LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Maryam Majzoubi
New York University

Abstract

We consider multi-label classification where the
goal is to annotate each data point with the most
relevant subset of labels from an extremely large
label set. Efficient annotation can be achieved
with balanced tree predictors, i.e. trees with
logarithmic-depth in the label complexity, whose
leaves correspond to labels. Designing prediction
mechanism with such trees for real data applica-
tions is non-trivial as it needs to accommodate
sending examples to multiple leaves while at the
same time sustain high prediction accuracy. In
this paper we develop the LdSM algorithm for
the construction and training of multi-label de-
cision trees, where in every node of the tree we
optimize a novel objective function that favors
balanced splits, maintains high class purity of
children nodes, and allows sending examples to
multiple directions but with a penalty that pre-
vents tree over-growth. Each node of the tree
is trained once the previous node is completed
leading to a streaming approach for training. We
analyze the proposed objective theoretically and
show that minimizing it leads to pure and bal-
anced data splits. Furthermore, we show a boost-
ing theorem that captures its connection to the
multi-label classification error. Experimental re-
sults on benchmark data sets demonstrate that
our approach achieves high prediction accuracy
and low prediction time and position LdSM as a
competitive tool among existing state-of-the-art
approaches.

1 INTRODUCTION

Plethora of modern machine learning approaches are con-
cerned with performing multi-label predictions, as is the
case in recommendation or ranking systems. In multi-label

Proceedings of the 23™International Conference on Artificial In-
telligence and Statistics (AISTATS) 2020, Palermo, Italy. PMLR:
Volume 108. Copyright 2020 by the author(s).

Anna Choromanska
New York University

setting we receive examples » € X C R?, with labels
y CY ={1,2,...,K}, where each data point z is as-
signed a subset of labels y from an extremely large label set
Y. This provides a generalization of the multi-class prob-
lem [Bengio et al.| (2010); |Deng et al.|(2011); [Tianshi and
Koller| (2011); |Choromanska and Langford|(2015)], where
each data point instead corresponds to a single mutually
exclusive labelﬂ Employing the label hierarchy, commonly
represented as a tree with leaves corresponding to labels,
potentially allows for faster prediction when the hierarchy is
balanced and thus the tree depth is of size O(log,, K) for
M -ary tree, and enables overcoming the intractability prob-
lem of common baselines, such as one-against-all (OAA)
[Rifkin and Klautau|(2004)] that requires evaluating K clas-
sifiers per example. Tree-based predictors are therefore
commonly used, but since the label hierarchy is unavailable
most of the times, it has to be learned from the data.

The performance of the multi-label tree-based system heav-
ily hinges on the structure of the tree [Mnih and Hinton
(2009); Jain et al.| (2016)]. Some approaches [Jasinska et al.
(2016); 'Wydmuch et al.|(2018)] assume arbitrary label hi-
erarchy that is not learned. For example, PLT [Jasinska
et al.| (2016)] considers a sparse probability estimates for
F-measure maximization conditioned on the label tree. Ma-
jority of techniques however carefully design a splitting cri-
terion that is recursively applied in every node of the tree to
partition the data. These criteria differ between commonly-
used tree-based multi-label classification approaches. Multi-
label Random Forest (MLRF) [Agrawal et al.| (2013))] uses
information theoretic losses, specifically the class entropy
or the Gini index, to obtain label hierarchy. Sparse gradient
boosted decision trees (GBDT-S) [|S1 et al.| (2017)] build a
regression tree that fits the residuals from the previous trees
and uses the multi-label hinge or squared loss.

FastXML [Prabhu and Varmal (2014)], PFastre XML [Jain
et al.[(2016)], and SwiftXML [Prabhu et al.| (2018a)] (the
last one focuses on the prediction task with partially re-
vealed labels) constitute a family of methods that rely on
ranking losses. FastXML learns a hierarchy over the feature

'Tt is non-trivial to extend multi-class trees to the multi-label
setting [Prabhu et al.| (2018b)] as their training and prediction
mechanism is not suitable for the setting when an example is
equipped with more than one label.

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

space, rather than the label space, relying on the intuition
that in each region of the feature space only a small sub-
set of labels is active. The node objective function there
promotes generalizability via standard regression loss and
rank-prioritization via normalized Discounted Cumulative
Gain (nDCG) ensuring that relevant positive labels for each
point are predicted with high ranks. PFastreXML improves
upon FastXML by replacing the nDCG loss with its propen-
sity scored variant (the same is used in SwiftXML) which
is unbiased to the missing classes and assigns higher re-
wards for accurate tail label predictions. None of the above
techniques use balancing term in their objective.

There also exist methods that construct tree classifiers by op-
timizing clustering loss in nodes. Hierarchical k-means un-
derlies CRAFTML [W. Siblini and Meyer| (2018)] and older
approaches to multi-label classification such as LPSR [We+{
ston et al.|(2013)], and HOMER [Tsoumakas et al. (2008))].

