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Abstract

We study a multiplayer stochastic multi-armed
bandit problem in which players cannot communi-
cate, and if two or more players pull the same arm,
a collision occurs and the involved players receive
zero reward. We consider the challenging hetero-
geneous setting, in which different arms may have
different means for different players, and propose
a new and efficient algorithm that combines the
idea of leveraging forced collisions for implicit
communication and that of performing matching
eliminations. We present a finite-time analysis of
our algorithm, giving the first sublinear minimax
regret bound for this problem, and prove that if the
optimal assignment of players to arms is unique,
our algorithm attains the optimalO(ln(T )) regret,
solving an open question raised at NeurIPS 2018
by Bistritz and Leshem (2018).

1 Introduction

Stochastic multi-armed bandit models have been studied ex-
tensively as they capture many sequential decision-making
problems of practical interest. In the simplest setup, an
agent repeatedly chooses among several actions (referred
to as “arms”) in each round of a game. To each action
i is associated a real-valued parameter µi. Whenever the
player performs the ith action (“pulls arm i”), she receives
a random reward with mean µi. The player’s objective is
to maximize the sum of rewards obtained during the game.
If she knew the means associated with the actions before
starting the game, she would play an action with the largest
mean reward during all rounds. The problem is to design a
strategy for the player to maximize her reward in the setting
where the means are unknown. The regret of the strategy is
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the difference between the accumulated rewards in the two
scenarios.

To minimize the regret, the player is faced with an explo-
ration/exploitation trade-off as she should try (explore) all
actions to estimate their means accurately enough but she
may want to exploit the action that looks probably best given
her current information. We refer the reader to (Bubeck and
Cesa-Bianchi, 2012; Lattimore and Szepesvári, 2020) for
surveys on this problem. Multi-armed bandit (MAB) has
been first studied as a simple model for sequential clini-
cal trials (Thompson, 1933; Robbins, 1952) but has also
found many modern applications to online content optimiza-
tion, such as the design of recommender systems (Li et al.,
2010). Recently, MAB algorithms have also been investi-
gated for cognitive radios (Jouini et al., 2009; Anandkumar
et al., 2011). In this context, arms model the available radio
channels on which radio devices can communicate, and the
reward associated with each arm is either a binary indicator
of the success of a communication on that channel or some
measure of its quality.

The applications to cognitive radios have motivated the
multiplayer bandit problem, in which several agents (de-
vices) play on the same bandit (communicate using the
same channels). If two or more agents pull the same arm, a
collision occurs and all agents pulling that arm receive zero
reward. Without communicating, each agent must adopt a
strategy aimed at maximizing the global reward obtained by
all agents—so, we are considering a cooperative scenario
rather than a competitive one. While most previous work on
this problem focuses on the case in which the means of the
arms are identical across players (the homogeneous variant),
in this paper we study the more challenging heterogeneous
variant, in which each user may have a different utility for
each arm: if player m selects arm k, she receives a reward
with mean µmk . This variant is more realistic for applications
to cognitive radios, as the quality of each channel may vary
from one user (device) to another, depending for instance
on its configuration and location.

More precisely, we study the model introduced by Bistritz
and Leshem (2018), which has two main characteristics:
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first, each arm has a possibly different mean for each player;
second, we are in a fully distributed setting with no commu-
nication between players. Let T denote the time horizon.
Bistritz and Leshem (2018) proposed an algorithm with re-
gret bounded by O((lnT )2+κ) (for any constant κ), proved
a lower bound of Ω(lnT ) for any algorithm, and asked if
there is an algorithm matching this lower bound. In this
paper, we propose a new algorithm for this model, M-ETC-
Elim, which depends on a hyperparameter c, and we upper
bound its regret by O(ln(T )1+1/c) for any c > 1. We
also bound its worst-case regret by O(

√
T lnT ), which is

the first sublinear minimax bound for this problem. More-
over, if the optimal assignment of the players to the arms
is unique, we prove that instantiating M-ETC-Elim with
c = 1 yields regret at most O(ln(T )), which is optimal and
answers affirmatively the open question mentioned above
in this particular case.1 We present a non-asymptotic regret
analysis of M-ETC-Elim leading to nearly optimal regret
upper bounds, and also demonstrate the empirical efficiency
of this new algorithm via simulations.

