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Abstract

This Supplement presents additional details in support of the full article. These include the proofs of the theoretical
statements from the main body of the paper and additional theoretical results. We also provide additional
algorithm’s pseudo-codes. The Supplement also contains the description of the experimental setup, and additional
experiments and figures to provide further empirical support for the proposed methodology.

7 ADDITIONAL THEORETICAL RESULTS

Next lemma shows that in isolation, when the purity of the split is perfect, decreasing the value of the objective leads to
recovering more balanced splits.

Lemma 6. If a node split is perfectly pure, then
B<J—J*~ 6)

Next lemma shows that in isolation, when the balancedness of the split is perfect, decreasing the value of the objective leads
to recovering more pure splits.

Lemma 7. If a node split is perfectly balanced and assuming that the following condition holds: A1 (M —1) > A > A %

then 2
aS(J+/\2)M(2)\2_)\1(M_1)). @)

Below we provide a new assumption and corresponding theorem that generalizes Theorem [2] by removing the balancedness
assumption.
Assumption 7.1. y-Weak Hypothesis Assumption for any distribution P over the data, at each node of the tree T there
PR

>, where vy € (0,1].

Pr PL
Theorem 3. Under the Weak Hypothesis Assumpnonsnand -for any « € [0, 1] to obtain e,.(T) < « it suffices to have
a tree with t internal nodes that satisfy (t + 1) > (1)< -y 1"%2(") where b = |Pp + Pr, — 1|.

exist a partition such that ), ;

Below we consider the weak hypothesis assumption that generalizes the Assumption to the M-ary case and prove
corresponding lemma that generalizes Lemma [3]

Assumption 7.2 (Generalization of Assumption|3.1). ~-Weak Hypothesis Assumption: for any distribution P over the data,
at each node n of the tree T there exist a partition such that Zfil Z;Vil le\;[l i | P! — Pj| > ~, where v € (0,1].

Lemma 8 (Generalization of Lemma . Under the Weak Hypothesis Assumption the e,.(T ) is monotonically decreasing
with every split of the tree.

7.1 Relation of the Objective to Shannon Entropy and Error Bound (Binary Tree Case)

In this section we first show the relation of the objective J to a classical decision-tree criterion, Shannon entropy, and
specifically we demonstrate that minimizing the objective leads to the reduction of this criterion. We restrict ourselves to the
case of binary tree. We omit the analysis for the M -ary to avoid over-complicating the notation. The entropy of tree leaves
in the case when examples can be sent to multiple directions can be calculated as:

G= ZU)LZ;)Z

LcL =1

®)
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where L is the set of all tree leaves, £ is a subset of the leaves (the summation is taken over all the possible subsets), pf
is the probability that example with label ¢ reaches all the leaves in £, and w is the weight of subset of leaves. This
weight is defined as the probability that a randomly chosen point from distribution P reaches all leaves in L. Also note that

Y icrws=1landw;_, =0.

Theorem 4. Under the Weak Hypothesis Assumptions3.1]and and an additional assumption that each node produces
perfectly balanced split, for any k € [0,1n K| to obtain G§ < k it suffices to have a tree with t internal nodes that satisfy

G\ ot
(t—i—l)Z(?) (mtrlosa(e),
where b = |Pg + P, — 1].
8§ THEORETICAL PROOFS

Proof of Lemmal[l] We rewrite the objective using the total law of probability:

K K K
J=>_m(Ph—Pp)| = > mi|Pp—Pi|+ X |> m(Ph+Pi)—1f, ©)
i=1 i=1 i=1
where Pp, P; € [0,1] forall i« = 1,2,..., K. The objective admits optimum on the extremes of the [0, 1] interval.
Therefore, we define the following:
Li={i:ie{l,....K},Ph=1& P} =1}, Lo={i:ie{l,...,K},Ph=0& P, =0}, (10)
Ly={i:ic{l,...,K},Pa=1&P. =0}, Ly={i:ic{l,...,K},Po=0& P. =1} a1

By substituting the above in the objective we have:

Zﬂ'ifzﬂ'i 7)\1 Z 7TZ‘+A2 Z 7TZ+Z27T171 (12)

1€L3 1€Ly iE(L3UL4) iE(LSUL4) i€l

J=

We send each example either to the right, left or both directions:
> m-Ym+Tmt Yol a3
i€(L1UL3ULy) i€Ly i€L3 €Ly

Thus we can further write

J:

1—Z7TZ‘—2Z7TZ'

1€l i€Ly

—)\1(1— ZW2)+>\QZ7TZ (14)

i€l i€l

For ease of notation, we define a :== >, ; mi,a' =3, ; m,andb:=3", ; ;. Therefore

i€Ly
J=1-b—2a| — A (1=b)+Xab=|b+2a" — 1] — X\ (1 —b) + A2, (15)
where a, b € [0, 1]. Since we are interested in bounding .J, we consider the values of a and b at the extremes of [0, 1] interval:

ifa=1thenb=0 — J=1—2;, ifb=1thena=0 — J=DX (16)
e b=0('=1) - J=1-X\
ifa=0then{ ORI (17)

a=0(d=1) - J=1-X\
ifb:Othen{a—l - J=1-X) (18)
a=0.5 — sz)\l



Maryam Majzoubi, Anna Choromanska

Therefore J € [—A1, A2

Next, we show that the perfectly balanced and pure split is attained at the minimum of the objective. The perfectly balanced
split is achieved when Pr = P, and then the balancing term in the objective becomes zero The perfectly pure split is
achieved when the class integrity term in the objective satisfies Z 1T |PR PLI 1 m; = 1. Simultaneously, the
following holds ZZ L, 7i(Ph+ P}) =1, and therefore the multi-way penalty is zero as well Thus, J =0— X +0=—A\;.
In order to prove the opposite direction of the claim, recall that the minimum of the objective occurs for b = 0 and a = 0.5.
Since a + a’ + b = 1, therefore a’ = 0.5. This corresponds to the perfectly pure and balanced split. O