The approach we propose in this paper belongs to the family
of purely tree-based methods. It partitions tree nodes based
on joint optimization in the feature and label space. The
node split is based on a new objective function that explores
the correlation between both spaces by conditioning the
learning of feature space partitioning with data label infor-
mation. The objective applies to trees of arbitrary width. It
explicitly enforces class purity of children nodes (i.e. points
within a partition are likely to have similar labels whereas
points across partitions are likely to have different labels).
Moreover, it relies on having multiple (i.e. two for binary
tree) regressors at each node and thus allows sending exam-
ples to multiple children nodes. Multi-way assignment of ex-
amples is however penalized to better control tree accuracy.
Finally, the objective encourages balanced partitions to en-
sure efficient prediction. The objective function comes with
theoretical guarantees. We show that optimizing the objec-
tive improves the purity and balancedness of the data splits
in isolation, i.e. when respectively the balancedness and pu-
rity is fixed. We next analyze the connection of the proposed
objective with the multi-label classification error. We prove
that when the objective is perfectly optimized in every tree
node it leads to zero-error. We generalize this observation
to a setting when the objective is gradually optimized in
every tree node, but may never reach the actual optimum.
We first show that minimizing the objective is causing the
monotonic decrease of the error with every split. Next we
prove a much stronger statement given in the form of boost-
ing theorem that relies on weakly optimizing the objective
function at each node of the tree and show that our tree algo-
rithm boosts the weak learners at the nodes to achieve any
desirable multi-label classification error in a finite number
of splits. The resulting tree construction-and-training algo-
rithm, that we call LdSM, results in Logarithmic-depth trees
that are trained in a streaming fashion, i.e. node—by—nod

“When training each node we stream multiple times through
the data before moving to the next node. After we move, we never

and achieve competitive performance to other state-of-the-
art tree-based approaches, being accurate and efficient at
prediction, on large multi-label classification problems. In
summary, our proposed objective function, the resulting tree
construction algorithm, and theoretical analysis are all new
and constitute the contributions of our paper.

We next discuss other approaches for multi-label classifi-
cation. They constitute a different family of methods than
purely tree-based techniques that our method belongs to
and thus are not directly relevant to our work. Those tech-
niques include extensions of OAA [Babbar and Scholkopf]
(2017); [Yen et al.| (2016}, 2017); H. Fang and Friedlander
(2019); Niculescu-Mizil and Abbasnejad| (2017); Babbar
and Scholkopf| (2019); |[Prabhu et al.| (2018b)); Khandagale
et al.| (2019)], deep learning methods [You et al.|(2019); Liu
et al.|(2017); Zhang et al.[|(2018]); Jernite et al.|(2017)] and
approaches for learning embeddings [Balasubramanian and
Lebanon| (2012); B1 and Kwok! (2013)); |Cisse et al.| (2013));
Hsu et al.| (2009); [Tai and Lin|(2012);|Zhang and Schneider
(2011); [(Chen and Lin|(2012); |Yu et al.|(2014); Ferng and
Lin| (2011)); J1 et al.| (2008); [Weston et al.|(2011)); |Lin et al.
(2014)].

The paper is organized as follows: Section [] presents the
objective function, Section 3| provides theoretical results,
Section [] shows the algorithm for tree construction and
training and explains how to perform testing using the tree,
Section [5] reports empirical results on benchmark multi-
label data sets, and finally Section [6] concludes the paper.
Supplementary material contains proofs of theorems from
Section [3] additional pseudo-codes of algorithms from sec-
tion[4] and additional experimental results.

2 OBJECTIVE FUNCTION

We next explain the design of the objective function for the
tree of arbitrary width M, i.e. tree where each node has M
children, and show a special case of a binary tree. Below
we consider an arbitrary non-leaf node of the tree and thus
omit node index in the notation.

In our setting, each node of the tree contains M binary
classifiers hj;, where j = 1,2,..., M. h; € H, where
‘H is the hypothesis class with linear regressors. Consider
an arbitrary non-leaf node and let 7; denote the normal-
ized fraction of examples containing label ¢ in their label
set reaching that node, where the multiplicative normaliz-
ing factor is an inverse of the average number of labels
per example containing label 7 in their label set (note that
> i1 m = 1). The node regressors are trained in such a
way that h;(z) > 0.5 means that the example z is sent to
the j" subtree of a node (thus sending example to more than

go back to the previously trained ones. Thus we assume the data
set is finite (but can be very large). This differs from the online
setting. For distinction between streaming and online settings
see |Dasguptal (2008).

Maryam Majzoubi, Anna Choromanska

one child is possible). To prevent examples from stucking
inside the node, in case when hj(xz) < 0.5 V=12, . m
the example is sent to the child node corresponding to
the highest margin, i.e. (argmax;—12 . m hj(az))th child
node. Let P; = P(h;(x) > 0.5) be the probability that
the example x reaches child j € {1, 2,..., M} and let
P} = P(h;(x) > 0.5) denote the conditional probability
of these event when the example belongs to class ¢. Note that
i) S P> L) foranyi =1,2,... K, 00 P> 1,
and i) P; = Y}, m;P!. The node splitting criterion is
defined as follows

M M
J=>_ > |Pj-P]

j=11=j+1

ey

balancing term

K M M

MDD D mIP-F 4

i=1 j=11=j+1

M
> op|-1].
j=1

multi-way penalty

class integrity term

purity term

where A1, and \s are non-negative hyper-parameters. The
balancing term guards an even split of examples between
children nodes and is minimized for the perfectly balanced
split when Py = P, = ... = Py;. The class integrity term
ensures that examples belonging to the same class are not
split between children nodes. This term is maximized when
[47 or | & | probabilities from among P}, P, ..., P, are
equal to 1 and the remaining ones are equal to 0 for any
1 =1,2,..., K. Thus at maximum, given any class ¢, the
examples containing this class in their label set are not split
between children, but they are instead simultaneously all
sent to [4L] or 2] children. The third term in the ob-
jective aims at compensating this multi-way assignment of
examples. The multi-way penalty prevents sending exam-
ples to multiple directions too often. It is maximized when
Vj=1,2,...m P; = 1 and minimized when Z?il P, =1
Thus the purity term, defined as the sum of the class in-
tegrity term and the multi-way penalty, is minimized for
the perfectly pure split when no example is sent to more
than one children (in other words, this is when for any
i=1,2,...,K, P; =1 for one particular setting of j and
PJ? = 0 for all other js).

