 pi
M

)

∣∣∣∣∣ = β. (28)

Proof of Lemma 3. Consider a split with a fixed purity factor α. Jαpurity denotes the sum of the class integrity and multi-way
penalty terms of the objective function. When subtracting them from the total value of the objective at node n we obtain the
balancing term. Thus we have:

J − Jαpurity =

M∑
j=1

M∑
l=j+1

|Pj − Pl| (29)

=

M∑
j=1

M∑
l=j+1

∣∣∣∣∣
(
Pj −

∑M
i=1 Pi
M

)
−

(
Pl −

∑M
i=1 Pi
M

)∣∣∣∣∣ . (30)

Let j∗ = argmaxj∈{1,2,...,M}|Pj −
∑M
i=1 Pi
M |. Without loss of generality assume Pj∗ −

∑M
i=1 Pi
M ≥ 0 and in that case there

exists an l∗ such that Pl∗ −
∑M
i=1 Pi
M ≤ 0. Therefore we have:

J − Jαpurity ≥

∣∣∣∣∣
(
Pj∗ −

∑M
i=1 Pi
M

)
−

(
Pl∗ −

∑M
i=1 Pi
M

)∣∣∣∣∣ (31)

≥

∣∣∣∣∣(Pj∗ −
∑M
i=1 pi
M

)

∣∣∣∣∣ = β. (32)

Proof of Lemma 7. The perfectly balanced split is attained when P1 = P2 = ... = PM . This zeros out the balancing term
in the objective function. Hence:

J = −λ1
K∑
i=1

M∑
j=1

M∑
l=j+1

πi
∣∣P ij − P il ∣∣+ λ2

 M∑
j=1

Pj − 1

 (33)

= −λ1
K∑
i=1

M∑
j=1

M∑
l=j+1

πi
∣∣P ij − P il ∣∣+ λ2

 K∑
i=1

M∑
j=1

πiP
i
j − 1

 (34)

≥ −λ1
M − 1

2

K∑
i=1

M∑
j=1

πiP
i
j + λ2

 K∑
i=1

M∑
j=1

πiP
i
j − 1

 . (35)

Thus we have:

J + λ2 ≥
(
λ2 − λ1

M − 1

2

) K∑
i=1

M∑
j=1

πiP
i
j (36)

≥
(
λ2 − λ1

M − 1

2

) K∑
i=1

M∑
j=1

πi min(P ij ,

M∑
l=1

P il − P ij) (37)

≥
(
λ2 − λ1

M − 1

2

)
Mα. (38)

Maryam Majzoubi, Anna Choromanska

Proof of Lemma 4. Consider a split with a fixed balancedness factor β. Jβbalance denotes the balancing term of the objective
function. When subtracting it from the total value of the objective at node n we will obtain the sum of the class integrity and
multi-way penalty terms. Hence:

J − Jβbalance = −λ1
K∑
i=1

M∑
j=1

M∑
l=j+1

πi
∣∣P ij − P il ∣∣+ λ2

 M∑
j=1

Pj − 1

 (39)

= −λ1
K∑
i=1

M∑
j=1

M∑
l=j+1

πi
∣∣P ij − P il ∣∣+ λ2

 K∑
i=1

M∑
j=1

πiP
i
j − 1

 (40)

≥ −λ1
M − 1

2

K∑
i=1

M∑
j=1

πiP
i
j + λ2

 K∑
i=1

M∑
j=1

πiP
i
j − 1

 . (41)

Thus we have:

J − Jβbalance + λ2 ≥
(
λ2 − λ1

M − 1

2

) K∑
i=1

M∑
j=1

πiP
i
j (42)

≥
(
λ2 − λ1

M − 1

2

) K∑
i=1

M∑
j=1

πi min(P ij ,

M∑
l=1

P il − P ij) (43)

≥
(
λ2 − λ1

M − 1

2

)
Mα. (44)

Proof of Theorem 4. In our algorithm, we recursively find the leaf node with the heaviest weight and decide to partition
it to two children. Suppose, after t splits the leaf node n has the highest weight, namely wn, which will be denoted
with w for brevity. This weight is defined as the probability that a randomly chosen data point x drawn from a fixed
distribution P reaches the leaf. Let wR only and wL only be the weight of examples reaching only to the right and left child
of node n, and wboth be the weight of examples reaching to both children. Also let Pboth = |PR + PL − 1|. Note that
wR only = wPR only = w(PR − Pboth) and wL only = wPL only = w(PL − Pboth). Let ρρρ be a vector with K elements,
which its ith element is ρi. Furthermore, let ρρρR, and ρρρL be K-element vectors with ρi,R and ρi,L at its ith entry. Note that

ρi,R =
ρiP

i
R

PR
, and ρi,L =

ρiP
i
L

PL
. Before the node partition the contribution of node n to the total entropy-based objective is

wG̃(ρρρ). After the split this contribution will bewR onlyG̃(ρρρR)+wL onlyG̃(ρρρL)+wbothG̃(ρρρ) (Note that for the examples being
sent to both directions we average the histograms of the left and right children. Also note that (wR only+wR only+wboth) = 1)
Therefore, we have:

∆t := Gt −Gt+1 = w[G̃(ρρρ)− PR onlyG̃(ρρρR)− PL onlyG̃(ρρρL)− PbothG̃(ρρρ)] (45)

= w[G̃(ρρρ)− (PR − Pboth)G̃(ρρρR)− (PL − Pboth)G̃(ρρρL)− PbothG̃(ρρρ)]. (46)

Recall that the Shannon entropy is strongly concave with respect to l1-norm (see Shalev-Shwartz, 2012, Example 2.5), and
ρρρ = (PR− 1

2Pboth)ρρρR + (PL− 1
2Pboth)ρρρL, where Pboth = PR +PL− 1. Without loss of generality assume PR = PL + η.