Outline In Section 2, we formally introduce the heteroge-
neous multiplayer multi-armed bandit model and present our
contributions. These results are put in perspective by com-
parison with the literature given in Section 3. We describe
the M-ETC-Elim algorithm in Section 4 and upper bound
its regret in Section 5. Finally, we report in Section 6 results
from an experimental study demonstrating the competitive
practical performance of M-ETC-Elim.

2 Model and Contributions

We study a multi-armed bandit model where M players
compete over K arms, with M ≤ K. We denote by µmk
the mean reward (or expected utility) of arm k for player m.
In each round t = 1, 2, . . . , T , player m selects arm Am(t)
and receives a reward

Rm(t) = Y mAm(t),t

(
1− 1

(
CAm(t),t

))
,

where (Y mk,t)
∞
t=1 is an i.i.d. sequence with mean µmk taking

values in [0, 1], Ck,t is the event that at least two players have
chosen arm k in round t (i.e., a collision occurs), and 1 (Ck,t)
is the corresponding indicator function. In the cognitive
radio context, Y mk,t is the quality of channel k for player m
if she were to use this channel in isolation in round t, but
her actual reward is zero if a collision occurs.

We assume that each player m in each round t observes her
rewardRm(t) and the collision indicator 1

(
CAm(t),t

)
. Note

that in the special case in which the reward distributions

1In practice, the optimal assignment may not be unique, but the
players may circumvent this by adding a tiny random bias to their
observations, independent of other players, and this will make the
optimal assignment unique with high probability.

satisfy P(Y mk,t = 0) = 0 (e.g., if the corresponding distri-
bution is continuous), the collision indicator 1

(
CAm(t),t

)
can be reconstructed from the observation of Rm(t). The
decision of player m at round t can depend only on her
past observations; that is, Am(t) is Fmt−1 measurable, where
Fmt = σ(Am(1), Rm(1),1

(
CAm(1),1

)
,. . . , Am(t), Rm(t),

1
(
CAm(t),t

)
).

Hence, our setting is fully distributed: a player cannot
use extra information such as observations made by oth-
ers to make her decisions. Under this constraint, we aim
at maximizing the global reward collected by all players.
If the mean rewards µmk were known and a central con-
troller would assign arms to players, this would boil down
to finding a maximum matching between players and arms.

A matching is a one-to-one assignment of players to arms;
formally, any one-to-one function π : [M ] → [K] is a
matching, where we use the shorthand [n] := {1, . . . , n}
for any integer n. The utility (or weight) of a matching π is
defined as U(π) :=

∑M
m=1 µ

m
π(m). We denote byM the set

of all matchings and let U? := maxπ∈M U(π) denote the
maximum attainable utility. A maximum matching (or opti-
mal matching) is a matching with utility U?. The strategy
maximizing the social utility of the players (i.e. the sum of
all their rewards) would be to play in each round according
to a maximum matching, and the (expected) regret with
respect to that oracle is defined as

RT := TU? − E

[
T∑
t=1

M∑
m=1

Rm(t)

]
.

Our goal is to design a strategy (a sequence of arm pulls) for
each player that minimizes the regret. Our regret bounds will
depend on the gap between the utility of the best matching
and the utility of the matching with the second best utility,
defined as ∆ := infπ:∆(π)>0 ∆(π), where ∆(π) := U? −
U(π). Note that ∆ > 0 even in the presence of several
optimal matchings. In the degenerate case that ∆(π) = 0
for all matchings π, we define ∆ :=∞.

Contributions We propose an efficient algorithm for the
heterogeneous multiplayer bandit problem achieving (quasi)
logarithmic regret. The algorithm, called Multiplayer
Explore-Then-Commit with matching Elimination (M-ETC-
Elim), is described in detail in Section 4. It combines the
idea of exploiting collisions for implicit communication,
initially proposed by Boursier and Perchet (2019) for the
homogeneous setting (which we have improved and adapted
to our setting), with an efficient way to perform “matching
eliminations.”