Proof of Lemma 2] Pl [0, 1]foralli =1,2,...,Kand j = 1,2,..., M. The objective admits optimum on the extremes
of the [0, 1] interval. In the following proof we cons1der a dlfferent approach than in the proof of Lemmal 1] In order to
get the minimum of the objective, we try to minimize each of its terms separately and on the top of that incorporate their
correlations. For now, we assume that the first term, the balancing term, is minimized and therefore is equal to zero. We
define case C), as the scenario when for any i = 1,2,..., K, Pj? = 1 for n “directions” (n < M), i.e. n distinct js such
that j € {1, 2,..., M}, and P; = 0 for the remaining j’s. The class integrity and multi-way penalty terms can then be
derived as follows:

K
Jetass integrity term|C,, — ZZ Z T |P]Z - ]Dll| = ’/l(M - n)a (19)

i=1 j=11=j+1
Jmulti—way penalty term|C,, — A2 Z Pj —1=n-1 (20)
Therefore, the objective value would then become: J = —Ajn(M —n) + Az(n — 1). We aim to have the minimum of the

objective for perfectly pure split. The perfectly pure split is achieved when case C; holds. Therefore, we need:
— MM -1)< = MnM—-n)+X(n—1) forne{2,...,M}. 2n

The lower-bound of the right side is achieved for n = 2:
A
MM 1) < =M2(M —2)+ Ay — M—3<)\—2. (22)
1

With the above condition, the minimum of the objective is equal to —\; (M — 1). Note that our first assumption on the
balancing term can still hold for all C), cases. Therefore, we have shown that the minimum of the objective corresponds to
the perfectly pure and balanced split.

In order to get the upper-bound for J, we first show that Jpatancing term < Jelass integrity term S follows:

M M M M K
Jbalancingterm = E § |PJ - }Dl‘ = § E E ,/Ti(PJ -
j=11=j+1 j=11=j+1|i=1
M M K

< Z Z Z i |P; - Plz| = Jelass integrity term - (24)

j=11=j+1 i=1

(23)

Therefore, the maximum of the summation of the terms is achieved when Jyatancing term = Jelass integrity term- The maximum
of the multi-way penalty term is attained when sending all examples to every direction, resulting in Jiulti-way penalty term =
(M — 1). In this case, Jyalancing term = Jelass integrity teem = 0, and thus, J = Ao(M — 1). Hence, we have J € [\ (M —
1)7 )\Q(M - 1)} O

Proof of Lemmal6] The perfectly pure split is attained when P]7 = 1 for only one value of j, and P; = 0 for the remaining
j’s. This leads the class integrity term to satisfy Z;Vil Zl]\i i1 Zfil T3 |Pj’ — P}| = (M — 1) and the multi-way penalty
term to satisfy Zle s Z;w:l P! —1 = 0. Thus we have:

M M
J-J" = > > |P-p] (25)

J=11=j+1
M M
i—1 b i=1 Li

M

b

=j+1
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M M )
Let j* = argmax;c (1 5 s} |P; — 2 i P4 |. Without loss of generality assume P« — Z:Tlp > 0 and in that case there
M ]
exists an [* such that Py« — ZZ:TIP < 0. Therefore we have:
Yty P YL, P
J=J > P —==—— | — | P — =—=—— 27
= ‘( j M l M ( )
M
> i1 Di
> P — == = 4. 28
> (P = =) =5 (28)
U
Proof of Lemma|3} Consider a split with a fixed purity factor ov. Jj ., denotes the sum of the class integrity and multi-way

penalty terms of the objective function. When subtracting them from the total value of the objective at node n we obtain the
balancing term. Thus we have:

M M
J =Ty = D D IP= R (29)
j=11=j+1
M M M M
— ZZ p,_M _ B—M ) (30)
— & ! M M
J=ll=j+1
. M P M P .
Let j* = argmax;cy 5 a7} |P; — =i=+—|. Without loss of generality assume P;- — =i=1= > 0 and in that case there

M :
exists an {* such that P~ — # < 0. Therefore we have:

o > P > P
J = Jouiy 2 ‘(Pj*—M —\ P =g (€29}
S pi
> (P = =) = B (32)
O
Proof of Lemmal[/] The perfectly balanced split is attained when Py = P» = ... = P). This zeros out the balancing term

in the objective function. Hence:

K M M M
*/\1;2 Z i[Pi =P+ x> P-1 (33)
i=1 j=11l=j

j=1
K M M ‘ ‘ K M )
OB IDBEAES AL DI (34
i=1 j=11=j+1 i=1 j=1
1 K M K M
szpwxz Z mPl—1]. (35)
1=1 j=1 =1 j=1
Thus we have:
K M
M—1
J+>\22(>\2—)\1 5 )ZZij (36)
i=1 j=1
M-_1 M M .
> (AQ — M ) > mmin(P},y P - Pl 37)
i=1j=1 =1
M—1
> </\2 - /\1 D) ) Mo (38)
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Proof of Lemma] Consider a split with a fixed balancedness factor /3. Jbalzmce denotes the balancing term of the objective
function. When subtracting it from the total value of the objective at node n we will obtain the sum of the class integrity and
multi-way penalty terms. Hence:

K M

J - Jbﬁalance = )‘1 ZZ Z 5 |PZ f)l } + )\2 ZP -1 (39)

i=1 j=11=75+1

K M M
=MD > > m PP+ X ZszPl—l (40)
=1 j=11=j+1 i=1 j=1
K M
Pl [ DY mPi—1]. (41)
=1 j=1 1=1j=1

Thus we have:

K M
) S>> mp (42)

J - Jtilance + A2 2 <)‘2 - )‘1

=1 j=1
M =1\ o= L
> (/\2 -\ > ZZW} Inin(P;,ZPlZ — PJZ) (43)
=1 j5=1 =1
M-1
> <>\2 -M 5 ) Ma. (44)
]