Hence we re-write ∆t as follows:

∆t = w[(1− Pboth)G̃(ρρρ)− (
1 + η − Pboth

2
)G̃(ρρρR)− (

1− η − Pboth
2

)G̃(ρρρL)] (47)

= w(1− Pboth)[G̃(ρρρ)− (
1 + η − Pboth
2(1− Pboth)

)G̃(ρρρR)− (
1− η − Pboth
2(1− Pboth)

)G̃(ρρρL)]. (48)

(49)

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

We can then use the result from Theorem 2.1.9 in Nestrov (2004):

∆t ≥ w(1− Pboth)

[
1

8
||ρρρR − ρρρL||21

]
(50)

= w(1− Pboth)r2
[

1

8
||πππR − πππL||21

]
(51)

= w(1− Pboth)r2

1

8

(
K∑
i=1

∣∣∣∣πiP iRPR
− ρiP

i
L

PL

∣∣∣∣
)2
 . (52)

Here we use the assumption that we have a balance split, i.e. PR = PL, therefore we continue as follows:

= w(1− Pboth)
r2

8P 2
R

(
K∑
i=1

πi|P iR − P iL|

)2

(53)

≥ w(1− Pboth)
r2

8

(
K∑
i=1

πi|P iR − P iL|

)2

. (54)

Now by applying the WHA 3.2:

∆t ≥ w(1− b)r
2

8
γ2. (55)

Note that by WHA 3.2 b ∈ [0, 1). Also note that w ≥ Gtc
(t+1) lnK . This comes from the fact that at each step we choose

the leaf node with maximum weight. Hence with WHA2, w = maxl∈L wl ≥ c
(t+1) . Also note that uniform distribution

maximizes the entropy, i.e. Gt ≤ lnK. Accordingly we have:

∆t ≥
Gtc

(t+ 1) lnK
[
r2

8
γ2(1− b)]. (56)

By letting η = 1
2

√
cr2γ2(1−b)

2 lnK , we have ∆t ≥ η2Gt
(t+1) . Thus, we have the following recursion inequality:

Gt+1 ≤ Gt −∆t ≤ Gt −
η2Gt

(t+ 1)
= Gt[1−

η2

(t+ 1)
]. (57)

Then by applying the same proof technique as in Kearns and Mansour (1999) we get the following relationship:

Gt+1 ≤ G1e
−η2 log2(t+1)/2. (58)

Therefore, to reduce Gt+1 ≤ κ it suffices to have (t+1) splits such that log2(t+ 1) ≥ ln(G1

κ)
2
η2 . Substituting log2(t+ 1) =

ln(t+ 1) log2(e) results in:

ln(t+ 1) ≥ ln(
G1

κ
)

2
η2 log2(e) ⇔ (t+ 1) ≥ (

G1

κ
)

2
η2 log2(e) . (59)

We next proceed to the proof of Theorem 2.

Proof of Theorem 2. This proof follows the proof of the Theorem 4. Below we directly calculate the error bound. Recall
wL̃ to be the probability that a data point x reached the subset of leaves L̃. Recall that ρL̃i is the probability that the data
point x has label i given that x reached L̃, i.e. ρL̃i = P (i ∈ t(x)|x reached L̃). Note that each example has r labels, and
let’s assume we assign first majority r labels from the ρL̃i histogram to any example reaching L̃, i.e. yr(x) = {j1, j2, ..., jr},

Maryam Majzoubi, Anna Choromanska

where j1 = argmaxk∈{1,2,...,K}(ρ
L̃
k), j2 = argmaxk∈{1,2,...,K}\j1(ρL̃k),..., jr = argmaxk∈{1,2,...,K}\{j1,...,jr−1}(ρ

L̃
k). We

then expand the r-level multi-label error as follows:

εr(T) =
1

r

K∑
i=1

P (i ∈ yr(x), i /∈ t(x)) (60)

=
1

r

K∑
i=1

P (i ∈ t(x), i /∈ yr(x)) (61)

=
1

r

∑
L̃∈L

wL̃

K∑
i=1

P (i∈ t(x), i /∈yr(x)|x reached L̃) (62)

=
1

r

∑
L̃∈L

wL̃

K∑
i=1

i 6=j1,...,jR

P (i ∈ t(x)|x reached L̃) (63)

=
1

r

∑
L̃∈L

wL̃

(
K∑
i=1

ρL̃i − max
k∈{1,2,...,K}

ρL̃k − max
k∈{1,2,...,K}\j1

ρL̃k (64)

− max
k∈{1,2,...,K}\{j1,j2}

ρL̃k − · · · − max
k∈{1,2,...,K}\{j1,j2,...,jr−1}

ρL̃k

)
,

where wL̃ denote the probability that example x reaches L̃ and L denote the set of all leaves of the tree.

