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A Appendix

A.1 Proof of Corollary 4.

Proof. Since (x(k))k∈N converges to x∗, there exists
k0 ≥ 0 such that x(k) lies in Bε(u)(x

∗(u)) for all k ≥
k0. Thus, from the Lipschitz continuity of ϕ on Y, we
have:∥∥∥ϕ(x(k),u)− ϕ(x∗,u)

∥∥∥ ≤ Cκ+m(u)

m(u)2

∥∥∥x(k) − x∗
∥∥∥ ,

for all k ≥ k0.

A.2 Proof of Lemma 6.

Proof. Since f(·,u) is convex and ∇xf is L(u)-
Lipschitz continuous on Z, therefore, for all u ∈ U and
α ≤ 1/L(u), the first part of the proposition follows
from (Bertsekas, 1999) and Induction. In particular
we have:

f(x(k),u)−f(x∗(u),u) ≤ 1

2αk

∥∥∥e(0)∥∥∥2 = O(
1

k
) , (5)

for k ∈ N. Thus the sequence (x(k))k∈N lies in X (u)
and from the continuity of f and Assumption A1,
converges to x∗(u). This implies that, there exists
δ(u) > 0 such that after at most k0 ∼ O(1/δ(u)) iter-
ations of (GD), the sequence (x(k))k∈N lies in the set
lev≤f(x∗,u)+δ(u)f(·,u) ⊆ Bε(u)(x

∗) and we have for
all k ≥ k0:

e(k+1) = e(k) − α(∇xf(x(k),u)−∇xf(x∗(u),u))

= Rg(z
(k))e(k) .

Because α ≤ 1/L(u) and from Equation (1), the term
given by:

qGD(u) := sup{‖RGD(x, α)‖ : x ∈ Bε(u)(x
∗(u))} .

(6)

lies in [0, 1) and the inequality follows.

A.3 Proof of Proposition 8.

Proof. We simplify the term ė(k+1) as:

ė(k+1) = R
(k)
GDẋ

(k) − α∇xuf(x(k),u)u̇

−R∗GDẋ∗ + α∇xuf(x∗,u)u̇

= R
(k)
GDė

(k) +
(
D(∇xf)(x(k),u)

−D(∇xf)(x∗,u)
)
(ẋ∗, s) ,

where we assigned RGD(x∗, α) to R∗GD. Rearranging
the expression on the right hand side, taking the norm
and recursive expansion yields the desired inequality
for k ≥ k0 and C1 := C ‖s‖ (κ+m(u))/m(u).

A.4 Proof of Proposition 10.

Proof. The difference of the sequence generated by
(GD-FI) with ϕ(x(k),u)s can be simplified as:

x̂
(k+1)
K − ϕ(x(K),u)s = R

(K)
GD

(
x̂
(k)
K − ϕ(x(K),u)s

)
.

After taking the norm, expanding the expression on
the right recursively and using Equation (6), we arrive
at the first inequality. For (GD-RI), we have:

ũ
(n+1)
K = ũ

(n)
K − αx̃(K−n)∇xuf

= ũ
(0)
K − α

( n∑
i=0

x̃(K−n+i)
)
∇xuf

= −αx̃(K)
( n∑
i=0

(R
(K)
HB)i

)
∇xuf

= −αrT (IN −R(K)
GD )−1

(
IN − (R

(K)
GD )n+1

)
∇xuf

= −rT∇2
xf
−1(IN − (R

(K)
GD )n+1

)
∇xuf

= rTϕ(x(K),u) + rT∇2
xf
−1(R

(K)
GD )n+1∇xuf .

By taking the norm of the error term ũ
(n)
K −

rTϕ(x(K),u) from above equation and using Equa-
tion (6), we get the second inequality.

A.5 Proof of Corollary 12.

Proof. x(K) ∈ Bε(u)(x
∗(u)) implies α ≤ 1/L(u) is sat-

isfied for our choice of step size from Equation (1) and
(Boyd and Vandenberghe, 2004). Since the conditions
of Proposition 10 are satisfied, the proof follows.

A.6 Proof of Lemma 13.