Proof of Theorem|d} In our algorithm, we recursively find the leaf node with the heaviest weight and decide to partition
it to two children. Suppose, after ¢ splits the leaf node n has the highest weight, namely w,,, which will be denoted
with w for brevity. This weight is defined as the probability that a randomly chosen data point = drawn from a fixed
distribution P reaches the leaf. Let wr ony and wy, only be the weight of examples reaching only to the right and left child
of node n, and wp,t, be the weight of examples reaching to both children. Also let Pyotp, = |Pr + Pr, — 1|. Note that
WR only = wPR only = W(PRr — Pyotn) and wr, onty = WPL onty = w(Pr — Pyorn). Let p be a vector With K elements,
which its i*" element is p;. Furthermore, let pr, and py, be K-element vectors with p; g and p; 1, at its ¢’ " entry. Note that

pir =" ;,P and p; 1, = p 2L Before the node partition the contribution of node n to the total entropy-based objective is

wG (p). After the split this contrlbutlon willbe wp OnlyG (pr)+wp onlyG (pr) +Whotn G (p) (Note that for the examples being
sent to both directions we average the histograms of the left and right children. Also note that (wg only FWR only +Whot n) =1
Therefore, we have:

A; =Gy — Gyi1 = w[G(p) — PronyG(PR) — Pr onyG(pL) — PootnG (p)] (45)
= w[G(p) = (Pr = Poorn)G(pr) = (P = Poorn)G(pr) = ProtnG(p)]. (46)
Recall that the Shannon entropy is strongly concave with respect to /;-norm (see Shalev-Shwartz, |2012, Example 2.5), and

p=(Pr— %Pboth)pR + (P — %Pboth)pL, where Pyotr, = Pr + Pr — 1. Without loss of generality assume Pr = Pr, + 1.
Hence we re-write A; as follows:

A = wl(1 = Pron)G(p) — ()G — (0 G ) @)
= w1 = P ) Gl0) — (T ) Clor) — (506 o). (48)

(49)
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We can then use the result from Theorem 2.1.9 in|Nestrov| (2004):

1
Ay > w(l = Poorn) {SHPR —PLﬁ} (50)
1
= w(1 — Pyoyp )12 [8||7rR —7rL|ﬂ 51
1 (& | Pl pi P} ’
— w(1 = Pyou)r? | = iR PULE 52
w(1 — Pyotn)r 8(; 5 B ) (52)

Here we use the assumption that we have a balance split, i.e. Pr = Py, therefore we continue as follows:

2
r’ < i i
= w1~ Prown) g (; mi| P = P (53)
'r2 K . . 2
> w(l — Pbom)§ (; | Pl — Pi|> ) (54)
Now by applying the WHA 3.2}
r2
Ay > w(l— b)§72. (55
Note that by WHA b € [0,1). Also note that w > (tﬁiﬁ This comes from the fact that at each step we choose
the leaf node with maximum weight. Hence with WHA2, w = max;c, w; > (H_Ll) Also note that uniform distribution
maximizes the entropy, i.e. G; < In K. Accordingly we have:
Gic r?
Ay > ————[—~°(1 = b)]. 56
t—(t+1)an[87( ) 0

By letting n = %\/ %, we have A; > Gy Thus, we have the following recursion inequality:

(t+1)
2 2
n-Ge n
Gi1 <G — A <Gy — =G|l — . 57
t+1 S Gy t < Gy t+1) | (t+1)] (57)
Then by applying the same proof technique as in Kearns and Mansour (1999) we get the following relationship:
Gt+1 < G1€7772 logz(t+1)/2. (58)

2
2

Therefore, to reduce G¢11 < k it suffices to have (t+1) splits such that log, (¢ + 1) > ln(%) % . Substituting log, (t + 1) =

In(t + 1) log,(e) results in:
In(t + 1) Zln(%)m S (t+1)> (%)ﬁ (59)
O
We next proceed to the proof of Theorem 2]

Proof of Theorem[2] This proof follows the proof of the Theoremd] Below we directly calculate the error bound. Recall
w to be the probability that a data point x reached the subset of leaves £. Recall that pf is the probability that the data
point z has label 7 given that 2 reached £, i.e. p~ = P(i € t(x)|z reached £). Note that each example has r labels, and

let’s assume we assign first majority r labels from the pf histogram to any example reaching L. ie. yr(x) = {J1, J2, s Jr }»
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where j; = argmax;cy o K}(Pf)’ J2 = argmaxyco o kg, (Pf), Jro=argmaxgco o g\ (G, jr_l}(/)f)- We
then expand the 7-level multi-label error as follows:

K
1 . )
=LY Pl u)i ¢ i) (60)
i=1
| K
= I3 Pli € t(a),i ¢ 3y (a) (6
i=1
1 = .
=— ZwEZP(iEt(x),i¢yr(az)\x reached £) (62)
" Lec =1
1 K
=— 5 P t( hed £ 63
TZwﬂ ; (i € t(z)|z reached L) (63)
CEE iiiin
E L
_Z - 64
Z vz <sz ke{l 2 K} ke{1, 2 K}\g1 Pr 64
" fer
N £>
e — max pk 5
k{12, K}\{jl,jz} RE{1,2,.., K I\ {J1 52+ esGir—1}

where w 7 denote the probability that example x reaches L and £ denote the set of all leaves of the tree.