In the binary case the objective then simplifies to the follow-
ing form:

k
J = ‘PR7PL|7>\127T2'|P§*P£|+A2‘PR+PL71‘,
— —_—

balancing term i=1 multi-way penalty

class integrity term

purity term

2
where Pr and P}, (P, and P}) denote the probabilities

that the example reaches right (left) child, marginally and
conditional on class ¢ respectively.

We aim to minimize the objective J to obtain high qual-
ity partitions. We next show theoretical properties of the
objective introduced in Equation [I]

3 THEORETICAL RESULTS

In this section we analyze the properties of the objective and
its influence on the purity and balancedness of node splits.
Next we show its connection to the multi-label error.

3.1 General Properties of the Objective and its
Relation to Node Partitions

The two lemmas below provide the basic mathematical un-
derstanding of the objective J.

Lemma 1. (Binary tree) For any hypotheses hr 1, € H, the
objective J defined in Equation|2|satisfies J € [—\1, A2]
and it is minimized if and only if the split is perfectly bal-
anced and perfectly pure.

Lemma [I] generalizes to the tree of arbitrary width as fol-
lows:

Lemma 2. (M-ary tree) For any hypotheses h; € H, where
j=1,2,..., M, and sufficiently large Xy, i.e. (M —3 <
;\—f), the objective J defined in Equation (l| satisfies J €
[—A\1(M — 1), Ao(M — 1)] and it is minimized if and only
if the split is perfectly balanced and perfectly pure.

Let J* denote the lowest possible value of the objective J,
ie. J* = -\ (M —1).

Next we study how the objective promotes building nodes
that are as balanced and pure as possible given the data. We
first introduce useful definitions.

Definition 1. (Balancedness) The node split is 3-balanced

Z?i1 Pi

if the following holds max;_(1 2.y | P — =51 =

B, where 3 € [0, 1-— ﬁ} is a balancedness factor.

Note that a split is perfectly balanced if and only if 5 = 0.

Definition 2. (Purity) The node split is a-pure if the follow-
ing holds

M K

Az;;mmin

M
<P;’, > Fi- P}) =a, 3
=1

where, o € [0, 1] is a purity factor.

Note that a split is perfectly pure if and only if o = 0.
Next lemmas show that in isolation, when either the purity
or balancedness of the split is fixed, decreasing the value
of the objective leads to recovering more balanced or pure
split, respectively.

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Lemma 3. If a node split has a fixed purity term «, with

corresponding Jy,., then 8 < J — J3,
Lemma 4. If a node split has a ﬁxed balanced term f3,

with corresponding Jb slance And assuming that the following
condition holds: \y(M — 1) + Jbﬁalance > Ay > N\ ML
then

2
a < (J - Jlillance +)‘2)

M(2X2 — M (M - 1))

“

3.2 Relation of the Objective to the Multi-label Error

We will next explore the connection of the multi-label clas-
sification error with the proposed objective. For simplicity,
assume each example has r labels. Denote ¢(x) to be the
true label set of 2 and y,.(x) to be the assigned label set
of size r by the tree. Denote e,.(7) to be the r-level er-
ror with respect to the Precision@r measure, i.e. e,.(7T) =

1 — Precision@r = £ ZZK:l P(i € y.(z),1 ¢ t(x)).
3.2.1 Ideal Case

Here we consider the ideal case when the objective J is
perfectly minimized in every node of the tree and show that
in this case the tree achieves zero multi-label classification
error.

Theorem 1. When the objective function J from Equationl[l]
is perfectly minimized in every node of the tree, i.e. J = J*,
then the resulting multi-label tree achieves zero 7-level multi-
label error; ex(T), forany t =1,2,...,r

3.2.2 Real Case: Boosting Theorem

Next we prove a bound on the classification error for the
LdSM tree. In particular, we show that if the proposed
objective is “weakly” optimized in each node of the tree
then our algorithm will boost this weak advantage to build
a tree achieving any desired level of accuracy. This weak
advantage is captured in a form of the Weak Hypothesis
Assumptions. We restrict ourselves to the case of binary
tree. We omit the analysis for the M-ary to avoid over-
complicating the notation.

We introduce the following weak assumptions.

Assumption 3.1. ~v-Weak Hypothesis Assumption: for any
distribution P over the data, at each node of the tree T there
exist a partition such that Zz e |P}% — Pi| > =, where
€ (0,1].

Remark 1. The above definition essentially assumes that in
every node of the tree we are able to recover a partition with
the corresponding class integrity term (a second component
of our objective) bounded away from zero. Since the value
of this term ranges in [0, 1], such assumption is indeed very
“weak”.

Also, specifically note that it is enough that for one class i
the following holds: | P}, — P}| >~y in order to satisfy the
assumption.

Assumption [3.1]leads to the lemma that captures the mono-
tonic drop of the error with each split. A similar theorem
for M-ary case is provided in the Supplement.

Lemma 5. Under the Weak Hypothesis Assumption
e, (T) is monotonically decreasing with every split of the
tree.

We next introduce the second weak assumption.

Assumption 3.2. c-Weak Hypothesis Assumption: at step
t of the algorithm, there exist a leaf node 1* such that its
weight, wy= > ﬁ, where ¢ € (0, 1]. wy~ is the probability
that a randomly chosen point from distribution P reaches
the leaf I*.

Remark 2. Note that at step t of the algorithm we have
t + 1 leaves. Also note that Zécﬁ w; = 1, where Lisa
subset of the tree leaves (L is the set of all leaves and the
sum is taken over all subsets of tree leaves) and w ; is the
weight of this subset, or equivalently, the probability that
a randomly chosen point from distribution P reaches all
leaves in L.