M-ETC-Elim consists of several epochs combining explo-
ration and communication, and may end with an exploitation
phase if a unique optimal matching has been found. The
algorithm depends on a parameter c controlling the epoch
sizes and enjoys the following regret guarantees.
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Theorem 1. (a) The M-ETC-Elim algorithm with parameter
c ∈ {1, 2, . . . } satisfies

RT = O

(
MK

(
M2 ln(T )

∆

)1+1/c
)

if ∆ 6=∞, and

RT = O
(
M3K log(K)

√
log T +M2K log(T )1+1/c

)
if ∆ =∞.

(b) If the maximum matching is unique, M-ETC-Elim with
c = 1 satisfies

RT = O

(
M3K ln(T )

∆

)
.

(c) Regardless of whether the optimal matching is unique
or not, M-ETC-Elim with c = 1 satisfies the minimax regret
bound

RT = O
(
M

3
2

√
KT ln(T )

)
.

We emphasize that we carry out a non-asymptotic analysis
of M-ETC-Elim. The regret bounds of Theorem 1 are stated
with the O(·) notation for the ease of presentation and the
hidden constants depend on the chosen parameter c only. In
Theorems 3, 8 and 9 we provide the counterparts of these
results with explicit constants.

A consequence of part (a) is that for a fixed problem in-
stance, for any (arbitrarily small) κ, there exists an algo-
rithm (M-ETC-Elim with parameter c = d1/κe) with regret
RT = O((ln(T ))1+κ). This quasi-logarithmic regret rate
improves upon the O(ln2(T )) regret rate of Bistritz and
Leshem (2018). Moreover, we provide additional theoreti-
cal guarantees for M-ETC-Elim using the parameter c = 1:
an improved analysis in the presence of a unique optimal
matching, which yields logarithmic regret (part (b)); and a
problem-independent O(

√
T lnT ) regret bound (part (c)),

which supports the use of this particular parameter tuning
regardless of whether the optimal matching is unique. This
is the first sublinear minimax regret bound for this problem.

To summarize, we present a unified algorithm that can be
used in the presence of either a unique or multiple optimal
matchings and get a nearly logarithmic regret in both cases,
almost matching the known logarithmic lower bound. More-
over, our algorithm is easy to implement, performs well in
practice and does not need problem-dependent hyperparam-
eter tuning.

3 Related Work

Centralized Variant Relaxing the decentralization as-
sumption, i.e., when a central controller is jointly selecting
A1(t), . . . , AM (t), our problem coincides with a combina-
torial bandit problem with semi-bandit feedback, which is
studied by Gai et al. (2012). More precisely, introducing

M × K elementary arms with means µkm for m ∈ [M ]
and k ∈ [K], the central controller selects at each time-
step M elementary arms whose indices form a matching.
Then, the reward of each chosen elementary arm is observed
and the obtained reward is their sum. A well-known algo-
rithm for this setting is CUCB (Chen et al., 2013), whose
regret satisfies RT = O

(
(M2K/∆) ln(T )

)
(Kveton et al.,

2015). Wang and Chen (2018) also proposed a Thomp-
son sampling-based algorithm with a similar regret bound.
Improved dependency in M was obtained for the ESCB al-
gorithm (Combes et al., 2015; Degenne and Perchet, 2016),
which is less numerically appealing as it requires to com-
pute an upper confidence bound for each matching in every
round. In this work, we propose an efficient algorithm with
regret upper bounded by (roughly) O

(
(M3K/∆) ln(T )

)
for the more challenging decentralized setting.