Next we will find the Shannon entropy bound with respect to the error and show that the entropy of the tree, denoted as
G(T), upper-bounds the error. Note that:

G(T —Zwﬁz,ozln< ) > Swp Y pffln(plE). (65)

ferl i=1 lel Coi=1 [
1FJ1550r

Note that Zfil pf: = r. Thus for any ¢ = 1,2, ..., K such that i # jy, ..., j,- it must hold that pf~ < % We continue as
follows

)2 wg Z pEn(2 (66)

LeL 135]1,
o i M
OPILY. (Z P e ) F T etk 0 T T ke 2 N Gra)
LEL
F:
[ — maX
ke{l,z...,x}\{jl7j2,...,j,,.l}p’“)
=In2)re.(T) > -(T), (67)

where the last inequality comes from the fact that » > 1/1n(2). Now recall that G; < In K and normalizing « in Theorem
[ finishes the proof. O

Proof of Theorem[3] The proof follows the same steps as Theorem @] until Equation[52] Applying WHA [7.1]at this point
will result in the same result as in Equation[53] The rest of the proof would be the same as Theorems @ and 2} O

Proof of Theorem(I] Since we assume the objective is minimized in every node of the tree, therefore each node is sending
examples to only one of its children and consequently each example descends to only one leaf. Thus in any leaf [, we store
label histograms and assign first r labels from the histogram to any example reaching that leaf, i.e. y(z) = {j1, jo, .-, Jr
where j1 = argmax, ¢ () 5 gy Phs J2 = AZMAXGe g0 g g, (P ) Jr = AEMAXy (10 g\ Gy, 1y (PR) and pf is
the probability that the data point x has label i given that z has reached leaf [, i.e. p! = P(i € t(z)|x reached [).
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We next expand the r-level multi-label error as follows:

1 K
==Y Pli€y(x).i ¢ t(x)) (68)
i=1
1 K
=—>_ Pli € t(x),i ¢ yr(x)) (69)
i=1
1 K
= > w(l)> P(ict(x),i¢y(x)|x reached 1) (70)
lec =1
1 K
= Z Z P(i € t(zx)|x reached [) (71)
lel 1:1
(F X
1 0] ol !
_1 _ 72
r; (ZP T reflo k3 T repimgp Ok (72)
max l cee— max pk) ,
ke{l 2,. K}\{JhJ?} ke{lvza"wK}\{jl;.j2a~-~:jr—1}

where w(l) denote the probability that example x reaches leaf [ and £ denote the set of all leaves of the tree.

From Lemmal[T|(for binary tree) and Lemma 2| (for M-ary tree) it follows that for any node in the tree, the corresponding spht
is balanced and the following holds: |P; — P; | = 1foralllabelsi = 1,2, ..., K and all pairs of children nodes (7, j ) of

the considered node such that j, j "€ {1,2,...,M}and j # j/. Thus when splitting any node, its label histogram is d1v1ded

in such a way that its children have non-overlapping label histograms, i.e. Vi:1’27,..7]{vj,j/e{172 M},Hé]/pg )pl(] ) = =0,

where pgj ) and pz(-j ) denote the it entry in the normalized label histograms of children nodes j and j respectively. After

log (K /r) splits we obtain leaves with non-overlapping histograms, i.e. for any two leaves /; and I such that l;,ls € £

and [y # l2, Vi1 2, K pffl) . pElQ) = 0. In each leaf the label histogram contains r non-zero entries. Based on the above it

follows that G(7") = 0. Consequently, using Equation we obtain that the multi-label error ¢,.(7") is equal to zero as well.
This directly implies that e;(7) = 0 forany # = 1,2, ..., 7. O

Proof of Lemma(8|(Proof of Lemma [|follows directly as Lemma [is a special case of Lemma [§). In our algorithm we
store label histograms for each node, and at testing we assign to an example top 7 labels obtained from averaging
the histograms of the leaves to which this example has descended to. At training, we recursively find the node with the
highest priority and partition it to two children. Here we are examining the change of error with one node split. We
consider examples reaching that node and without loss of generality we assume they have reached only this node. For each
such example x we assign the top r labels from the histogram of the analyzed node, i.e. y,.(x) = {k1, ko, ..., k. }, where
ki = argmaxycqq o | xyPks k2 = AZMAXycry o ey (Pk)sees K = argmaxyepq o K}\{n, jr_1}(pk) and p; is the
probability that the data point z has label ¢ given that 2 has reached node n, i.e. p;, = P(i € t(x)|x reached n). After ¢
splits the Precision can be expanded as follows:

K
(Par)t = % > P(iet(x),i € y,(z)) (73)
i=1
1
= (g ot At e ) (74)
= max 7+ ma. T+ -+ max Ty, (75)
ke{l,Q7 K} ke{l,Q,...,K}\jl ke{l,z,“.,K}\{jl,j27...,j7‘,1}
oy e T (76)

where the last line comes from the fact that 7; is a normalized fraction of examples containing label ¢ in their labels. After
the node split, the Precision is defined as the combination of the Precision of its children. For simplicity we consider equal
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contribution of each of the edges to Py = ‘ (Zjle Pj) — 1’. Therefore we can write the Precisions of the children as:

1 1
(P@r)™ = (Py = 7 Paud) (PQr)! -4 (Par = 7 Poas) (POT)™ 77)
1 P — 1 pi
:P——Pmi( (21T M muli ) 28
" M i) ie{l%?fff}m(lﬁ—ipmum)_'_ * (78)
1 PJ 1 PJ
+ (P, _7Pmi( CM T BT muli )
( M M ult) jell, 2& K} (PM H-Pmultl *
; 1
Tietl e K} mi(P1 - M o) (79)
- 1
P —pJ
je{{l,lf.?(,,[(} ( M s muln)
1 o i
= M(ie{l%?}f,x} 7i((M —1)P} — Py — Py +1) +--- (80)
(M -1)Piyy —P}---—Pi D
je{{nﬂ?}.(.,K}ﬁj(( )Py — Pi 1+ 1)+
- M(ie{ﬁ?’f,mm«a P4 (Pi— P+ (Pl =Pl 1)+ @)
je{g?}.{.,K}ﬂj((P& —P))+ Py —Py)+---(Pyy— Py_)+ 1)+ ).

Note that the subtraction of (1/M)P? .. and (1/M) Py in the coefficients is done to compensate the Precision calculation
for examples being sent to multiple directions. Let the top 7 labels assigned to the first child be denoted as y!(z) =
{1,142, ...,ir}, Where _ _ ' ' _ _

i = argmax;c (1o, ey mi((P = P§) + (Pf = P) + -+ (P{ — P}y)),

iy = argmaxye g 5 ey, Ti(PL = P2) + (Pf = P3) + -+ (P{ = Pyy)),

iy = argmaxke{l,Q,...,K}\{il,...,ir,l}ﬂ-i((Pli — P}) +(P{ — P3) +--- (P] = Py,)).