Consider the case when we do not send examples to more
than one direction in every node of the tree. In this case there
exists a leaf with c equal to 1 and therefore w; > 1/(t + 1)
for any leaf l. When c decreases, we allow to send more
examples to multiple directions in the tree. In the Assump-
tion[3.2)we let the examples to be sent to both directions at
some nodes, therefore we require that there exists a leaf with
w; > ¢/(t + 1), for ¢ < 1. Thus Assumption3.2]is tightly
correlated with the multi-way penalty term of the objective.
Note also that naturally, ¢ has to be bounded away from
zero since every leaf receives at least one example.

Then the following theorem holds.

Theorem 2. Under the Weak Hypothesis Assumptions
and 3.2 and an additional assumption that each node pro-
duces perfectly balanced split, for any o € [0, 1] to obtain
e-(T) < « it suffices to have a tree with t internal nodes
that satisfy

161n K

(t+1) 2 ()70 Homm, 5)

where b = |Pg + P, — 1].

Consider an algorithm that builds the tree in a top-down fash-
ion so that at each step it chooses the node with the highest
weight, optimizes J at that node, and splits that node to its
children. The theorem does not assume that we can opti-
mize J perfectly in the node but instead only requires weak
assumptions to hold. The above theorem guarantees that we
can amplify the weak gain at each node to decrease the error
below any desirable threshold. In practice we expect that J
can be optimized far better than what is given by the weak
hypothesis assumptions, which effectively reduces the num-
ber of required splits needed to achieve given multi-label

Maryam Majzoubi, Anna Choromanska

classification error. A generalization of Theorem [2]is pro-
vided in the Supplement (note it relies on more complicated
assumptions though).

4 ALGORITHM

In this section we present the algorithm for simultaneous
tree construction and training. We then discuss how to as-
sign labels to the test example. The main algorithm for
tree construction and training is captured in Algorithm [I] It
presents the top-level procedure for building the tree. It in-
cludes three sub-algorithms which we will explain here but
their pseudo-codes are deferred to the Supplement. The tree
construction is performed in a top-down node-by-node fash-
ion. Reaching the maximum number of nodes terminates
further growth of the tree. As can be seen in Algorithm[I] we
select a node to be expanded into children nodes based on
the priority computed as the difference of the sum and max-
imum value of the bins of the label histogram in the node.
The priority of the node is related to the weight of the node
defined in section[3] We want to split nodes that are reached
by many examples but we also require them to come from
different classes, where at least two classes have significant
mass. High priority is attained by these nodes that were
visited by many examples that correspond to many different
labels. When the node is selected for expansion, we train
its regressors according to the procedure TrainRegressors
(see Algorithm |4 in the Supplement for its pseudo-code).
In TrainRegressors we stream multiple (#epochs) times
through the data reaching that node and optimize the objec-
tive function for each example according to the procedure
OptimizeObjective (see Algorithm [3|in the Supplement).
In OptimizeObjective we search over all possible ways
of sending an example to M directions (including multi-
way cases) and we choose the set of directions for which
J achieves the lowest value. TrainRegressors uses these
computed optimal direction(s) to train its regressors using
cross-entropy loss. Afterwards, it updates the probabilities
Pjs and P;s in the node. Instead of taking 1-increments
per example when updating probabilities, we use regressor
margins (clamped to the interval [0, 1]).

After training the regressors, we create children for the
node according to the procedure CreateChildren (see Al-
gorithm[5in the Supplement). Based on the outputs of the
regressors we assign data points to its children using rule ex-
plained in Section [2]and update children’s label histograms
accordingly.

At testing, the prediction is formed according to Algorithm[2]
Specifically, the example is sent down the tree, from the root
to one or more leaves, guided by node regressors. For exam-
ples that descended to multiple leaves, we estimate the label
histogram by averaging the normalized label histograms of
these leaves. The normalized label histogram is computed
by dividing the label histogram by the sum of its entries.

Given R (the input to the Algorithm[2), we assign to the test
example top R labels that correspond to the highest entries
in the resulting histogram.

Algorithm 1 BuildTree

% v.1 denotes the list of indices of examples
reaching node v
Input: - maximum # of nodes: T.x;
- tree width: M;
- # of training epochs: E;
- training data (21,91),..., (TN, YN)
%y;: all labels of the i"example

procedure UpdateHist (L Hist, y)
fori € ydo LHist[i] +=1 end for

Vroot-I +— {1,2,...., N};
for i € v,.90¢.1 do

% add y; to histogram

UpdateHist (v,.o0¢- Lhist, y;)
end for
t+ 1
Q.push(vyoot, 0) % initialize priority queue Q)
while Q # () and ¢t < Tmax do

v < Q.pop()

TrainRegressors (v)

ch < CreateChildren (v)

for m € ch do

priority —
Zkech[m].Lhist ch[m].Lhist[k]
— MaXgechm)]. Lhist chlm].Lhist[k]
Q.push(ch[m], priority)

end for

t—t+M
end while
return v,

Vroot-Lhist <

The computational complexity analysis The complex-
ity of the TrainRegressors is O(M (D + K) + eM N (d +
oM I%)), where D is the feature size, K is the label size,
e is the number of epochs, N is the number of examples
reaching the node, d is the average number of features per
point and k is the average number of labels per point. The
first term, M (D + K), only corresponds to the initializa-
tion of the regressors and conditional probabilities. Note
that since the feature and label spaces are sparse, d and k
are small numbers compared to D and K. If we expect
eN(d+2Mk) << (D + K), the complexity can be further
reduced when using a self-balancing binary search tree to
store the sparse set of weight vectors and probabilities. This
would result in O(eM N (d + 2Mk)) computational com-
plexity (M is usually a small number. In our experiments
we used M = 2,4). Let 7 be the average number of leaves
that each example descends to. Then the overall training

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

complexity when building a balanced tree would become
O(NreM(2M[; + d)), where N is the the size of the train-
ing data. Furthermore, the testing complexity would become
O(log(K)#M (k + d)) per test data point. Note that having
an explicit balancing term in our objective function encour-
ages building trees with logarithmic depth with respect to
the total number of labels, K.

