
Supplementary Information:

“BasisVAE: Translation-invariant feature-level clustering

with Variational Autoencoders”

A Derivation of the collapsed ELBO

Standard VAE methodology results in the bound

log p(Y) ≥
N∑
i=1

Eqφ(zi|yi)[log pθ(yi|zi)]−KL(qφ(zi|yi)||p(zi))

However, unlike for standard VAE, for BasisVAE the log pθ(y|z) term is intractable due to integration over
w and π. Now we apply the collapsing strategy of Hensman et al. (2012) to log pθ(yi|zi) for all data points
i = 1, . . . , N .

Knowing that

log pθ(yi|zi,π) = log

∫
pθ(yi|zi,π,w)p(w)dw

≥
∫
q(w) log

pθ(yi|zi,w)p(w|π)

q(w)
dw

= Eq(w) log
pθ(yi|zi,w)p(w|π)

q(w)

we can now lower bound

log pθ(yi|zi) = log

∫
pθ(yi|zi,π)p(π)dπ

≥ log

∫
exp

(
Eq(w) log

pθ(yi|zi,w)p(w|π)

q(w)

)
p(π)dπ

= Eq(w) log pθ(yi|zi,w) + log

∫
exp

(
Eq(w)p(w|π)

)
p(π)dπ − Eq(w) log q(w)

where now all integrals can be calculated in closed form. Combining the two lower bounds, we have

log p(Y) ≥
N∑
i=1

Eqφ(zi|yi)Eq(w) log pθ(yi|zi,w)−
N∑
i=1

KL(qφ(zi|yi)||p(zi))

+ log

∫
exp

(
Eq(w)p(w|π)

)
p(π)dπ

− Eq(w) log q(w)
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Here, the first term can be calculated as

N∑
i=1

Eqφ(zi|yi)Eq(w) log pθ(yi|zi,w) =

N∑
i=1

Eqφ(zi|yi)

P∑
j=1

K∑
k=1

φj,k logN (y
(j)
i |λj,kf

(k)
basis(zi + δjk), σ2

j )

The remaining challenging term is the third one, but it has a closed form as follows: knowing that

Eq(w)p(w|π) =

P∑
j=1

K∑
k=1

φj,k log πk =

K∑
k=1

nk log πk

where we have denoted nk :=
∑P
j=1 φj,k, the term can now be expressed

log

∫
exp

(
Eq(w)p(w|π)

)
p(π)dπ = log

∫
exp

(
K∑
k=1

nk log πk

)
p(π)dπ

= log

∫ K∏
k=1

πnkk
1

B(α)
παk−1
k dπ

= log
1

B(α)

∫ K∏
k=1

πnk+αk−1
k dπ

= logB(n + α)− logB(α)

where the normalising constant B(α) =
Γ(

∑
k αk)∏

k Γ(αk) is the multivariate Beta function.

Note that this hybrid inference scheme combines amortised reparameterisation-based inference for z and
more classical approaches combined with collapsing for inference over w,π.

B Adaptation of ELBO for large data sets

For large high-dimensional data sets, the lower bound derived above will be dominated by the data log-
likelihood. For large N , also the KL-term KL(qφ(zi|yi)||p(zi)) might be large. As a result, the clustering
prior that we have introduced will implicitly become relatively less important when N and P increase. While
the property that for large data sets the likelihood will dominate the prior is inherent to Bayesian models,
it may not always be desirable, especially for mis-specified models.

In practice, one way to alleviate this problem where the likelihood starts to dominate is via introducing
weights that either downweigh the likelihood or upweigh the prior. For example, β-VAE modifies the usual
VAE lower bound by scaling the KL term by a constant β > 0 (Higgins et al., 2017). Even though the
resulting expression is not a lower bound on the original log marginal likelihood any more, it is closely
connected to an ELBO on an alternative formulation with an annealed prior p(z)β/

∫
p(z)βdz (Hoffman

et al., 2017; Mathieu et al., 2019). Analogously, we propose to achieve a similar effect, by introducing β as
part of the following objective