Next we will find the Shannon entropy bound with respect to the error and show that the entropy of the tree, denoted as
G(T), upper-bounds the error. Note that:

G(T) =
∑
L̃∈L

wL̃

K∑
i=1

ρL̃i ln

(
1

ρL̃i

)
≥

∑
l∈L

wL̃

K∑
i=1

i6=j1,...,jr

ρL̃i ln

(
1

ρL̃i

)
. (65)

Note that
∑K
i=1 ρ

L̃
i = r. Thus for any i = 1, 2, . . . ,K such that i 6= j1, ..., jr it must hold that ρL̃i ≤ 1

2 . We continue as
follows

G(T)≥
∑
L̃∈L

wL̃

K∑
i=1

i 6=j1,...,jr

ρL̃i ln(2) (66)

≥ ln(2)
∑
L̃∈L

wL̃

(
K∑
i=1

ρL̃i − max
k∈{1,2,...,K}

ρL̃k − max
k∈{1,2,...,K}\j1

ρL̃k − max
k∈{1,2,...,K}\{j1,j2}

ρlk

− · · · − max
k∈{1,2,...,K}\{j1,j2,...,jr−1}

ρL̃k

)
= ln(2)rεr(T) ≥ εr(T), (67)

where the last inequality comes from the fact that r ≥ 1/ ln(2). Now recall that G1 ≤ lnK and normalizing κ in Theorem
4 finishes the proof.

Proof of Theorem 3. The proof follows the same steps as Theorem 4 until Equation 52. Applying WHA 7.1 at this point
will result in the same result as in Equation 55. The rest of the proof would be the same as Theorems 4 and 2.

Proof of Theorem 1. Since we assume the objective is minimized in every node of the tree, therefore each node is sending
examples to only one of its children and consequently each example descends to only one leaf. Thus in any leaf l, we store
label histograms and assign first r labels from the histogram to any example reaching that leaf, i.e. y(x) = {j1, j2, ..., jr},
where j1 = argmaxk∈{1,2,...,K}ρ

l
k, j2 = argmaxk∈{1,2,...,K}\j1(ρlk),..., jr = argmaxk∈{1,2,...,K}\{j1,...,jr−1}(ρ

l
k) and ρli is

the probability that the data point x has label i given that x has reached leaf l, i.e. ρli = P (i ∈ t(x)|x reached l).

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

We next expand the r-level multi-label error as follows:

εr(T) =
1

r

K∑
i=1

P (i ∈ yr(x), i /∈ t(x)) (68)

=
1

r

K∑
i=1

P (i ∈ t(x), i /∈ yr(x)) (69)

=
1

r

∑
l∈L

w(l)

K∑
i=1

P (i∈ t(x), i /∈yr(x)|x reached l) (70)

=
1

r

∑
l∈L

w(l)

K∑
i=1

i 6=j1,...,jr

P (i ∈ t(x)|x reached l) (71)

=
1

r

∑
l∈L

w(l)

(
K∑
i=1

ρ
(l)
i − max

k∈{1,2,...,K}
ρlk − max

k∈{1,2,...,K}\j1
ρlk (72)

− max
k∈{1,2,...,K}\{j1,j2}

ρlk − · · · − max
k∈{1,2,...,K}\{j1,j2,...,jr−1}

ρlk

)
,

where w(l) denote the probability that example x reaches leaf l and L denote the set of all leaves of the tree.

From Lemma 1 (for binary tree) and Lemma 2 (for M-ary tree) it follows that for any node in the tree, the corresponding split
is balanced and the following holds: |P ij − P ij′ | = 1 for all labels i = 1, 2, . . . ,K and all pairs of children nodes (j, j

′
) of

the considered node such that j, j
′ ∈ {1, 2, . . . ,M} and j 6= j

′
. Thus when splitting any node, its label histogram is divided

in such a way that its children have non-overlapping label histograms, i.e. ∀i=1,2,...,K∀j,j′∈{1,2,...,M},j 6=j′ρ
(j)
i ρ

(j
′
)

i = 0,

where ρ(j)i and ρ(j
′
)

i denote the ith entry in the normalized label histograms of children nodes j and j
′

respectively. After
logM (K/r) splits we obtain leaves with non-overlapping histograms, i.e. for any two leaves l1 and l2 such that l1, l2 ∈ L
and l1 6= l2, ∀i=1,2,...,Kρ

(l1)
i · ρ(l2)i = 0. In each leaf the label histogram contains r non-zero entries. Based on the above it

follows that G(T) = 0. Consequently, using Equation 67 we obtain that the multi-label error εr(T) is equal to zero as well.
This directly implies that εr̂(T) = 0 for any r̂ = 1, 2, . . . , r.