S EXPERIMENTS

We evaluated LdSM on multiple benchmark data sets (Bib-
tex, Mediamill, Delicious, AmazonCat-13k, Wikil0-31k,
Delicious-200K, and Amazon-670k) obtained from public
repository [Varmal (2019). The data sizes are reported in
Table [2] (D is the data dimensionality). The experimental
setup is described in the Supplement.

Algorithm 2 Predict (z, R)

Input: - root of the trained tree: v,o0¢;
- #labels to predict per example: R;
- tree width: M

procedure GetLeaves(v)
if v.isLeaf then
leaf List.push(v)
else
formel... M do
if v.w, 2 > 0.5 then
GetLeaves(v,,,)
sent < true
end if
end for
if not sent then
M 4= arg maXye{1,2,..., M} v.w;x
GetLeaves(v,,,)
end if
end if

leafList + () % list of leaves reached by example x
GetLeaves(v,o0t)
hist < ()
for v; € leafList do

SUM <= D pcoy Lhist VI-LHist[K]

for k € v;.Lhist do

hist[k] += v;.Lhist[k]/sum

end for
end for
labels + select R top entries from hist
return labels

In Table [2] we compare the Precisions PQ1, P@3, and
P@5 and nDCG scores NQ1, NQ@Q3, NQ5 (see [Varma
(2019) for the explanation of these evaluation metrics) ob-
tained by LdSM and other purely tree-based competitor
algorithms: LPSR, FastXML, PFastreXML, PLT, GBDT-S,

and CRAFTML.The performance of the competitors were
obtained from the corresponding papers introducing these
techniques and multi-label repository Varma (2019). The
prediction with LdASM ensemble is done by averaging the
resulting histograms for each tree and then selecting R la-
bels. At training, each tree in the ensemble differs in re-
gressors initialization. The reported results show that LASM
either matches or, on selected problems (including large
Amazon-670k data set), outperforms the existing tree-based
approaches in terms of both the Precision and the nDCG
score.

In Table [3] we report the Precisions of LASM compared with
Parabel, the most recent OAA approach, which is also effi-
cient compared to the other schemes. Parabel builds a hierar-
chy over labels and also learns powerful 1-vs-All classifiers
in the leaf nodes. It can be considered as a hybrid tech-
nique which combines 1-vs-All with label-tree approaches.
It has much better prediction time compared to the other
1-vs-All approaches while achieving similar accuracies as
DiSMEC/PPD-Sparse. The comparison with the rest of the
techniques are deferred to the Supplement. On bigger data
sets, LASM has some loss of statistical accuracy with re-
spect to OAA methods. However, these techniques have
fundamentally different underlying mechanism from ours,
which usually result in their higher complexity and longer
prediction time.

We observed the largest data set (Amazon-670k) suffer from
the tail label problem. For this data set we use re-ranking
approach similar to Jain et al.| (2016). This is applied at test-
ing, after our tree is built and trained. Re-ranking increases
the test time by ~ 50% for Amazon-670k. In Table [4 we
compare the performance of our approach against Parabel
on tail labels using the propensity score variant of Precision.
On most of the data sets LASM has better performance.

In Table [I|we provide per-example prediction time (training
time is deferred to the Supplement) for different data sets
comparing LdSM with competitor methods, as well as with
Parabel. Our result demonstrates that LdASM can perform ef-
ficient multi-label prediction, with respect to the tree-based
methods as well as the other techniques including OAA
approaches. (Refer to the Supplement for more results.)

Figure [2] shows that the depth of trees constructed with
LdSM are O(log,,;(K)), specifically they lie in the interval
[log,s K, 3log,, K] for Mediamill, Bibtex and Delicious-
200k data sets and [log,; K, 2log,, K] for Delicious,
AmazonCat-13k, Wikil0-31k and Amazon-670k data sets.
Next we discuss the results captured in Figure[3] Note that
additional figures related to this study can be found in the
Supplement. In the top plot we report the behavior of Pre-
cision and nDCG score as the size of the LASM ensemble
grows. Clearly the most rapid improvement in Precision
is achieved when increasing the ensemble size to 10 trees
(across different data sets this was found to be between

Maryam Majzoubi, Anna Choromanska

5 and 10, except Bibtex (case M = 2), for which it was
20). After that, the increase of PQ1, P@3, PQ5, NQ1,
N@3, and N@5 saturates and we obtain less than 2% im-
provement when increasing the ensemble further to 50. The
same can be observed for nDCG score. The bottom plot
captures how the Precision and nDCG score depend on the
number of nodes in the tree and the depth of the deepest
tree in the ensemble. As we increase the maximum allowed
number of nodes (77,,4,) in the LASM algorithm, it recovers
O(logrr (Timaz))-depth trees. One can observe the general
tendency that increasing the number of nodes ¢ times, re-
sults in increasing the tree depth by less than 2log,,(¢).
We also observed that increasing the number of nodes/tree
depth for most data sets leads to the improvement in Preci-
sions PQ1, PQ3, and P@5 and nDCG scores NQ1, NQ3,
and N @5 by less than 3%, suggesting that often shallower
trees already achieve acceptable performance. The plots in
Figure[§]in the Supplement demonstrate that single LdSM
tree outperforms single FastXML tree. The same property
holds for ensembles.

In Figure([T]we show how the objective function is optimized
as we move from the root deeper into the tree. Intuitively
root faces the most difficult optimization task as it sees the
entire data set and consequently the objective function there
is optimized more weakly, i.e. to a higher level, than in case
of nodes lying deeper in the tree. As we move closer to the
leaves, the convergence is faster due to the “cleaner” nature
of the data received by the nodes there (less label variety).