Homogeneous Variant Back to the decentralized setting,
the particular case in which all players share a common
utility for all arms, i.e. µmk = µk for all m ∈ [M ], has been
studied extensively: the first line of work on this variant com-
bines standard bandit algorithms with an orthogonalization
mechanism (Liu and Zhao, 2010; Anandkumar et al., 2011;
Besson and Kaufmann, 2018a), and obtains logarithmic re-
gret, with a large multiplicative constant due to the number
of collisions. Rosenski et al. (2016) proposes an algorithm
based on a uniform exploration phase in which each player
identifies the top M arms, followed by a “musical chairs”
protocol that allows each player to end up at a different
arm quickly. Drawing inspiration from this musical chairs
protocol, Boursier and Perchet (2019) recently proposed an
algorithm with an O (((K −M)/∆ +KM) ln(T )) regret
bound, which relies on two other crucial ideas: exploiting
collisions for communication and performing arm elimina-
tions. Our algorithm also leverages these two ideas, with
the following enhancements. The main advantage of our
communication protocol over that of Boursier and Perchet
(2019) is that the followers only send each piece of informa-
tion once, to the leader, instead of sending it to the M − 1
other players. Then, while Boursier and Perchet (2019) uses
arm eliminations (coordinated between players) to reduce
the regret, we cannot employ the same idea for our heteroge-
neous problem, as an arm that is bad for one player might be
good for another player, and therefore cannot be eliminated.
Our algorithm instead relies on matching eliminations.

Towards the Fully Distributed Heterogeneous Setting
Various semi-distributed variants of our problem in which
some kind of communication is allowed between players
have been studied by Avner and Mannor (2016); Kalathil
et al. (2014); Nayyar et al. (2018). In particular, the algo-
rithms proposed by Kalathil et al. (2014); Nayyar et al.
(2018) require a pre-determined channel dedicated to com-
munications: in some phases of the algorithm, players in
turn send information (sequences of bits) on this channel,
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and it is assumed that all other players can observe the sent
information.

The fully distributed setting was first studied by Bistritz
and Leshem (2018), who proposed the Game-of-Thrones
(GoT) algorithm and proved its regret is bounded by
O((lnT )2+κ) for any given constant κ > 0, if its pa-
rameters are “appropriately tuned.” In a recent preprint
(Bistritz and Leshem, 2019), the same authors provide an im-
proved analysis, showing the same algorithm (with slightly
modified phase lengths) enjoys quasi-logarithmic regret
O((lnT )1+κ). GoT is quite different from M-ETC-Elim: it
proceeds in epochs, each consisting of an exploration phase,
a so-called GoT phase and an exploitation phase. During the
GoT phase, the players jointly run a Markov chain whose
unique stochastically stable state corresponds to a maximum
matching of the estimated means. A parameter ε ∈ (0, 1)
controls the accuracy of the estimated maximum matching
obtained after a GoT phase. Letting c1, c2, c3 be the con-
stants parameterizing the lengths of the phases, the improved
analysis of GoT (Bistritz and Leshem, 2019) upper bounds
its regret byMc32k0+1 +2(c1 +c2)M log1+κ

2 (T/c3 + 2) .
This upper bound is asymptotic as it holds for T large
enough, where “how large” is not explicitly specified and
depends on ∆.2 Moreover, the upper bound is valid only
when the parameter ε is chosen small enough: ε should
satisfy some constraints (Equations (66)-(67)) also featuring
∆. Hence, a valid tuning of the parameter ε would require
prior knowledge of arm utilities. In contrast, we provide
in Theorem 3 a non-asymptotic regret upper bound for M-
ETC-Elim, which holds for any choice of the parameter c
controlling the epoch lengths. Also, we show that if the
optimal assignment is unique, M-ETC-Elim has logarithmic
regret. Besides, we also illustrate in Section 6 that M-ETC-
Elim outperforms GoT in practice. Finally, GoT has several
parameters to set (δ, ε, c1, c2, c3), while M-ETC-Elim has
only one integral parameter c, and setting c = 1 works very
well in all our experiments.

If ∆ is known, an algorithm with similar ideas to M-ETC-
Elim with O(log T ) regret was presented independently in
the recent preprint of Magesh and Veeravalli (2019).