Analogy holds for all other children. Thus for example the M™ children’s labels are: y (z) = {j1, j2, .., jr }. Therefore
the difference between the Precision of the parent node and its children can be written as:

(Par)™*! - (Par)’ = % (mia (P = P 4 (P = Pip) + D) - (82)
+m,.((P“ ~By) 4 (P - Py 4D)

1 ) ) : .
(Pl =P+ (P{;, =Pl _)+1)+---

+mwmfm+w%f%4+m
_(Wkl +"‘+7Tkr)~

For the ease of notation we show the case for the binary below:

1 4 , } .
(Par)i*! — (Par)t = 5(7”1(}3}131 — P4 1)+ 4m (P — Pir +1)) &)
1 , , _ '
+§(7Tj1(P£1 — PR+ 1)+ 4 (P — Py +1))

_ (ﬂ-kl +"'+7Tk,‘)-

Considering the Assumption nwe have at least one label such that Pk — PF = 41 > 0,71 € (0, 1]. Without loss of
generality let Pk1 Pk1 = 71 > 0 for the top label in the parent node. Thus: 7;, (P ! — P+ 1) > m, (1 + 1) and
7, (P — P +1) > 7, (1 — ~1). Therefore we have (PQr)'*! — (P@r)! > 0. Due to the weak hypothesis assumption
the histograms in the children nodes are different than in the parent on at least one position corresponding to one label. If
that label is in the top 7 labels that we assign to the children node, the error will be reduced. If not, the error is going to be
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the same, but that cannot happen forever, i.e. for some split the label(s) for which the weak hypothesis assumption holds will
eventually be in the top r labels that are assigned to the children node. To put this intuition into more formal language, if
any of the top r labels in any of the children are different from the top r parent labels, i.e. Y. # ¥y, Y2 # Yrs..., o8 Y2 # y,.
we will have (P@r)!*1 — (P@r)! > (. Because of the weak hypothesis assumption, the latter condition is inevitable and
will eventually hold after some node split. This shows that the error is monotonically decreasing. O

9 ADDITIONAL ALGORITHMS

Algorithm 3 OptimizeObjective (v)

Jopt +— +o0
fors=1...2M —1do
form=1...M do
glm] = sA20m=1) >0
(v.Cy—yi.size())v. Py +y;.size()xg[m]

Pm — v.Cy,
for k € y; do
k (v.1y[E]=1)v. Pk 4+4[m]
P, o 1o [F] .
end for
end for

% objectli\}/e computation
B3 [P — Bl
yi.size() \ M M V. 1y (1 0
CI + Z;-/:1 Zj:l Zl:j+1 f;.c(z,) Pj
M
MWP | (i P) -1
J— B—-MCI+XMWP
if J < Jop: then
Jopt — J
gopt <~ :g
end if
end for
return 9,

_pli

Algorithm 4 TrainRegressors (v)

% y;.size() denotes the size of vector y;
0.0y + 0; v, + 0; wv.isLeaf + false
form=1...M do
V.Wy, ¢ random weights; v.P,, <0
fori=1...Kdo v.P! < 0 end for
end for
fore=1...Edo
for i € v.I do
for k € y, do
v.Cyp++; vl [k]++
end for
y < OptimizeObjective (v)
form=1...M do
Train v.w,, with example (z;, §[m])
pred « clampy 1)(v.w?l z;)

v. P,
(v.Cy—yi.s1z€()))*v. Pry 4y, .size()xpred
v.Cy
for k € y; do
v.Pk (v.ly[K]=1)*v. Pk +pred
tm v.1y K]
end for
end for
end for
end for

Algorithm 5 CreateChildren (v)

form=1...M do
v.ch[m].I + ()
v.ch[m].Lhist < ()
v.ch[m].isLeaf + true
end for
fori € v.I do
sent < false
formel...Mdo
if v.w,] 2; > 0.5 then
% example (z;,y;) goes to child m
UpdateHist (v.ch[m].Lhist, y;)
v.ch[m].I.push(i)
sent < true
end if
end for
if not sent then
m <— argmaXme{1,2,...,M} v.w;xi
UpdateHist (v.ch[m].Lhist, y;)
v.ch|m|.I.push(7)
end if
end for
return v.ch
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10 EXPERIMENTAL SETUP

LdSM was implemented in C++. The regressors in the tree nodes were trained with either SGD [Bottou| (1998))] (Mediamill)
or NAG [Ross et al.| (2013)] (remaining data sets) with step size chosen from [0.001, 1]. The trees were trained with up to 20
passes through the data and we explored trees with up to 64K nodes for Mediamill and Bibtex, up to 32K for Delicious,
and up to 2K for the rest of the data sets. A; and Ao were chosen from the set {0.5,1,1.5,2,4} and M was set to either 2 or
4. FastXML, PFastreXML, CRAFTML and LdSM algorithms use tree ensembles of size ~ 50. PLT and LPSR use a single
tree, and GBDT-S uses up to 100 trees.

Table 5: Data set statistics.

Data Sets #Features | #Labels #Training | #Testing | Avg. La'bels Avg. Points
samples | samples | per Point per Label
Mediamill 120 101 30993 12914 4.38 1902.15
Bibtex 1836 159 4880 2515 2.40 111.71
Delicious 500 983 12920 3185 19.03 311.61
Eurlex 5000 3993 15539 3809 5.31 25.73
AmazonCat-13k || 203882 | 13330 | 1186239 | 306782 5.04 448.57
Wikil0-31k 101938 | 30938 14146 6616 18.64 8.52
Delicious-200k || 782585 |205443 | 196606 | 100095 75.54 72.29
Amazon-670k 135909 | 670091 | 490449 | 153025 5.45 3.99

Table 6: Experimental setup that was used to obtain results for various data sets with LASM method: the depth of the deepest
tree in the ensemble and tree arity.