Proof of Lemma 8 (Proof of Lemma 5 follows directly as Lemma 5 is a special case of Lemma 8). In our algorithm we
store label histograms for each node, and at testing we assign to an example top r labels obtained from averaging
the histograms of the leaves to which this example has descended to. At training, we recursively find the node with the
highest priority and partition it to two children. Here we are examining the change of error with one node split. We
consider examples reaching that node and without loss of generality we assume they have reached only this node. For each
such example x we assign the top r labels from the histogram of the analyzed node, i.e. yr(x) = {k1, k2, ..., kr}, where
k1 = argmaxk∈{1,2,...,K}ρk, k2 = argmaxk∈{1,2,...,K}\j1(ρk),..., kr = argmaxk∈{1,2,...,K}\{j1,...,jr−1}(ρk) and ρi is the
probability that the data point x has label i given that x has reached node n, i.e. ρi = P (i ∈ t(x)|x reached n). After t
splits the Precision can be expanded as follows:

(P@r)t =
1

r

K∑
i=1

P (i ∈ t(x), i ∈ yr(x)) (73)

=
1

r

(
max

k∈{1,2,...,K}
ρk + max

k∈{1,2,...,K}\j1
ρk + · · ·+ max

k∈{1,2,...,K}\{j1,j2,...,jr−1}
ρk

)
(74)

= max
k∈{1,2,...,K}

πk + max
k∈{1,2,...,K}\j1

πk + · · ·+ max
k∈{1,2,...,K}\{j1,j2,...,jr−1}

πk (75)

=πk1 + · · ·+ πkr , (76)

where the last line comes from the fact that πi is a normalized fraction of examples containing label i in their labels. After
the node split, the Precision is defined as the combination of the Precision of its children. For simplicity we consider equal

Maryam Majzoubi, Anna Choromanska

contribution of each of the edges to Pmulti =
∣∣∣(∑M

j=1 Pj

)
− 1
∣∣∣. Therefore we can write the Precisions of the children as:

(P@r)t+1 = (P1 −
1

M
Pmulti)(P@r)1 + · · ·+ (PM −

1

M
Pmulti)(P@r)M (77)

= (P1 −
1

M
Pmulti)

(
max

i∈{1,2,...,K}
πi
(P i1 − 1

M P imulti

P1 − 1
M Pmulti

)
+ · · ·

)
+ · · · (78)

+ (PM −
1

M
Pmulti)

(
max

j∈{1,2,...,K}
πj
(P jM − 1

M P jmulti

PM − 1
M Pmulti

)
+ · · ·

)
= max
i∈{1,2,...,K}

πi(P
i
1 −

1

M
P imulti) + · · · (79)

+ max
j∈{1,2,...,K}

πj(P
j
M −

1

M
P jmulti) + · · ·

=
1

M

(
max

i∈{1,2,...,K}
πi((M − 1)P i1 − P i2 · · · − P iM + 1) + · · · (80)

+ max
j∈{1,2,...,K}

πj((M − 1)P iM − P i1 · · · − P iM−1 + 1) + · · ·
)

=
1

M

(
max

i∈{1,2,...,K}
πi((P

i
1 − P i2) + (P i1 − P i3) + · · · (P i1 − P iM) + 1) + · · · (81)

+ max
j∈{1,2,...,K}

πj((P
i
M − P i1) + (P iM − P i2) + · · · (P iM − P iM−1) + 1) + · · ·

)
.

Note that the subtraction of (1/M)P imulti and (1/M)Pmulti in the coefficients is done to compensate the Precision calculation
for examples being sent to multiple directions. Let the top r labels assigned to the first child be denoted as y1r(x) =
{i1, i2, ..., ir}, where
i1 = argmaxi∈{1,2,...,K}πi((P

i
1 − P i2) + (P i1 − P i3) + · · · (P i1 − P iM)),

i2 = argmaxk∈{1,2,...,K}\i1πi((P
i
1 − P i2) + (P i1 − P i3) + · · · (P i1 − P iM)),

...,
ir = argmaxk∈{1,2,...,K}\{i1,...,ir−1}πi((P

i
1 − P i2) + (P i1 − P i3) + · · · (P i1 − P iM)).

Analogy holds for all other children. Thus for example the M th children’s labels are: yMr (x) = {j1, j2, ..., jr}. Therefore
the difference between the Precision of the parent node and its children can be written as:

(P@r)t+1 − (P@r)t =
1

M

(
πi1((P i11 − P

i1
2) + · · · (P i11 − P

i1
M) + 1) + · · · (82)

+πir ((P
ir
1 − P

ir
2) + · · · (P ir1 − P

ir
M) + 1)

)
+ · · ·

+
1

M

(
πj1((P j1M − P

j1
1) + · · · (P j1M − P

j1
M−1) + 1) + · · ·

+πjr ((P
jr
M − P

jr
1) + · · · (P jrM − P

jr
M−1) + 1)

)
−
(
πk1 + · · ·+ πkr

)
.