Finally, the recent independent preprint of Tibrewal et al.
(2019) studies a slightly stronger feedback model than ours:
they assume each player in each round has the option of “ob-
serving whether a given arm has been pulled by someone,”
without actually pulling that arm (thus avoiding collision
due to this “observation”), an operation that is called “sens-
ing.” Due to the stronger feedback, communications do
not need to be implicitly done through collisions and bits
can be broadcast to other players via sensing. Note that
it is actually possible to send a single bit of information
from one player to all other players in a single round in

2 (Bistritz and Leshem, 2019, Theorem 4) requires T to be
larger than c3(2k0 − 2), where k0 satisfies Equation (16), which
features κ and ∆.

their model, an action that requires M − 1 rounds in our
model. Still, the algorithms proposed by Tibrewal et al.
(2019) can be modified to obtain algorithms for our setting,
and M-ETC-Elim can also be adapted to their setting. The
two algorithms proposed by Tibrewal et al. (2019) share
similarities with M-ETC-Elim: they also have exploration,
communication and exploitation phases, but they do not
use eliminations. Regarding their theoretical guarantees, a
first remark is that those proved in Tibrewal et al. (2019)
only hold in the presence of a unique optimal matching,
whereas our analysis of M-ETC-Elim applies in the general
case. The second remark is that their regret bounds for the
case in which ∆ is unknown (Theorems 3(ii) and 4) feature
exponential dependence on the gap 1/∆, whereas our regret
bounds have polynomial dependence. Finally, the first-order
term of their Theorem 4 has a quadratic dependence in 1/∆,
whereas our Theorem 1(b) scales linearly, which is optimal
(see the lower bounds section below) and allows us to get
the Õ(

√
T ) minimax regret bound for M-ETC-Elim.

Lower Bounds The Ω(ln(T )) lower bound proven by
Bistritz and Leshem (2018) hides the problem parame-
ters; we next review the lower bounds that flesh out the
dependence on K,M and ∆. In the (easier) centralized
setting discussed above, an asymptotic lower bound of
Ω((K −M) ln(T )/∆) is proved in the homogeneous case
(Anantharam et al., 1987). In the centralized heterogeneous
case, Combes et al. (2015) obtain a general problem depen-
dent lower bound for combinatorial semi-bandits of the form
c(µ,M) ln(T ) and show that c(µ,M) = Θ (K/∆) for
many common combinatorial structures, including match-
ings. A minimax lower bound of Ω(

√
MKT ) was given

by Audibert et al. (2014) in the same setting. These lower
bounds show that the dependency in T,∆ and K obtained
in Theorem 1(b),(c) are essentially not improvable, but that
the dependency in M might be. However, this observa-
tion can be mitigated by noting that finding an algorithm
whose regrets attain the available lower bounds for combi-
natorial semi-bandits is already hard even without the extra
challenge of decentralization.

4 The M-ETC-Elim Algorithm

Our algorithm relies on an initialization phase in which the
players elect a leader in a distributed manner. Then a com-
munication protocol is set up, in which the leader and the
followers have different roles: followers explore some arms
and communicate to the leader estimates of the arm means,
while the leader maintains a list of “candidate optimal match-
ings” and communicates to the followers the list of arms that
need exploration in order to refine the list, i.e. to eliminate
some candidate matchings. The algorithm is called Multi-
player Explore-Then-Commit with matching Eliminations
(M-ETC-Elim for short). Formally, each player executes
Algorithm 1 below.
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Algorithm 1: M-ETC-Elim with parameter c
Input: Time horizon T , number of arms K

1 R,M ←− INIT(K, 1/KT )
2 if R = 1 then LEADERALGORITHM(M) else

FOLLOWERALGORITHM(R,M)

M-ETC-Elim requires as input the number of arms K (as
well as a shared numbering of the arms across the players)
and the time horizon T (the total number of arm selections).
However, if the players know only an upper bound on T ,
our results hold with T replaced by that upper bound as
well. If no upper bound on T is known, the players can
employ a simple doubling trick (Besson and Kaufmann,
2018b): we execute the algorithm assuming T = 1, then
we execute it assuming T = 2 × 1, and so on, until the
actual time horizon is reached. If the expected regret of
the algorithm for a known time horizon T is RT , then the
expected regret of the modified algorithm for unknown time
horizon T would be R′T ≤

∑log2(T )
i=0 R2i ≤ log2(T )×RT .