Data sets Depth | Arity
Mediamill 9 4
Bibtex 9 4
Delicious 10 4
AmazonCat-13k 18 2
Wikil0-31k 10 4
Delicious-200k 46 2
Amazon-670k 25 2
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11 ADDITIONAL EXPERIMENTAL RESULTS

Table 7: Prediction time [ms] per example for tree-based approaches: GBDT-S, CRAFTML, FastXML, PFastre XML,
LdSM (LPSR and PLT are NA) and other (not purely tree-based) methods: Parabel, DisMEC Babbar and Scholkopf]
(2017), PD-Sparse |Yen et al.|(2016), PPD-Sparse |Yen et al.|(2017), OVA-Primal++ H. Fang and Friedlander (2019) and
SLEEC Bhatia et al.|(2015) on various data sets. The best result among tree-based methods is in bold, and among all
methods is underlined.

Tree-based
GBDT-S ‘ CRAFTML ‘ FastXML ‘ PFastre XML H LdSM
Mediamill 0.05 NA 0.27 0.37 0.05
Bibtex NA NA 0.64 0.73 0.013
Delicious 0.04 NA NA NA 0.014
AmazonCat-13k NA 5.12 1.21 1.34 0.04
Wikil0-31k 0.20 NA 1.38 NA 0.15
Delicious-200k 0.14 8.6 1.28 7.40 1.21
Amazon-670k NA 5.02 1.48 1.98 0.12
Other
Parabel | DiSMEC | PD-Sparse | PPD-Sparse | OVA-Primal++ [ SLEEC
Mediamill NA | 0.142 | 0004 0.078 NA 495
Bibtex NA | 028 0.007 0.094 NA 0.70
Delicious NA NA NA NA NA NA
AmazonCat-13k NA 0.20 0.87 1.82 NA 13.36
Wikil0-31k NA 116.66 NA NA NA NA
Delicious-200k NA 3114 0.43 275 NA 2.69
Amazon-670k 1.13 148 NA 20 NA 6.94

Table 8: Training time [s] for tree-based approaches: GBDT-S, CRAFTML, FastXML, PFastreXML, LdSM (LPSR and PLT
are NA) and other (not purely tree-based) methods: Parabel, DisMEC, PD-Sparse, PPD-Sparse, SLEEC, on various data
sets. The best result among tree-based methods is in bold, and among all methods is underlined.

Tree-based
GBDT-S [ CRAFTML | FastXML | PFastreXML [| LdSM
Mediamill NA NA 276.4 293.2 52.7
Bibtex NA NA 21.68 21.47 9.48
Delicious NA NA NA NA 21.74
AmazonCat-13k NA 2876 11535 13985 607
Wikil0-31k 1044 NA 1275.9 NA 179
Delicious-200k NA 1174 8832.46 8807.51 5125
Amazon-670k NA 1487 5624 6559 957
Other
Parabel | DiSMEC | PD-Sparse | PPD-Sparse | OVA-Primal++ [ SLEEC
Mediamill NA 12.15 34.1 23.8 NA 9504
Bibtex NA 0.203 7.71 0.232 NA 296.86
Delicious NA NA NA NA NA NA
AmazonCat-13k || NA 11828 2789 122.8 7330 119840
Wikil0-31k NA NA NA NA 1364 NA
Delicious-200k NA 38814 5137.4 2869 NA 4838.7
Amazon-670k 1512 174135 NA 921.9 NA 20904

Remark 3 (Training time). The training time of LdSM can be reduced order of magnitudes by using lower number of
epochs at the expense of ~ 1% loss in the accuracy. However, we report the training times that correspond to the best
accuracy results obtained with LdSM.
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Table 9: Propensity Score Precisions: PSP@1, PSP@3, and PSPQ5 (%) and Propensity Score nDCG scores: PSN@]I,
PSN@3, and PSN@5 (%) obtained by different tree-based methods on common multi-label data sets.

Mediamill D = 120, K = 101

Algorithm (PSP@ 1|PSP@3PSP@5|PSN@ 1 PSN@3PSN@5
LPSR 66.06 | 63.83 | 61.11 || 66.06 | 64.83 | 62.94
FastXML | 66.67 | 65.43 | 64.30 || 66.67 | 66.08 | 65.24
PFastreXML|| 66.88 | 65.90 | 64.90 || 66.88 | 66.47 | 65.71

[ LdSM [ 70.27 | 69.66 | 68.86 [ 70.27 | 69.99 | 70.30 |

Bibtex D = 1.8k, K = 159
Algorithm [PSP@ I[PSP@3PSP@5[PSN@ I[PSN@3PSN@5

LPSR | 49.20 | 50.14 | 55.01 || 49.20 | 49.78 | 52.41
FastXML | 48.54 | 52.30 | 58.28 || 48.54 | 51.11 | 54.38
PFastreXML|| 52.28 | 54.36 | 60.55 || 52.28 | 53.62 | 56.99

[ LdSM [ 52.01 | 54.38 [ 60.34 [ 52.01 | 53.67 | 57.08 |

Delicious D = 500, K = 983
Algorithm |PSP@1|PSP@3|PSP@5|PSN@1PSN@3PSN@5

LPSR 31.34 | 32.57 | 32.77 || 31.34 | 32.29 | 32.50
FastXML || 32.35 | 34.51 | 35.43 || 32.35 | 34.00 | 34.73
PFastreXML|| 34.57 | 34.80 | 35.86 || 34.57 | 34.71 | 35.42

[ LdSM [ 37.27]38.32[ 38.46 || 37.27 | 38.09 | 38.28 |

AmazonCat-13k D = 204k, K = 13k
Algorithm |PSP@1|PSP@3PSP@5|PSN@1PSN@3PSN@5
LPSR - - - - - -
FastXML || 48.31 | 60.26 | 69.30 || 48.31 | 56.90 | 62.75
PFastreXML/|| 69.52 | 73.22 | 75.48 || 69.52 | 72.21 | 73.67