1.0

* Root
051 T . + Depth=10
0.0{ *™ Depth = 15
—0.5 == Jmin
- =" Jmax
-1.0
-1.5
e 1 o e e e Y B e
-2.5
10 10! 10? 103 104 10°

Training iterations

Figure 1: The behavior of the LASM objective function
J during training at different levels in the tree for an
exemplary LdSM tree. Delicious data set. Tree depth
is 20 and M was set to M = 2. J,,,;n and J,,,4, denote
respectively the minimum and maximum value of .J.

6 CONCLUSIONS

This paper develops a new decision tree algorithm, that we
call LdSM, for multi-label classification problem. The tech-
nical contributions of this work include: a novel objective
function and its corresponding theoretical analysis and a
resulting novel algorithm for tree construction and train-
ing that we evaluate empirically. We find experimentally
that LdASM is competitive to the state-of-the art multi-label
approaches, performs efficient prediction, and achieves

60
e M=2

M=4

— 3loga(K)

=== 2logziK)

""" 3logalk)

—= logz(K) = 2loga(K)
== loga(K)

100 0! 102 100 10* 105 108
Number of labels (K)

Figure 2: The depth of the deepest tree in the optimal LdSM
tree ensemble (reported in Table2) versus the number of
labels in the data set (K).

Table 1: Prediction time [ms] per example for tree-based

methods as well as Parabel on different data sets (LPSR and
PLT are NA).

—

= >

=82 %
281222 =
SllmlZ|z| 2] 8
A O | 0| & | ~ —
Mediamill || NA [[0.05] NA [0.27]0.37] 0.05

Bibtex NA || NA | NA |0.64]0.73(/0.013
Delicious NA [|0.04| NA | NA | NA [|0.014

AmazonCat-13k|| NA || NA |5.12]1.21|1.34| 0.04
Wikil0-31k NA |[0.20| NA |1.38| NA || 0.15
Delicious-200k || NA ||0.14| 8.6 [1.28]7.40]|| 1.21
Amazon-670k |[1.13|| NA [5.02]1.48|1.98] 0.12
—— P@1=N@1
70 —a— P@3
L] —i— P@5
S 65 N@3
-g._ —r— N@5
g 60
255
50
0 10 20 30 40 50
#Trees
69.31 69.18 69.9 70.59 7135 TL.76 e~
so/ WMm Ws Bis B0 B4 B4 N@3
9 . N@5
8 mm PE3
CHRHuan -
LA
oL

1000 2000 4000 8000 16000 32000
d=15 d=18 d=18 d=19 d=19 d=20
#MNodes, Depth(d)

Figure 3: The behavior of precision/nDCG score as a func-
tion of the number of trees in the ensemble (first row) and
number of nodes T},,,. (including leaves) and tree depth of
the deepest tree in the ensemble (second row). M is set to
M = 2. Plots were obtained for Delicious data set (Table
1(c)). The figure should be read in color.

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

Table 2: Precisions: P@Q1, PQ3, and PQ5 (%) and nDCG
scores: N@Q1, N@3, and N@Q5 (%) obtained by different
tree-based methods on common multi-label data sets.

(a) Mediamill D = 120, K = 101

Algorithm

P@1

P@3

P@5

N@l

N@3

N@5

LPSR

83.57

65.78

49.97

83.57

74.06

69.34

PLT

GBDT-S

84.23

67.85

CRAFTML

85.86

69.01

54.65

FastXML

84.22

67.33

53.04

84.22

75.41

72.37

PFastre XML

83.98

67.37

53.02

83.98

75.31

72.21

LdSM

[90.64]73.60[58.62][90.64]82.14]79.23]

(b) Bibtex D = 1.8k, K = 159

Algorithm

P@1

P@3

P@5

N@l

N@3

N@5

LPSR

62.11

36.65

26.53

62.11

56.50

58.23

PLT

GBDT-S

CRAFTML

65.15

39.83

28.99

FastXML

63.42

39.23

28.86

63.42

59.51

61.70

PFastre XML

63.46

39.22

29.14

63.46

59.61

62.12

LdSM

[64.69]39.70[29.25][64.69]60.37]62.73]

(c) Delicious D = 500, K = 983

Algorithm

P@1

P@3

P@5

N@l

N@3

N@5

LPSR

65.01

58.96

53.49

65.01

60.45

56.38

PLT

GBDT-S

69.29

63.62

CRAFTML

70.26

63.98

59.00

FastXML

69.61

64.12

59.27

69.61

65.47

61.90

PFastre XML

67.13

62.33

58.62

67.13

63.48

60.74

[LdSM

[71.91]65.34[60.24][71.91]66.90]63.09]

(d) AmazonCat-13k D = 204k, K = 13k

Algorithm

P@l

P@3

P@5

N@l

N@3

N@5

LPSR

PLT

91.47

75.84

61.02

GBDT-S

CRAFTML

92.78

78.48

63.58

FastXML

93.11

78.2

63.41

93.11

87.07

85.16

PFastreXML

91.75

77.97

63.68

91.75

86.48

84.96

[LdSM

[93.87[75.41]57.86][93.87[85.06]80.63]

