
Supplementary Information for
“Neural Decomposition:

Functional ANOVA with Variational Autoencoders”

A Experimental details

A.1 Synthetic data generative mechanism

We used the following data generative mechanism. For i = 1, . . . , N (N = 500) we generated

• zi ∼ U(−2, 2)

• ci ∼ U(−2, 2)

• y(1)i := exp(−z2i ) + 0.3tanh(x) + εi

• y(2)i := sin(zi) + 0.2xi + 0.2 sin(zi) · xi · I(zi > 0) + εi

A.2 Synthetic data generative mechanism

• zi ∼ U(−2, 2) for i = 1, ..., N

• ci ∼ U(−2, 2) for i = 1, ..., N

• for features j = 1, . . . 5

– y(j) := wj · cos(z) + ε where wj ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

• for features j = 6, . . . 10

– y(j) := 0.5z + wjc+ ε where wj ∈ {0.05, 0.1, 0.15, 0.2, 0.25}

• for features j = 11, . . . 15

– y(j) := wj tanh(z)c+ ε where wj ∈ {0.01, 0.02, 0.03, 0.04, 0.05}

• for features j = 16, . . . 20

– y(j) := wjc+ 0.01(0.12− wj)z tanh(c) + ε where wj ∈ {0.02, 0.04, 0.06, 0.08, 0.1}

• for features j = 21, . . . 25

– y
(j)
i := 0.1 tanh(z) + 0.2 tanh(c) + wj sin(z)x+ ε where wj ∈ {0.2, 0.4, 0.6, 0.8, 1.0}

with noise εi ∼ N (0, σ2) with σ = 0.05

1



A.3 Synthetic data generative mechanism for the batch effect (a two-dimensional
latent space)

To simulate a batch effect (here for two known batches), we generated a latent (z1, z2) space
together with batch indicators c for i = 1, ..., N (N = 1000)

• z1,i ∼ U(−2, 2) for i = 1, ..., N

• z2,i ∼ U(−2, 2) for i = 1, ..., N

• ci ∼ Bernoulli(0.5) for i = 1, ..., N

• for features j = 1, . . . 5

– y(j) := 0.3wj tanh(z1) + 0.2wj exp(−0.5z22) + 0.3wjc+ ε where wj ∈ {1, 2, 3, 4, 5}

• for features j = 6, . . . 10

– y(j) := 0.2wj tanh(z2) + 0.4(6− wj)c+ ε where wj ∈ {1, 2, 3, 4, 5}

• for features j = 11, . . . 15

– y(j) := wjz1+(0.6−wj)z2+(0.6−wj) tanh(z1)c+ε where wj ∈ {0.1, 0.2, 0.3, 0.4, 0.5}

• for features j = 16, . . . 20

– y(j) := tanh(2z1) + wj tanh(z2) + ε where wj ∈ {0.2, 0.4, 0.6, 0.8, 1.0}

• for features j = 21, . . . 25

– y
(j)
i := 0.1c+ wj tanh(z1)c+ ε where wj ∈ {0.2, 0.4, 0.6, 0.8, 1.0}

with noise εi ∼ N (0, σ2) with σ = 0.05

2



B Additional results on single-cell data

Figure 1: UMAP visualisations of gene sets with large (A) additive z, (B) additive c and (C)
interaction effects from the mouse dendritic single cell data.

C Additional results for synthetic data

The below Table summarises results for a series of experiments, quantifying how accurately was
the true underlying variance decomposition identified. We separate the (a) purely linear and
(b) a more challenging mix of linear and non-linear data generative mechanisms. For linear
dependencies, the linear-CVAE works well, but so does ND-CVAE despite the increased flexibility.
However, when considering more challenging non-linear dependencies, ND-CVAE outperforms
the linear-CVAE.

Table 1: Correlation between the true underlying variance component Var(f) and the inferred
value, measured on synthetic gene expression data, under (a) linear and (b) non-linear data
generative mechanism.

(a) linear
Var(fz) Var(fc) Var(fzc)

linear-CVAE 0.99 0.87 0.92
naive ND-CVAE 0.56 0.42 0.37
ND-CVAE 0.97 0.88 0.92

(b) non-linear
linear-CVAE 0.46 0.05 0.40
naive ND-CVAE 0.41 0.38 0.19
ND-CVAE 0.98 0.45 0.56

D Batch correction experiment

Here we devise a synthetic experiment generated from a two-dimensional latent space. The data
consists of two batches where each feature is either unperturbed, differs by a constant by batch
or varies with z1 by batch. Our goal is two-fold:

• To learn a 2D latent space where z would be adjusted for the confounding batch effect (i.e.
we want z not to be predictive of the batch label)

3



• To characterise the variance decomposition of every feature in terms of z1, z2 and c.