Lβ :=

N∑
i=1

Eqφ(zi|yi)Eq(w) log pθ(yi|zi,w)+

+ β

(
log

∫
exp

(
Eq(w)p(w|π)

)
p(π)dπ − Eq(w) log q(w)−

N∑
i=1

KL(qφ(zi|yi)||p(zi))

)
where β = 1 corresponds to the original ELBO, but we may choose to select β > 1 in order to increase
the relative importance of the sparse clustering prior for large-scale applications. In our experiments, for
moderately sized synthetic data we used β = 1, whereas for single-cell gene expression data we used β = 20.
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C Additional Figures

C.1 Additional figures for synthetic data

Figure 1: Using the V-measure to quantify the clustering performance of k-means and different versions of
BasisVAE (with different inference techniques for q(w,π)) on the synthetic data from Figure ?? . Results
are shown for both (A) scale invariant and (B) translation and scale invariant setting. For k-means, we used
the true number of clusters, i.e. (A) K = 5 and (B) K = 3. For BasisVAE, we used an overspecified K = 20.

C.2 Additional figures for single-cell Spermatogenesis data

Figure 2: (A) BasisVAE has inferred a latent z ∈ R that captures a trajectory in the (PC1, PC2) space.
(B) BasisVAE and its translation-invariant version infer a highly similar latent space (the respective inferred
latent coordinates are highly correlated).
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D On well-definedness of translation-invariant BasisVAE

As a non-linear latent variable model, even the standard (C)VAE exhibits multiple modes in the sense that
different latent configurations {zi}Ni=1 can give rise to the same likelihood. Even in the probabilistic PCA
which is a linear model, different rotations of the latent space are indistinguishable in terms of the likelihood.
Having introduced additional parameters δjk, it is natural to ask whether the BasisVAE model is well-defined
and whether it is identifiable with respect to δjk parameters.

Here we assume z ∈ R, denoted below as z. First, we note that without any constraints or priors on delta,
our model is unidentifiable in two aspects:

• The inputs z + δjk can both be shifted by an arbitrary constant, i.e. z + δjk = (z + ak) + (δjk − ak)
for any ak ∈ R

• Suppose latent variables z are fixed, then for any f (j) and δjk, there exist f∗(j) and δ∗jk such that

f (j)(z + δjk) = f∗(j)(z + δ∗jk)

However, having placed a prior over delta, arbitrary reparameterisations as outlined above are not equally
likely any more. For example, let us consider a thought experiment where every feature is assigned to its own
basis function: even though for every feature j there exist multiple pairs (f (j), δjk) of functional representa-
tions that are indistinguishable f (j)(z+δjk) in terms of their outputs, in this particular scenario the solution
f∗(j) where δ∗jk = 0 is preferred over any other combination. This is because indistinguishable functional
representations result all have the same log-likelihood, and thus the configuration with δjk = 0 achieves the
highest ELBO in this scenario. Thus, the prior p(δjk) alleviates the problem with unidentifiability.

We also note that the existence of these multiple modes would not be a problem from the interpretability
perspective, as for this purpose it is the relative difference between δjk values that is of interest, not their
absolute values.

Potential pathological scenario: Here we discuss a corner case where the translation-invariant BasisVAE
formulation could potentially be ill-defined due to the added flexibility by δjk. Even though we have not
experienced this in practice, we first describe this scenario, and then propose a solution how this pathological
case can be avoided by a simple modification.

Figure 3: Illustration of an imaginary pathological scenario, where we would expect the two observed
features (as shown in (A)) to be assigned to two separate clusters. Panel (B) describes a pathological case,
where a large δ value for one feature allows the two curves to be joined and thus the two features to be
assigned to the same cluster.

The idea behind the pathological scenario has been illustrated in above: when inputs z are in some interval
[a, b], then one can e.g. pick δjk = 0 for one feature, δjk > (b − a) for another feature, and concatenate the
two into one basis function (we note that the concatenation of the two functions must be continuous).

While we do not see this scenario as a probable risk in reality, we are able to avoid this potential behaviour
altogether by introducing a constraint |δjk−δj′k′ | < (b−a), which can e.g. be easily implemented by explicitly
restricting the range of all δjk values.
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