For the ease of notation we show the case for the binary below:

(P@r)t+1 − (P@r)t =
1

2

(
πi1(P i1R − P

i1
L + 1) + · · ·+ πir (P

ir
R − P

ir
L + 1)

)
(83)

+
1

2

(
πj1(P j1L − P

j1
R + 1) + · · ·+ πjr (P

jr
L − P

jr
R + 1)

)
−
(
πk1 + · · ·+ πkr

)
.

Considering the Assumption 3.1,we have at least one label such that P kR − P kL = γ1 > 0, γ1 ∈ (0, 1]. Without loss of
generality let P k1R − P

k1
L = γ1 > 0 for the top label in the parent node. Thus: πi1(P i1R − P

i1
L + 1) ≥ πk1(1 + γ1) and

πj1(P j1L − P
j1
R + 1) ≥ πk1(1− γ1). Therefore we have (P@r)t+1 − (P@r)t ≥ 0. Due to the weak hypothesis assumption

the histograms in the children nodes are different than in the parent on at least one position corresponding to one label. If
that label is in the top r labels that we assign to the children node, the error will be reduced. If not, the error is going to be

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

the same, but that cannot happen forever, i.e. for some split the label(s) for which the weak hypothesis assumption holds will
eventually be in the top r labels that are assigned to the children node. To put this intuition into more formal language, if
any of the top r labels in any of the children are different from the top r parent labels, i.e. y1r 6= yr, y2r 6= yr,..., or yMr 6= yr
we will have (P@r)t+1 − (P@r)t > 0. Because of the weak hypothesis assumption, the latter condition is inevitable and
will eventually hold after some node split. This shows that the error is monotonically decreasing.

9 ADDITIONAL ALGORITHMS

Algorithm 3 OptimizeObjective (v)
Jopt ← +∞
for s = 1 . . . 2M − 1 do

for m = 1 . . .M do
ŷ[m] = s ∧ 2(m−1) > 0

Pm ← (v.Cv−yi.size())v.Pm+yi.size()∗ŷ[m]
v.Cv

for k ∈ yi do
P km ←

(v.lv[k]−1)v.Pkm+ŷ[m]
v.lv[k]

end for
end for
% objective computation
B ←

∑M
j=1

∑M
l=j+1 |Pj − Pl|

CI ←
∑yi.size()
i=1

∑M
j=1

∑M
l=j+1

v.lv(i)
v.Cv

∣∣P ij − P il ∣∣
MWP ←

∣∣∣(∑M
j=1 Pj

)
− 1
∣∣∣

J ← B − λ1CI + λ2MWP

if J < Jopt then
Jopt ← J
ŷopt ← ŷ

end if
end for
return ŷopt

Algorithm 4 TrainRegressors (v)
% yi.size() denotes the size of vector yi
v.Cv ← 0; v.lv ← ∅; v.isLeaf ← false
for m = 1 . . .M do
v.wm ← random weights; v.Pm ← 0
for i=1. . . K do v.P im ← 0 end for

end for
for e = 1 . . . E do

for i ∈ v.I do
for k ∈ yi do
v.Cv++; v.lv[k]++

end for
ŷ ← OptimizeObjective (v)
for m = 1 . . .M do

Train v.wm with example (xi, ŷ[m])
pred← clamp[0,1](v.w

T
mxi)

v.Pm ←
(v.Cv−yi.size()))∗v.Pm+yi.size()∗pred

v.Cv
for k ∈ yi do
v.P km ←

(v.lv [k]−1)∗v.Pkm+pred
v.lv[k]

end for
end for

end for
end for

Algorithm 5 CreateChildren (v)
for m = 1 . . .M do
v.ch[m].I ← ∅
v.ch[m].Lhist← ∅
v.ch[m].isLeaf ← true

end for
for i ∈ v.I do
sent← false
for m ∈ 1 . . .M do

if v.w>mxi > 0.5 then
% example (xi, yi) goes to child m
UpdateHist (v.ch[m].Lhist, yi)
v.ch[m].I.push(i)
sent← true

end if
end for
if not sent then
m← arg maxm̂∈{1,2,...,M} v.w

>
m̂xi

UpdateHist (v.ch[m].Lhist, yi)
v.ch[m].I.push(i)

end if
end for
return v.ch

Maryam Majzoubi, Anna Choromanska

10 EXPERIMENTAL SETUP

LdSM was implemented in C++. The regressors in the tree nodes were trained with either SGD [Bottou (1998)] (Mediamill)
or NAG [Ross et al. (2013)] (remaining data sets) with step size chosen from [0.001, 1]. The trees were trained with up to 20
passes through the data and we explored trees with up to 64K nodes for Mediamill and Bibtex, up to 32K for Delicious,
and up to 2K for the rest of the data sets. λ1 and λ2 were chosen from the set {0.5, 1, 1.5, 2, 4} and M was set to either 2 or
4. FastXML, PFastreXML, CRAFTML and LdSM algorithms use tree ensembles of size ∼ 50. PLT and LPSR use a single
tree, and GBDT-S uses up to 100 trees.

Table 5: Data set statistics.