(e) Wikil0-31k D = 102k, K = 31k

Algorithm

P@l

P@3

P@5

N@l

N@3

N@5

LPSR

72.72

58.51

49.50

72.72

61.71

54.63

PLT

84.34

72.34

62.72

GBDT-S

84.34

70.82

CRAFTML

85.19

73.17

63.27

FastXML

83.03

67.47

57.76

83.03

75.35

63.36

PFastreXML

83.57

68.61

59.10

83.57

72.00

64.54

[LdSM

[83.74[71.74[61.51[83.74]74.60]66.77|

(f) Delicious-200k D = 783k, K = 205k

Algorithm ||P@1|P@3|P@5||[N@1|N@3|N@5
LPSR 18.59(15.43(14.07|/18.59|16.17{15.13

PLT 45.37|38.94|35.88|| - - -

GBDT-S ||42.11{39.06| - - - -

CRAFTML |(47.87|41.28(38.01|| - - -
FastXML |/43.07|38.66|36.19(|43.07|39.70|37.83
PFastreXML.||41.72|37.83|35.58||41.72|38.76|37.08

[LdSM [[45.26]40.53]38.23][45.26]41.66[39.79]

(g) Amazon-670k D = 135k, K = 670k

Algorithm ||P@1|P@3|P@5||N@1|N@3|N@5
LPSR 28.65|24.88|22.37|(28.65(26.40(25.03

PLT 36.65|32.12|28.85| - - -

GBDT-S - - - - - -
CRAFTML |137.35|33.31|30.62|| -
FastXML {/36.99|33.28|30.53|/36.99|35.11|33.86
PFastreXML||39.46|35.81|33.05||39.46|37.78|36.69

[LdSM_ [42.63]38.09[34.70[[42.63[40.37]38.89]

Table 3: Precisions: PQ1, PQ3, and PQ5 (%) obtained by
LdSM and OAA approach (Parabel) on common multi-label
data sets.

OAA (Parabel) LdSM
[P@i[P@3[P@5|P@1[P@3[P@5
Mediamill _ [[83.91]67.12]52.99[90.64]73.60[58.62
Bibtex ||64.53|38.56/27.94]/64.69(39.70[29.25
Delicious|67.44[61.83[56.75 | 71.9165.34/60.24
AmazonCat-13k[[93.03]79.16[64.52([93.87[75.4157.86
Wikil0-31k |[84.31]72.57(63.39]83.74[71.74/61.51
Delicious-200k ||46.97/40.08[36.63[45.2640.53[38.23
Amazon-670k_[[44.89/39.80(36.00][42.63(38.09[34.70

Table 4: Propensity Score Precisions: PSP@Q1, PSPQ3,
and PSP@5 (%) obtained by LdSM and OAA approach
(Parabel) on common multi-label data sets.

OAA (Parabel) LdSM
PSP | PSP | PSP || PSP | PSP | PSP
@] | @3 | @ || @] | @3 | @5

Mediamill ||66.51|65.21/64.30(/70.27/69.66(68.86
Bibtex 50.88(52.42(57.36//52.01(54.38/60.34
Delicious 32.69(34.00(34.53|137.27|38.32|38.46
AmazonCat-13k||50.93|64.00/72.08/|51.06|58.67|60.47
Wikil0-31k |[11.66(12.73/13.68|11.87|12.35/12.89
Delicious-200k || 7.25 | 7.94 | 8.52 || 7.16 | 8.26 | 9.11
Amazon-670k |[25.43|29.43|32.85||28.14/30.82|33.16

high multi-label accuracy with logarithmic-depth trees. This
new method is therefore suitable for applications involving
large label spaces.

Maryam Majzoubi, Anna Choromanska

References

Agrawal, R., Gupta, A., Prabhu, Y., and Varma, M. (2013). Multi-
label learning with millions of labels: Recommending advertiser
bid phrases for web pages. In WWW.

Babbar, R. and Scholkopf, B. (2017). Dismec: Distributed sparse
machines for extreme multi-label classification. In ACM WSDM.

Babbar, R. and Scholkopf, B. (2019). Data scarcity, robustness
and extreme multi-label classification. Machine Learning.

Balasubramanian, K. and Lebanon, G. (2012). The landmark
selection method for multiple output prediction. In /CML.

Bengio, S., Weston, J., and Grangier, D. (2010). Label embedding
trees for large multi-class tasks. In NIPS.

Bhatia, K., Jain, H., Kar, P., Varma, M., and Jain, P. (2015). Sparse
local embeddings for extreme multi-label classification. In
NIPS.

Bi, W. and Kwok, J. (2013). Efficient multi-label classification
with many labels. In ICML.

Bottou, L. (1998). Online algorithms and stochastic approxima-
tions. In Online Learning and Neural Networks. Cambridge
University Press.

Chen, Y.-N. and Lin, H.-T. (2012). Feature-aware label space
dimension reduction for multi-label classification. In NIPS.

Choromanska, A. and Langford, J. (2015). Logarithmic time online
multiclass prediction. In NIPS.

Cisse, M. M., Usunier, N., Artieres, T., and Gallinari, P. (2013).
Robust bloom filters for large multilabel classification tasks. In
NIPS.

Dasgupta, S. (2008). Topics in unsupervised learn-
ing. http://cseweb.ucsd.edu/~dasgupta/
291-unsup/lec6.pdfl

Deng, J., Satheesh, S., Berg, A. C., and Fei-Fei, L. (2011). Fast
and balanced: Efficient label tree learning for large scale object
recognition. In NIPS.

Ferng, C.-S. and Lin, H.-T. (2011). Multi-label classification with
error-correcting codes. In ACML.

H. Fang, M. Chengy, C.-J. H. and Friedlander, M. (2019). Fast
training for large-scale one-versus-all linear classifiers using
tree-structured initialization. In SDM.

Hsu, D. J., Kakade, S. M., Langford, J., and Zhang, T. (2009).
Multi-label prediction via compressed sensing. In NIPS.

Jain, H., Prabhu, Y., and Varma, M. (2016). Extreme multi-label
loss functions for recommendation, tagging, ranking and other
missing label applications. In ACM SIGKDD.