The goal was to identify if any tested VAE variant was capable of achieving batch correction
(here c=[batch]) by identifying a latent space in which the two batches overlapped each other
(Fig 2). .

With the restricted representation power of Linear-CVAE, only translational shifts in the latent
space could be corrected. Surprisingly, the standard CVAE did not entirely remove the batch
effect in the latent space either. However, the sparse ND structure within the ND-CVAE has
correctly identified a (z1, z2) space in which the batches are now intermixed and the nonlinear
batch effects removed. Furthermore, ND-CVAE lets us characterise how features vary with latent
z1, z2 and known c.

Figure 2: ND-CVAE recovers a batch-adjusted two-dimensional z on a synthetic example
whereas other approaches (VAE, CVAE, and linear-CVAE) struggle to appropriately adjust for
known .

Figure 3: On the synthetic data set, we characterised the neural decomposition for every gene
as a function of z1, z2, batch c, and interactions between them.

4



E Connection to a GP-based decomposition

Here we discuss how the Neural Decomposition behaviour relates to a conceptually similar
c-GPLVM decomposition. The latter, being a decomposition of Gaussian Processes, is better un-
derstood in the sense that for any configuration of kernel hyperparameters, the integral constraints
can be fulfilled analytically in closed form via conditioning. Thus, the GP decomposition is exact
in the sense that all the integral constraints can be fulfilled exactly rather than approximately.
However, the two model classes have different properties: they make different assumptions and
have different scalability properties. We will discuss both of these below.

E.1 Enforcing integral constraints

Thus, in some sense, one could consider a GP-decomposition as a golden standard for this
purpose, however note that the set of functions that have positive probability under the GP
prior (e.g. under the squared exponential kernel these are infinitely differentiable functions) does
not necessarily overlap with the set of functions that are parameterised by a neural network.
The former is determined by the kernel, whereas the latter is determined by various neural
architectural choices.

In Figure 4 we have investigated how the behaviour of Neural Decomposition differs from the
GP-based functional decomposition on synthetic example that involves inference over fz, fc,
and fzc. We have visualised the inferred GP mean and the inferred ND mappings (using a one
hidden layer architecture, with 64 neurons, either with a ReLU or Softplus nonlinearity) for both
fz (on the left) and fzc (on the right), highlighting the L1 distance between the two functions.
For the ND with identifiability constraints (top row), this distance is relatively small and there
are only minor differences from the GP posterior means, whereas the mappings inferred by the
unidentifiable ND without constraints (bottom row) differ significantly from the GP ones.

Figure 4: On a synthetic data set (N = 500) we compare the Neural Decomposition with the
GP exact decomposition directly in the function space, visualising both the predicted mean
for the inferred fz (panels A) and fzc (panels B, shown for c ∈ {−2,−1, 0, 1, 2}) as well as the
L1 distance (shaded area) between them. The functional subspace defined by ND depends on
various architectural choices such as nonlinearity: we used ReLU in panels (A1, B1) and Softplus
in (A2, B2). The ND without identifiability constraints (bottom row) learns a decomposition
which lies far (in L1 distance) from the GP one.

5



E.2 Computational considerations

Despite its elegant theoretical underpinnings, the GP-decomposition suffers from scalability issues
intrinsic to GP-based models. While the cubic complexity w.r.t. sample size N can be addressed
via inducing-point methods, the scalability of c-GPLVM w.r.t. data dimensionality P can become
the limiting factor for high-dimensional data. While the decomposable c-GPLVM scales linearly
with P both in terms of compute and memory, even for moderate P it becomes prohibiting to fit
c-GPLVM on a laptop because of the memory requirements, as shown in Figure 5.

Figure 5: Neural decomposition is much more scalable w.r.t. data dimensionality than the GP
decomposition (inducing-point implementation of the c-GPLVM), both in terms of compute time
and memory requirements. For fixed sample size N = 500, we varied the dimensionality of data
P ∈ {10, 20, . . . , 100, 200}, and compared (A) the compute time, and (B) RAM usage for both
methods when varying P (on x-axis). Experiments were made on a desktop with 8 Intel i7-6700
CPUs, both implementations in PyTorch.

6


	Experimental details
	Synthetic data generative mechanism
	Synthetic data generative mechanism
	Synthetic data generative mechanism for the batch effect (a two-dimensional latent space)

	Additional results on single-cell data
	Additional results for synthetic data
	Batch correction experiment
	Connection to a GP-based decomposition
	Enforcing integral constraints
	Computational considerations