Data Sets #Features #Labels #Training #Testing Avg. Labels Avg. Points
samples samples per Point per Label

Mediamill 120 101 30993 12914 4.38 1902.15
Bibtex 1836 159 4880 2515 2.40 111.71

Delicious 500 983 12920 3185 19.03 311.61
Eurlex 5000 3993 15539 3809 5.31 25.73

AmazonCat-13k 203882 13330 1186239 306782 5.04 448.57
Wiki10-31k 101938 30938 14146 6616 18.64 8.52

Delicious-200k 782585 205443 196606 100095 75.54 72.29
Amazon-670k 135909 670091 490449 153025 5.45 3.99

Table 6: Experimental setup that was used to obtain results for various data sets with LdSM method: the depth of the deepest
tree in the ensemble and tree arity.

Data sets Depth Arity
Mediamill 9 4

Bibtex 9 4
Delicious 10 4

AmazonCat-13k 18 2
Wiki10-31k 10 4

Delicious-200k 46 2
Amazon-670k 25 2

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

11 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Prediction time [ms] per example for tree-based approaches: GBDT-S, CRAFTML, FastXML, PFastreXML,
LdSM (LPSR and PLT are NA) and other (not purely tree-based) methods: Parabel, DisMEC Babbar and Schölkopf
(2017), PD-Sparse Yen et al. (2016), PPD-Sparse Yen et al. (2017), OVA-Primal++ H. Fang and Friedlander (2019) and
SLEEC Bhatia et al. (2015) on various data sets. The best result among tree-based methods is in bold, and among all
methods is underlined.

Tree-based
GBDT-S CRAFTML FastXML PFastreXML LdSM

Mediamill 0.05 NA 0.27 0.37 0.05
Bibtex NA NA 0.64 0.73 0.013

Delicious 0.04 NA NA NA 0.014
AmazonCat-13k NA 5.12 1.21 1.34 0.04

Wiki10-31k 0.20 NA 1.38 NA 0.15
Delicious-200k 0.14 8.6 1.28 7.40 1.21
Amazon-670k NA 5.02 1.48 1.98 0.12

Other
Parabel DiSMEC PD-Sparse PPD-Sparse OVA-Primal++ SLEEC

Mediamill NA 0.142 0.004 0.078 NA 4.95
Bibtex NA 0.28 0.007 0.094 NA 0.70

Delicious NA NA NA NA NA NA
AmazonCat-13k NA 0.20 0.87 1.82 NA 13.36

Wiki10-31k NA 116.66 NA NA NA NA
Delicious-200k NA 311.4 0.43 275 NA 2.69
Amazon-670k 1.13 148 NA 20 NA 6.94

Table 8: Training time [s] for tree-based approaches: GBDT-S, CRAFTML, FastXML, PFastreXML, LdSM (LPSR and PLT
are NA) and other (not purely tree-based) methods: Parabel, DisMEC, PD-Sparse, PPD-Sparse, SLEEC, on various data
sets. The best result among tree-based methods is in bold, and among all methods is underlined.

Tree-based
GBDT-S CRAFTML FastXML PFastreXML LdSM

Mediamill NA NA 276.4 293.2 52.7
Bibtex NA NA 21.68 21.47 9.48

Delicious NA NA NA NA 21.74
AmazonCat-13k NA 2876 11535 13985 607

Wiki10-31k 1044 NA 1275.9 NA 179
Delicious-200k NA 1174 8832.46 8807.51 5125
Amazon-670k NA 1487 5624 6559 957

Other
Parabel DiSMEC PD-Sparse PPD-Sparse OVA-Primal++ SLEEC

Mediamill NA 12.15 34.1 23.8 NA 9504
Bibtex NA 0.203 7.71 0.232 NA 296.86

Delicious NA NA NA NA NA NA
AmazonCat-13k NA 11828 2789 122.8 7330 119840

Wiki10-31k NA NA NA NA 1364 NA
Delicious-200k NA 38814 5137.4 2869 NA 4838.7
Amazon-670k 1512 174135 NA 921.9 NA 20904

Remark 3 (Training time). The training time of LdSM can be reduced order of magnitudes by using lower number of
epochs at the expense of ∼ 1% loss in the accuracy. However, we report the training times that correspond to the best
accuracy results obtained with LdSM.

Maryam Majzoubi, Anna Choromanska

Table 9: Propensity Score Precisions: PSP@1, PSP@3, and PSP@5 (%) and Propensity Score nDCG scores: PSN@1,
PSN@3, and PSN@5 (%) obtained by different tree-based methods on common multi-label data sets.