Jasinska, K., Dembczynski, K., Busa-Fekete, R., Pfannschmidt,
K., Klerx, T., and Hullermeier, E. (2016). Extreme f-measure
maximization using sparse probability estimates. In ICML.

Jernite, Y., Choromanska, A., and Sontag, D. (2017). Simultaneous
learning of trees and representations for extreme classification
and density estimation. In /ICML.

Ji, S., Tang, L., Yu, S., and Ye, J. (2008). Extracting shared
subspace for multi-label classification. In KDD.

Kearns, M. and Mansour, Y. (1999). On the boosting ability of top-
down decision tree learning algorithms. Journal of Computer
and System Sciences, 58(1):109-128.

Khandagale, S., Xiao, H., and Babbar, R. (2019). Bonsai - Di-
verse and Shallow Trees for Extreme Multi-label Classification.
CoRR, abs/1904.08249.

Lin, Z., Ding, G., Hu, M., and Wang, J. (2014). Multi-label
classification via feature-aware implicit label space encoding.
In ICML.

Liu, J., Chang, W.-C., Wu, Y., and Yang, Y. (2017). Deep learning
for extreme multi-label text classification. In ACM SIGIR.

Mnih, A. and Hinton, G. E. (2009). A scalable hierarchical dis-
tributed language model. In NIPS.

Nestrov, Y. (2004). Introductory lectures on convex optimization :
a basic course. Applied optimization, Kluwer Academic Publ.

Niculescu-Mizil, A. and Abbasnejad, E. (2017). Label Filters for
Large Scale Multilabel Classification. In AISTATS.

Prabhu, Y., Kag, A., Gopinath, S., Dahiya, K., Harsola, S.,
Agrawal, R., and Varma, M. (2018a). Extreme multi-label
learning with label features for warm-start tagging, ranking and
recommendation. In ACM ICWSDM.

Prabhu, Y., Kag, A., Harsola, S., Agrawal, R., and Varma, M.
(2018b). Parabel: Partitioned label trees for extreme classifica-
tion with application to dynamic search advertising. In WWW.

Prabhu, Y. and Varma, M. (2014). Fastxml: A fast, accurate and
stable tree-classifier for extreme multi-label learning. In ACM
SIGKDD.

Rifkin, R. and Klautau, A. (2004). In defense of one-vs-all classi-
fication. J. Mach. Learn. Res., 5:101-141.

Ross, S., Mineiro, P., and Langford, J. (2013). Normalized online
learning. CoRR, abs/1305.6646.

Shalev-Shwartz, S. (2012). Online learning and online convex
optimization. Found. Trends Mach. Learn., 4(2):107-194.

Si, S., Zhang, H., Keerthi, S. S., Mahajan, D., Dhillon, I. S., and
Hsieh, C.-J. (2017). Gradient boosted decision trees for high
dimensional sparse output. In JCML.

Tai, F. and Lin, H.-T. (2012). Multilabel classification with prin-
cipal label space transformation. Neural Comput., 24(9):2508—
2542.

Tianshi, G. and Koller, D. (2011). Discriminative learning of
relaxed hierarchy for large-scale visual recognition. In ICCV.

Tsoumakas, G., Katakis, 1., and Vlahavas, 1. P. (2008). Effec-
tive and efficient multilabel classification in domains with large
number of labels. In ECML/PKDD Workshop on Mining Multi-
dimensional Data.

Varma, M. (2019). The Extreme Classification Repos-
itory. http://manikvarma.org/downloads/XC/
XMLRepository.htmll

W. Siblini, P. K. and Meyer, F. (2018). Craftml, an efficient
clustering-based random forest for extreme multi-label learning.
In ICML.

Weston, J., Bengio, S., and Usunier, N. (2011). Wsabie: Scaling
up to large vocabulary image annotation. In IJCAI.

Weston, J., Makadia, A., and Yee, H. (2013). Label partitioning
for sublinear ranking. In /ICML.

Wydmuch, M., Jasinska, K., Kuznetsov, M., Busa-Fekete, R.,
and Dembczynski, K. (2018). A no-regret generalization of

hierarchical softmax to extreme multi-label classification. In
NIPS.

Yen, L. E., Huang, X., Dai, W., Ravikumar, P., Dhillon, I. S., and
Xing, E. P. (2017). Ppdsparse: A parallel primal-dual sparse
method for extreme classification. In SIGKDD.

Yen, L. E., Huang, X., Ravikumar, P., Zhong, K., and Dhillon,
I. S. (2016). Pd-sparse : A primal and dual sparse approach to
extreme multiclass and multilabel classification. In ICML.

http://cseweb.ucsd.edu/~dasgupta/291-unsup/lec6.pdf
http://cseweb.ucsd.edu/~dasgupta/291-unsup/lec6.pdf
http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html

LdSM: Logarithm-depth Streaming Multi-label Decision Trees

You, R., Zhang, Z., Wang, Z., Dai, S., Mamitsuka, H., and Zhu, S.
(2019). Attentionxml: Label tree-based attention-aware deep
model for high-performance extreme multi-label text classifica-
tion. In NIPS.

Yu, H.-F,, Jain, P., Kar, P., and Dhillon, I. (2014). Large-scale
multi-label learning with missing labels. In ICML.

Zhang, W., Yan, J., Wang, X., and Zha, H. (2018). Deep extreme
multi-label learning. In ACM ICMR.

Zhang, Y. and Schneider, J. (2011). Multi-label output codes using
canonical correlation analysis. In AISTATS.

	INTRODUCTION
	OBJECTIVE FUNCTION
	THEORETICAL RESULTS
	General Properties of the Objective and its Relation to Node Partitions
	Relation of the Objective to the Multi-label Error
	Ideal Case
	Real Case: Boosting Theorem

	ALGORITHM
	EXPERIMENTS
	CONCLUSIONS