[ LdSM [ 51.06 | 58.67 [ 60.47 [[ 51.06 | 57.78 [ 60.52 |

Wikil0-31k D = 102k, K = 31k
Algorithm |[PSP@1|PSP@3|PSP@5|PSN@1PSN@3PSN@5
LPSR 12.79 | 12.26 | 12.13 || 12.79 | 12.38 | 12.27
FastXML | 9.80 | 10.17 | 10.54 || 9.80 | 10.08 | 10.33
PFastreXML|| 19.02 | 18.34 | 18.43 || 19.02 | 18.49 | 18.52

[ LdSM [ 11.87 [ 12.35 [ 12.89 [[ 11.87 | 12.42 [ 1258 |

Delicious-200k D = 783k, K = 205k
Algorithm |[PSP@1|PSP@3|PSP@5|PSN@1PSN@3PSN@5
LPSR 324 | 342 | 3.64 || 324 | 337 | 3.52
FastXML | 6.48 | 7.52 | 8.31 6.51 | 7.26 | 7.79
PFastreXML|| 3.15 | 3.87 | 443 || 3.15 | 3.68 | 4.06

[ LdSM [ 7.16 | 826 [ 9.11 || 7.16 | 7.92 | 845 |

Amazon-670k D = 135k, K = 670k
Algorithm |PSP@ 1[PSP@3PSP@5|PSN@ 1[PSN@3PSN@5
LPSR 16.68 | 18.07 | 19.43 || 16.68 | 17.70 | 18.63
FastXML || 19.37 | 23.26 | 26.85 || 19.37 | 22.25 | 24.69
PFastreXMLJ|| 29.30 | 30.80 | 32.43 || 29.30 | 30.40 | 31.49

[ LdSM  [[28.14 | 30.82 [ 33.16 || 28.14 | 29.80 | 30.71 |
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Table 10: Precisions: PQ1, PQ3, and PQ5 (%) and nDCG scores: NQ1, N@3, and NQ5 (%) obtained for tree-based
approaches: GBDT-S, CRAFTML, FastXML, PFastreXML, LPSR, PLT, and LdSM and other (not purely tree-based)
methods: Parabel, DisMEC, PD-Sparse, PPD-Sparse, OVA-Primal++, LEML, and SLEEC, on various data sets. The best
result among tree-based methods is in bold, and among all methods is underlined.