Mediamill D = 120,K = 101
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 66.06 63.83 61.11 66.06 64.83 62.94
FastXML 66.67 65.43 64.30 66.67 66.08 65.24

PFastreXML 66.88 65.90 64.90 66.88 66.47 65.71
LdSM 70.27 69.66 68.86 70.27 69.99 70.30

Bibtex D = 1.8k,K = 159
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 49.20 50.14 55.01 49.20 49.78 52.41
FastXML 48.54 52.30 58.28 48.54 51.11 54.38

PFastreXML 52.28 54.36 60.55 52.28 53.62 56.99
LdSM 52.01 54.38 60.34 52.01 53.67 57.08

Delicious D = 500,K = 983
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 31.34 32.57 32.77 31.34 32.29 32.50
FastXML 32.35 34.51 35.43 32.35 34.00 34.73

PFastreXML 34.57 34.80 35.86 34.57 34.71 35.42
LdSM 37.27 38.32 38.46 37.27 38.09 38.28

AmazonCat-13k D = 204k,K = 13k
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR - - - - - -
FastXML 48.31 60.26 69.30 48.31 56.90 62.75

PFastreXML 69.52 73.22 75.48 69.52 72.21 73.67
LdSM 51.06 58.67 60.47 51.06 57.78 60.52

Wiki10-31k D = 102k,K = 31k
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 12.79 12.26 12.13 12.79 12.38 12.27
FastXML 9.80 10.17 10.54 9.80 10.08 10.33

PFastreXML 19.02 18.34 18.43 19.02 18.49 18.52
LdSM 11.87 12.35 12.89 11.87 12.42 12.58

Delicious-200k D = 783k,K = 205k
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 3.24 3.42 3.64 3.24 3.37 3.52
FastXML 6.48 7.52 8.31 6.51 7.26 7.79

PFastreXML 3.15 3.87 4.43 3.15 3.68 4.06
LdSM 7.16 8.26 9.11 7.16 7.92 8.45

Amazon-670k D = 135k,K = 670k
Algorithm PSP@1PSP@3PSP@5 PSN@1PSN@3PSN@5

LPSR 16.68 18.07 19.43 16.68 17.70 18.63
FastXML 19.37 23.26 26.85 19.37 22.25 24.69

PFastreXML 29.30 30.80 32.43 29.30 30.40 31.49
LdSM 28.14 30.82 33.16 28.14 29.80 30.71

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Table 10: Precisions: P@1, P@3, and P@5 (%) and nDCG scores: N@1, N@3, and N@5 (%) obtained for tree-based
approaches: GBDT-S, CRAFTML, FastXML, PFastreXML, LPSR, PLT, and LdSM and other (not purely tree-based)
methods: Parabel, DisMEC, PD-Sparse, PPD-Sparse, OVA-Primal++, LEML, and SLEEC, on various data sets. The best
result among tree-based methods is in bold, and among all methods is underlined.

Mediamill
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 83.91 67.12 52.99 83.91 75.22 72.21
DiSMEC - - - - - -

PD-Sparse 81.86 62.52 45.11 81.86 70.21 63.71
PPD-Sparse - - - - - -
OVA-Primal - - - - - -

LEML 84.01 67.20 52.80 84.01 75.23 71.96
SLEEC 87.82 73.45 59.17 87.82 81.50 79.22

Tr
ee



LPSR 83.57 65.78 49.97 83.57 74.06 69.34
PLT - - - - - -

GBDT-S 84.23 67.85 - - - -
CRAFTML 85.86 69.01 54.65 - - -
FastXML 84.22 67.33 53.04 84.22 75.41 72.37

PFastreXML 83.98 67.37 53.02 83.98 75.31 72.21
LdSM 90.64 73.60 58.62 90.64 82.14 79.23

Bibtex
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 64.53 38.56 27.94 64.53 59.35 61.06
DiSMEC - - - - - -

PD-Sparse 61.29 35.82 25.74 61.29 55.83 57.35
PPD-Sparse - - - - - -
OVA-Primal - - - - - -

LEML 62.54 38.41 28.21 62.54 58.22 60.53
SLEEC 65.08 39.64 28.87 65.08 60.47 62.64

Tr
ee



LPSR 62.11 36.65 26.53 62.11 56.50 58.23
PLT - - - - - -

GBDT-S - - - - - -
CRAFTML 65.15 39.83 28.99 - - -
FastXML 63.42 39.23 28.86 63.42 59.51 61.70

PFastreXML 63.46 39.22 29.14 63.46 59.61 62.12
LdSM 64.69 39.70 29.25 64.69 60.37 62.73

Delicious
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 67.44 61.83 56.75 67.44 63.15 59.41
DiSMEC - - - - - -

PD-Sparse 51.82 44.18 38.95 51.82 46.00 42.02
PPD-Sparse - - - - - -
OVA-Primal - - - - - -

LEML 65.67 60.55 56.08 65.67 61.77 58.47
SLEEC 67.59 61.38 56.56 67.59 62.87 59.28

Tr
ee



LPSR 65.01 58.96 53.49 65.01 60.45 56.38
PLT - - - - - -

GBDT-S 69.29 63.62 - - - -
CRAFTML 70.26 63.98 59.00 - - -
FastXML 69.61 64.12 59.27 69.61 65.47 61.90

PFastreXML 67.13 62.33 58.62 67.13 63.48 60.74
LdSM 71.91 65.34 60.24 71.91 66.90 63.09

AmazonCat-13k
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 93.03 79.16 64.52 93.03 87.72 86.00
DiSMEC 93.40 79.10 64.10 93.40 87.70 85.80