Proof. For all u ∈ U and for given choices of α and β,
the first part of the proof follows from (1) and (Polyak,
1987). This implies that x(k) ∈ X (u) for all k ∈ N.
Also the sequence (x(k))k∈N converges to x∗(u) from
the continuity of f and uniqueness of x∗(u). There-
fore, there exists k0 ≥ 0 such that for all k ≥ k0 we
have x(k) ∈ Bε(u)(x

∗(u)). From mean value theorem,

the error term e(k+1) is simplified as:

e(k+1) = (1 + β)x(k) − α(∇xf(x(k),u)

−∇xf(x∗,u))− βx(k−1) − x∗

= RHB(z(k), α, β)e(k) − βe(k−1) ,
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for some z(k) ∈ conv{x(k),x∗}. We assign y(k) :=
(x(k+1),x(k)) and y∗ := (x∗,x∗) and compute the er-
ror term for this sequence as:

y(k)−y∗ = (e(k+1), e(k))

= (RHB(z(k), α, β)e(k) − βe(k−1), e(k))
= T (z(k), α, β)(y(k−1) − y∗) ,

(7)

where we define T : RN ×R×R→ R2N×2N , a matrix-
valued function as:

T (x, α, β) =

[
RHB(x, α, β) −βIN

IN 0N

]
. (8)

Here we use subscripts to denote the order of iden-
itiy and zero matrices to avoid any confusion. Let
ρ(A) be the spectral radius of matrix A, then from
(Polyak, 1987), (1) and the compactness of our ε(u)-
neighbourhood, qHB(u) defined by:

qHB(u) = sup{ρ(T (x, α, β)) : x ∈ Bε(u)(x
∗(u))} ,

(9)

lies in [0, 1) for every u ∈ U and given choices of α and
β. From Gelfand’s relation between spectral radius
and the norm of a matrix (Gelfand, 1941), we arrive
at our result by taking the norm of the last identity in
(7) and recursively expanding up to k0.

A.7 Proof of Proposition 15.

Proof. We assign the expression RHB(x∗, α, β) to
R∗HB and compute

R
(k)
HBẋ

(k) −R∗HBẋ∗ = (1 + β)ė(k)

− α
(
∇2

xf(x(k),u)ẋ(k) −∇2
xf(x∗,u)ẋ∗

)
= R

(k)
HB ė

(k) − α
(
∇2

xf(x(k),u)

−∇2
xf(x∗,u)

)
ẋ∗ ,

from which we obtain the following error term:

ė(k+1) = R
(k)
HBẋ

(k) −R∗HBẋ∗ − α(∇xuf(x(k),u)

−∇xuf(x∗,u))u̇− βė(k−1)

=
[
R

(k)
HB −βIN

]
ẏ(k−1) − α

(
D(∇xf)(x(k),u)

−D(∇xf)(x∗,u)
)
(ẋ∗, u̇) ,

where we similarly define ẏ(k) − ẏ∗ := (ė(k+1), ė(k)).
Thus the error term for this sequence is given by:

ẏ(k) − ẏ∗ = T (k)(ẏ(k−1) − ẏ∗)

− α
(
E(k) − E∗

)
(ẋ∗, u̇) ,

(10)

where we set T (k) := T (x(k),α,β , α, β) and define the
map E : RN × RP → L(RN × RN ,RN × RP ) as:

E(x,u) :=

[
D(∇xf)(x,u)

0N,N+P

]

and assign E(x(k),u) to E(k) and E(x∗,u) to E∗.
Now taking the norm and recursively expanding the
term on the right hand side of Equation (10), we ar-
rive at our result by using the same argument we made
in the proof of Lemma 13.

A.8 Proof of Proposition 17.

Proof. We will work through the proof for both se-
quences in a similar fashion as in Proposition 10. We
first consider the forward mode case where the error
for x̂

(k)
K is given by:

x̂
(k+1)
K − ϕ(x(k),u)s = R

(k)
HB

(
x̂(n) − ϕ(x(k),u)s

)
− β

(
x̂(n−1) − ϕ(x(k),u)s

)
.