Mediamill Bibtex
Algorithm P@] P@3 | P@5 N@I | N@3 | N@5 Algorithm P@l | P@3 | P@5 N@I | N@3 | N@5
Parabel 8391 | 67.12 | 52.99 || 83.91 [ 7522 | 7221 Parabel 64.53 | 3856 | 27.94 [| 64.53 | 59.35 | 61.06
5 DiSMEC - - - - - - 5 DiSMEC - - - - - -
= PD-Sparse 81.86 | 62.52 | 45.11 81.86 | 70.21 63.71 = PD-Sparse 61.29 | 35.82 | 25.74 61.29 | 55.83 | 57.35
© PPD-Sparse - - - - - - © PPD-Sparse - - - - - -
OVA-Primal - - - - - - OVA-Primal - - - - - -
LEML 84.01 | 67.20 | 52.80 || 84.01 [ 75.23 | 71.96 LEML 62.54 | 3841 | 2821 || 62.54 | 58.22 | 60.53
SLEEC 87.82 | 73.45 | 59.17 || 87.82 | 81.50 | 79.22 SLEEC 65.08 | 39.64 | 28.87 || 65.08 | 60.47 | 62.64
LPSR 83.57 | 65.78 | 49.97 || 83.57 | 74.06 | 69.34 LPSR 62.11 | 36.65 | 26.53 || 62.11 | 56.50 | 58.23
PLT - - - - - - PLT - - - - - -
8 GBDT-S 8423 | 67.85 B B B B 8 GBDT-S 5 B B 5 B B
= CRAFTML || 85.86 | 69.01 | 54.65 B B E = CRAFTML || 65.15 | 39.83 | 28.99 B B B
FastXML 84.22 | 67.33 | 53.04 || 84.22 [ 7541 | 72.37 FastXML 63.42 1 3923 | 28.86 || 63.42 | 59.51 | 61.70
PFastreXML || 8398 | 67.37 | 53.02 || 83.98 | 75.31 | 72.21 PFastreXML || 63.46 | 39.22 | 29.14 || 63.46 | 59.61 | 62.12
[ LdSM [[ 90.64 T 73.60 [ 58.62 [[ 90.64 [ 82.14 [ 79.23 | [ LdSM [[ 64.69 ] 39.70 | 29.25 [[ 64.69 [ 60.37 | 62.73 |
Delicious AmazonCat-13k
Algorithm P@l | P@3 | P@5 N@l [ N@3 [ N@5 Algorithm P@l | P@3 | P@5 N@I | N@3 | N@5
Parabel 6744 [ 61.83 | 56.75 || 67.44 | 63.15 | 59.41 Parabel 93.03 | 79.16 | 64.52 || 93.03 | 87.72 | 86.00
5 DiSMEC - - - - - - 5 DiSMEC 93.40 | 79.10 | 64.10 || 93.40 | 87.70 | 85.80
= PD-Sparse 51.82 | 44.18 | 3895 [| 51.82 [ 46.00 | 42.02 = PD-Sparse 90.60 | 75.14 | 60.69 || 90.60 | 84.00 | 82.05
S PPD-Sparse - - - - - - S PPD-Sparse - - - - - -
OVA-Primal - - - - - - OVA-Primal [[ 93.75 | 78.89 | 63.66 - - -
LEML 65.67 | 60.55 | 56.08 [| 65.67 | 61.77 | 58.47 LEML - - - - - -
SLEEC 67.59 | 61.38 | 56.56 || 67.59 | 62.87 | 59.28 SLEEC 90.53 [ 76.33 | 61.52 |[ 90.53 | 84.96 | 82.77
LPSR 65.01 | 58.96 | 53.49 || 65.01 | 60.45 | 56.38 LPSR - - - - - -
PLT - - - - - - PLT 91.47 | 75.84 | 61.02 - - -
8 GBDT-S 69.29 | 63.62 - - - - 8 GBDT-S - - - - - -
= CRAFTML 70.26 | 63.98 | 59.00 - - - = CRAFTML 9278 | 78.48 | 63.58 - - -
FastXML 69.61 | 64.12 | 59.27 [| 69.61 | 65.47 | 61.90 FastXML 9311 | 782 | 63.41 || 93.11 | 87.07 | 85.16
PFastreXML || 67.13 | 62.33 | 58.62 || 67.13 | 63.48 | 60.74 PFastreXML |[[ 91.75 | 77.97 | 63.68 || 91.75 | 86.48 | 84.96
[ LdSM [[ 7191 ] 65.34 | 60.24 [ 71.91 [ 66.90 | 63.09 | [ LdSM [[ 93.87 [ 75.41 [ 57.86 [ 93.87 [ 85.06 | 80.63 |
Wikil0-31k Delicious-200k
Algorithm P@l | P@3 | P@5 N@l | N@3 | N@5 Algorithm P@] P@3 | P@5 N@l | N@3 | N@5
Parabel 8431 | 72.57 | 63.39 [| 83.03 | 71.01 | 68.30 Parabel 46.97 | 40.08 | 36.63 || 46.97 | 41.72 | 39.07
5 DiSMEC 85.20 | 74.60 | 65.90 || 84.10 [ 77.10 | 70.40 5 DiSMEC 4550 | 38770 | 35.50 || 45.50 | 40.90 | 37.80
= PD-Sparse - - - - - - = PD-Sparse 34.37 | 2948 | 27.04 || 34.37 | 30.60 | 28.65
© PPD-Sparse - - - - - - © PPD-Sparse - - - - - -
OVA-Primal || 84.17 | 74.73 | 65.92 - - - OVA-Primal - - - - - -
LEML 7347 | 6243 | 5435 | 73.47 | 64.92 | 58.69 LEML 40.73 | 37771 | 35.84 || 40.73 | 38.44 | 37.01
SLEEC 85.88 | 72.98 | 62.70 85.88 | 76.02 | 68.13 SLEEC 4785 | 42.21 | 3943 || 47.85 | 43.52 | 41.37
LPSR 72.72 | 58.51 | 49.50 72.72 | 61.71 | 54.63 LPSR 18.59 1543 | 14.07 18.59 | 16.17 | 15.13
PLT 84.34 | 7234 | 6272 - - - PLT 4537 | 38.94 | 35.88 - - -
8 GBDT-S 84.34 1 70.82 - - - - 8 GBDT-S 42.11 | 39.06 - - - -
= CRAFTML 85.19 | 73.17 | 63.27 - - - = CRAFTML 47.87 | 41.28 | 38.01 - - -
FastXML 83.03 | 67.47 | 57776 || 83.03 | 75.35 | 63.36 FastXML 43.07 | 38.66 | 36.19 || 43.07 | 39.70 | 37.83
PFastreXML |[[ 83.57 | 68.61 | 59.10 [[ 83.57 | 72.00 | 64.54 PFastreXML || 41.72 | 37.83 | 35.58 || 41.72 | 38.76 | 37.08
[ LdSM [[ 8374 [ 71.74 ] 61.51 [ 83.74 [ 74.60 | 66.77 | [ LdSM [[ 4526 ] 40.53 [ 38.23 [ 45.26 [ 41.66 | 39.79 |
Amazon-670k
Algorithm P@l | P@3 | P@5 N@I | N@3 | N@5
Parabel 44.89 | 39.80 | 36.00 || 44.89 | 42.14 | 40.36
. DiSMEC 4470 | 39.70 | 36.10 || 44.70 | 42.10 | 40.50
o
= PD-Sparse - - - - - -
S PPD-Sparse || 4532 | 40.37 | 36.92 . - »
OVA-Primal - - - - - -
LEML 8.13 6.83 6.03 8.13 7.30 6.85
SLEEC 35.05 | 31.25 | 28.56 || 34.77 | 32.74 | 31.53
LPSR 28.65 | 24.88 | 22.37 || 28.65 | 26.40 | 25.03
PLT 36.65 | 32.12 | 28.85 - - -
8 GBDT-S B E B 5 E B
= CRAFTML || 3735 | 3331 | 30.62 - - -
FastXML 36.99 | 33.28 | 30.53 [| 36.99 | 35.11 | 33.86
PFastreXML || 39.46 | 35.81 | 33.05 [[ 39.46 | 37.78 | 36.69

[ _LdSM__ ]| 42.63 | 38.09 | 34.70 || 42.63 | 40.37 | 38.89 ]
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Figure 4: The behavior of Precision/nDCG score as a function of the number of trees in the ensemble. Plots were obtained
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Figure 5: The behavior of Precision/nDCG score as a function of the number of nodes 7},,,, (including leaves) and tree

depth of the deepest tree in the ensemble. Plots were obtained for Delicious, Bibtex, Mediamill, AmazonCat, and Wikil0
data sets.



Maryam Majzoubi, Anna Choromanska

Bibtex
60 | B FastXML-1# B FastXML-1*
e LdSM-1 e LdSM-1
50 | E LdSM-1% E LdSM-1*
< 40 B FastXML BN FastXML
& . LdSM . LdSM
@ 30
&
20
10
0
P@5 N@5
Mediamill
B FastXML-1# B FastXML-1%
80 s LdSM-1 80 e LdSM-1
E LdSM-1% B LdSM-1#
g 60 m FastXML 60 B FastXML
@ . LdSM o] B LdSM
8 40 2 40
o
20 20
0 0
P@1 P@3 P@5 N@1 N@3 N@5
Delicious
B FastXML-1# B FastXML-1*
60 | e LdSM-1 60 e LdSM-1
B LdSM-1% B LdSM-1*
5 B FastXML BN FastXML
G 40 . LdSM 3 40 . LdSM
o a
@ [=]
&
20 20
0 0
P@1 P@3 P@5 N@1 N@3 N@5
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