PD-Sparse 90.60 75.14 60.69 90.60 84.00 82.05
PPD-Sparse - - - - - -
OVA-Primal 93.75 78.89 63.66 - - -

LEML - - - - - -
SLEEC 90.53 76.33 61.52 90.53 84.96 82.77

Tr
ee



LPSR - - - - - -
PLT 91.47 75.84 61.02 - - -

GBDT-S - - - - - -
CRAFTML 92.78 78.48 63.58 - - -
FastXML 93.11 78.2 63.41 93.11 87.07 85.16

PFastreXML 91.75 77.97 63.68 91.75 86.48 84.96
LdSM 93.87 75.41 57.86 93.87 85.06 80.63

Wiki10-31k
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 84.31 72.57 63.39 83.03 71.01 68.30
DiSMEC 85.20 74.60 65.90 84.10 77.10 70.40

PD-Sparse - - - - - -
PPD-Sparse - - - - - -
OVA-Primal 84.17 74.73 65.92 - - -

LEML 73.47 62.43 54.35 73.47 64.92 58.69
SLEEC 85.88 72.98 62.70 85.88 76.02 68.13

Tr
ee



LPSR 72.72 58.51 49.50 72.72 61.71 54.63
PLT 84.34 72.34 62.72 - - -

GBDT-S 84.34 70.82 - - - -
CRAFTML 85.19 73.17 63.27 - - -
FastXML 83.03 67.47 57.76 83.03 75.35 63.36

PFastreXML 83.57 68.61 59.10 83.57 72.00 64.54
LdSM 83.74 71.74 61.51 83.74 74.60 66.77

Delicious-200k
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 46.97 40.08 36.63 46.97 41.72 39.07
DiSMEC 45.50 38.70 35.50 45.50 40.90 37.80

PD-Sparse 34.37 29.48 27.04 34.37 30.60 28.65
PPD-Sparse - - - - - -
OVA-Primal - - - - - -

LEML 40.73 37.71 35.84 40.73 38.44 37.01
SLEEC 47.85 42.21 39.43 47.85 43.52 41.37

Tr
ee



LPSR 18.59 15.43 14.07 18.59 16.17 15.13
PLT 45.37 38.94 35.88 - - -

GBDT-S 42.11 39.06 - - - -
CRAFTML 47.87 41.28 38.01 - - -
FastXML 43.07 38.66 36.19 43.07 39.70 37.83

PFastreXML 41.72 37.83 35.58 41.72 38.76 37.08
LdSM 45.26 40.53 38.23 45.26 41.66 39.79

Amazon-670k
Algorithm P@1 P@3 P@5 N@1 N@3 N@5

O
th

er



Parabel 44.89 39.80 36.00 44.89 42.14 40.36
DiSMEC 44.70 39.70 36.10 44.70 42.10 40.50

PD-Sparse - - - - - -
PPD-Sparse 45.32 40.37 36.92 - - -
OVA-Primal - - - - - -

LEML 8.13 6.83 6.03 8.13 7.30 6.85
SLEEC 35.05 31.25 28.56 34.77 32.74 31.53

Tr
ee



LPSR 28.65 24.88 22.37 28.65 26.40 25.03
PLT 36.65 32.12 28.85 - - -

GBDT-S - - - - - -
CRAFTML 37.35 33.31 30.62 - - -
FastXML 36.99 33.28 30.53 36.99 35.11 33.86

PFastreXML 39.46 35.81 33.05 39.46 37.78 36.69
LdSM 42.63 38.09 34.70 42.63 40.37 38.89

Maryam Majzoubi, Anna Choromanska

Delicious
M = 2 M = 4

Bibtex
M = 2 M = 4

Mediamill
M = 2 M = 4

Wiki10
M = 4

Figure 4: The behavior of Precision/nDCG score as a function of the number of trees in the ensemble. Plots were obtained
for Delicious, Bibtex, Mediamill, and Wiki10 data sets.

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Delicious
M = 2 M = 4

Bibtex
M = 2 M = 4

Mediamill
M = 2 M = 4

AmazonCat Wiki10
M = 2 M = 4

Figure 5: The behavior of Precision/nDCG score as a function of the number of nodes Tmax (including leaves) and tree
depth of the deepest tree in the ensemble. Plots were obtained for Delicious, Bibtex, Mediamill, AmazonCat, and Wiki10
data sets.

Maryam Majzoubi, Anna Choromanska

Bibtex

Mediamill

Delicious

Figure 6: The comparison of Precision (left column) and nDCG (right column) score for LdSM and FastXML working
in the ensemble (right bars) as well as for single-tree (left bars) (LdSM-1: exemplary tree chosen from LdSM ensemble,
LdSM-1∗, FastXML-1∗: optimal single trees). Plots were obtained for Bibtex, Mediamill and Delicious data sets.

	ADDITIONAL THEORETICAL RESULTS
	Relation of the Objective to Shannon Entropy and Error Bound (Binary Tree Case)

	THEORETICAL PROOFS
	ADDITIONAL ALGORITHMS
	EXPERIMENTAL SETUP
	ADDITIONAL EXPERIMENTAL RESULTS