We can use it to compute the error term for ŷ
(k)
K :=

(x̂
(k+1)
K , x̂

(k)
K ) as:

ŷ
(k)
K −

[
ϕ(x(K),u)s
ϕ(x(K),u)s

]
=

[
x̂
(k+1)
K − ϕ(x(K),u)s

x̂
(k)
K − ϕ(x(K),u)s

]

=

[
R

(K)
HB −βIN
IN 0N

] [
x̂
(k)
K − ϕ(x(K),u)s

x̂(k−1) − ϕ(x(K),u)s

]
= T (K)

(
ŷ
(k−1)
K −

[
ϕ(x(K),u)s
ϕ(x(K),u)s

])
= −

(
T (K)

)k [ϕ(x(K),u)s
ϕ(x(K),u)s

]
,

where in the last equality we used ŷ(0) =

(x̂
(0)
K , x̂

(−1)
K ) = 0. Because x(k) ∈ Bε(u)(x

∗(u)), we
use the argument provided in the proof of Lemma 13
to arrive at the first inequality.

We now define ỹ(K−n−1) := (x̃(K−n−1), x̃(K−n))T

which is computed for n = 0, . . . ,K − 1 as:
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ỹ(K−n−1) =

[
x̃(K−n−1)

x̃(K−n)

]T
=

[
x̃(K−n)R

(K)
HB − βx̃(K−n+1)

x̃(K−n)

]T
=

[
x̃(K−n)

x̃(K−n+1)

]T [
R

(K)
HB IN
−βIN 0N

]
= ỹ(K−n)(T (K))T .

We also compute ṽ
(n+1)
K := (ũ

(n+1)
K , ũ

(n)
K )T for n =

0, . . . ,K − 1 as:

ṽ
(n+1)
K =

[
ũ
(n+1)
K

ũ
(n)
K

]T

=

[
ũ
(n)
K − αx̃(K−n)∇xuf

ũ
(n−1)
K − αx̃(K−n+1)∇xuf

]T

=

[
ũ
(n+1)
K

ũ
(n)
K

]T
− α

[
x̃(K−n−1)

x̃(K−n)

]T [∇xuf 0N,P
0N,P ∇xuf

]
= ṽ

(n)
K − αỹ(K−n)S(K) ,

where S : RN×RP → L(RN×RN ,RP×RP ) is defined
as:

S(x,u) =

[
∇xuf(x,u) 0N,P

0N,P ∇xuf(x,u)

]
,

so that S(x(K),u) is assigned to S(K). Putting the ex-

pressions for ṽ
(n+1)
K and ỹ(K−n−1) together we notice

that they are equivalent to those in (GD-RI). We can

therefore simplify ṽ
(n+1)
K as:

ṽ
(n+1)
K = ṽ

(n)
K − αỹ(K−n)S(K)

= ṽ
(0)
K − α

( n∑
i=0

ỹ(K−n+i)
)
S(K)

= −αỹ(K)
( n∑
i=0

(
T (K)T

)i)
S(K)

= −α(r, 0)T (I2N − T (K)T )−1
(
I2N

− (T (K)T )n+1
)
S(K) ,

where our starting points are ṽ
(0)
K := 0 and ỹ(K) :=

(r, 0)T .

Now in order to compute the inverse of the matrix

I2N − T (K)T =

[
α∇2

xf − βIN −IN
βIN IN

]
,

we use the results given in Lu and Shiou (2002)[The-
orem 1]. The Schur complement of IN (bottom
right block in the above matrix) is (α∇2

xf − βIN ) −
(−IN )(IN )−1(β)IN = α∇2

xf which is invertible and
we have:

(r, 0)T (I2N − T (K)T )−1 =
1

α
(rT∇2

xf
−1, rT∇2

xf
−1)T .

We can substitute this term in the expression obtained

above for ṽ
(n+1)
K and obtain

ṽ(K)
n = −

[
rT∇2

xf
−1

rT∇2
xf
−1

]T (
I2N − (T (K)T )n

)
S(K)

=

[
rTϕ(x(K),u)
rTϕ(x(K),u)

]T
+

[
rT∇2

xf
−1

rT∇2
xf
−1

]T
(T (K)T )nS(K) .

Since the matrix S(x,u) has same singular values as
∇xuf(x,u), the second inequality follows.

A.9 Proof of Corollary 19.

Proof. The proof follows from the fact that, in Propo-
sitions 10 and 17, we only assume that the estimate
x(K) lies in Bε(u)(x

∗(u)). We don’t put any constraint
on how it is computed.




