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1 PROOF OF THEOREM 2.1

For any distribution rX over X , we can write

DKL(pX ||qX) = E
x∼pX

[
ln
rX(x)

qX(x)

]
+DKL(pX ||rX)

≥ E
x∼pX

[
ln
rX(x)

qX(x)

]
(1)

Let f : X → R be a bounded function and define

rX(x) =
qX(x)ef(x)

E
x∼qX

[
ef(x)

] ∀x ∈ X

which is a valid distribution over X . Plugging this into the
lower bound in (1), we have

E
x∼pX

[
ln
rX(x)

qX(x)

]
= E
x∼pX

[f(x)]− ln E
x∼qX

[
ef(x)

]
(2)

By (1), the supremum of (2) over the choice of f is pre-
cisely the KL divergence between pX and qX . It can be
easily verified that an optimal f is given by

f(x) = ln
pX(x)

qX(x)
∀x ∈ X

Since (2) is invariant to translation of f , without loss of
generality we can assume that the range of f is bounded in
[0, Fmax] for some constant Fmax.

2 MUTUAL INFORMATION AS THE
SUPREMUM OVER BINNINGS

We now show that the mutual information I(X,Y ; pXY )
for X and Y continuous can be expressed as the supre-
mum of I(C(X), C ′(Y ); pXY ) over discrete binnings of
the continuous space. We first consider the case where
X,Y ∈ R and where the mutual information can be written

as a Riemann integral over densities.

I(X,Y ; pXY )

=

∫
pXY (x, y) ln

pXY (x, y)

pX(x)pY (y)
dx dy

= lim
ε→0

∑
i,j∈Z

pXY (iε, jε) ln
pXY (iε, jε)

pX(iε)pY (jε)
ε2

where Z is the set of all integers. For each i ∈ Z, define the
half-open interval Ci,ε := [iε, (i+ 1)ε). The probability of
the interval is approximately εpX(iε) under pX (similarly
for pY and pXY ). Therefore we can write the last expres-
sion as

lim
ε→0

∑
i,j∈Z

pXY (Ci,ε × Cj,ε) ln
pXY (Ci,ε × Cj,ε)
pX(Ci,ε)pY (Cj,ε)

= lim
ε→0

∑
i,j∈Z

pIεJε(i, j) ln
pIεJε(i, j)

pIε(i)pJε(j)

= lim
ε→0

I(Iε, Jε; pIεJε)

where (Iε, Jε) denote the indices (i, j) such that x ∈ Ci,ε
and y ∈ Cj,ε for (x, y) ∼ pXY .

This proof immediately generalizes to higher dimensions
where the mutual information can be expressed as a Rie-
mann integral. We believe that this statement remains true
for arbitrary measures on product spaces where the mutual
information is finite. However the proof for this extremely
general case appears to be nontrivial.

3 PAC-BAYESIAN BOUNDS

The PAC-Bayesian bounds apply to “broad basin” losses
and loss estimates such as the following:

Hσ(S, q
θ
X) = E

x∼pX

[
E

ε∼N(0,σI)

[
− ln qθ+εX (x)

]]
Ĥσ(S, q

θ
X) =

1

|S|
∑
x∈S

E
ε∼N(0,σI)

[
− ln qθ+εX (x)

]
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Under mild smoothness conditions on qθX(x) as a function
of θ we have

lim
σ→0

Hσ(pX , q
θ
X) = H(pX , q

θ
X)

lim
σ→0

Ĥσ(S, q
θ
X) = Ĥ(S, qθX)

An L2 PAC-Bayesian generalization bound (McAllester,
2013) gives that for any parameterized class of models and
any bounded notion of loss, and any λ > 1/2 and σ > 0,
with probability at least 1 − δ over the draw of S from
pNX we have the following simultaneously for all parameter
vectors θ.

Hσ(pX , q
θ
X)

≤ 1

1− 1
2λ

(
Ĥσ(S, q

θ
X) +

λFmax

N

(
||θ||2

2σ2
+ ln

1

δ

))

It is instructive to set λ = 5 in which case the bound be-
comes.

Hσ(pX , q
θ
X)

≤ 10

9

(
Ĥσ(S, q

θ
X) +

5Fmax

N

(
||θ||2

2σ2
+ ln

1

δ

))

While this bound is linear in 1/N , and tighter in practice
than square root bounds, note that there is a small resid-
ual gap when holding λ fixed at 5 while taking N → ∞.
In practice the regularization parameter λ can be tuned on
holdout data. One point worth noting is the form of the de-
pendence of the regularization coefficient on Fmax, N and
the basin parameter σ.

It is also worth noting that the bound can be given in terms
of “distance traveled” in parameter space from an initial
(random) parameter setting θ0.

Hσ(pX , q
θ
X)

≤ 10

9

(
Ĥσ(S, q

θ
X) +

5Fmax

N

(
||θ − θ0||2

2σ2
+ ln

1

δ

))

Evidence is presented in Dziugaite and Roy (2017) that the
distance traveled bounds are tighter in practice than tradi-
tional L2 generalization bounds.

4 EXPERIMENT DETAILS

Article pairs. We take pairs from the Who-Did-What
dataset (Onishi et al., 2016). The pairs in this dataset were
constructed by drawing articles from the LDC Gigaword

train (tgt) train (src)
# articles 68348 68348
vocab size 100001 87941
# words 20271664 19072167
avg length 296 279
max length 400 400
min length 10 12

Table 1: Training statistics of the article pairs

train (tgt) train (src)
# sentences 160239 160239
vocab size 24726 35445
# words 3275729 3100720
avg length 20 19
max length 175 172
min length 2 2

Table 2: Training statistics of the translation pairs

newswire corpus. A first article is drawn at random and
then a list of candidate second articles is drawn using the
first sentence of the first article as an information retrieval
query. A second article is selected from the candidates us-
ing criteria described in Onishi et al. (2016), the most sig-
nificant of which is that the second article must have oc-
curred within a two week time interval of the first. The
training statistics of this dataset after preprocessing is given
in Table 1.

Translation pairs. Our translation pairs consists of
English-German sentence pairs extracted from the IWSLT
2014 dataset. The training statistics of this dataset after
preprocessing is given in Table 2.

Model. We train an LSTM encoder-decoder model where
the decoder doubles as both the decoder of a translation
model and a language model. The decoder is a left-to-right
2-layer LSTM in which a single word embedding matrix
is used for both input embeddings and the softmax predic-
tions. When this model is trained as a language model on
PTB using standard hyperparameter values it achieves test
perplexity of 72.26. The encoder is a separate left-to-right
2-layer LSTM using the same word embeddings as the de-
coder. We use the input-feeding attention archietecture of
Luong et al. (2015).

The model is trained using SGD and batch size 10 with no
BPTT-style truncation. The dimension of the input/hidden
states is 900 (thus 1800 for the input-feeding decoder). We
use step-wise dropout with rate 0.65 on word embeddings
and hidden states. The model is trained for 40 epochs and
the model that achieves the best validation perplexity is se-
lected. The sequence-level cross entropy is estimated as
SQXENT = 1

MNLL where NLL is the negative log likeli-
hood of the corpus and M is the total number of sequences
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in the corpus.

Mutual information is estimated by taking the difference in
SQXENT between the language model and the translation
model (17).For article pairs, we obtain

Î(X,Y ; pXY ) = 1131.74− 1048.33 = 83.41

in nats which translates to 120.34 bits. For translation pairs,
we obtain

Î(X,Y ; pXY ) = 81.73− 43.80 = 37.9

in nats which translates to 54.72 bits.
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