Initialization The initialization procedure, borrowed
from Boursier and Perchet (2019), outputs for each player a
rank R ∈ [M ] as well as the value of M , which is initially
unknown to the players. This initialization phase relies on
a “musical chairs” phase after which the players end up on
distinct arms, followed by a “sequential hopping” protocol
that permits them to know their ordering. For the sake of
completeness, the initialization procedure is described in
detail in Appendix A, where we also prove the following.

Lemma 2. Fix δ0 > 0. With probability at least 1− δ0, if
the M players run the INIT(K, δ0) procedure, which takes
K ln(K/δ0) + 2K − 2 < K ln(e2K/δ0) many rounds, all
players learn M and obtain a distinct ranking from 1 to M .

Communication Phases Once all players have learned
their ranks, player 1 becomes the leader and other play-
ers become the followers. The leader executes additional
computations, and communicates with the followers indi-
vidually, while each follower communicates only with the
leader.

The leader and follower algorithms, described below, rely
on several communication phases, which start at the same
time for every player. During communication phases, the
default behavior of each player is to pull her communication
arm. It is crucial that these communication arms are distinct:
an optimal way to do so is for each player to use her arm in
the best matching found so far. In the first communication
phase, such an assignment is unknown and players simply
use their ranking as communication arm. Suppose at a
certain time the leader wants to send a sequence of b bits
t1, . . . , tb to the player with ranking i and communication
arm ki. During the next b rounds, for each j = 1, 2, . . . , b,
if tj = 1, the leader pulls arm ki; otherwise, she pulls her

own communication arm k1, while all followers stick to
their communication arms. Player i can thus reconstruct
these b bits after these b rounds, by observing the collisions
on arm ki. The converse communication between follower
i and the leader is similar. The rankings are also useful to
know in which order communications should be performed,
as the leader successively communicates messages to the
M−1 followers, and then theM−1 followers successively
communicate messages to the leader.

Note that in case of unreliable channels where some of the
communicated bits may be lost, there are several options
to make this communication protocol more robust, such
as sending each bit multiple times or using the Bernoulli
signaling protocol of Tibrewal et al. (2019). Robustness has
not been the focus of our work.

Leader and Follower Algorithms The leader and the fol-
lowers perform distinct algorithms, explained next. Con-
sider a bipartite graph with parts of size M and K, where
the edge (m, k) has weight µmk and associates player m to
arm k. The weights µmk are unknown to the players, but
the leader maintains a set of estimated weights that are sent
to her by the followers, and approximate the real weights.
The goal of these algorithms is for the players to jointly
explore the matchings in this graph, while gradually focus-
ing on better and better matchings. For this purpose, the
leader maintains a set of candidate edges E , which is ini-
tially [M ]×[K], that can be seen as edges that are potentially
contained in optimal matchings, and gradually refines this
set by performing eliminations, based on the information
obtained from the exploration phases and shared during
communication phases.

M-ETC-Elim proceeds in epochs whose length is param-
eterized by c. In epoch p = 1, 2, . . . , the leader weights
the edges using the estimated weights. Then for every edge
(m, k) ∈ E , the leader computes the associated matching
π̃m,kp defined as the estimated maximum matching contain-
ing the edge (m, k). This computation can be done in poly-
nomial time using, e.g., the Hungarian algorithm (Munkres,
1957). The leader then computes the utility of the maxi-
mum matching and eliminates from E any edge for which
the weight of its associated matching is smaller by at least
4Mεp, where

εp :=

√
ln(2/δ)

21+pc
, with δ :=

1

M2KT 2
. (1)

The leader then forms the set of associated candidate match-
ings C := {π̃m,kp , (m, k) ∈ E} and communicates to each
follower the list of arms to explore in these matchings. Then
exploration begins, in which for each candidate matching
every player pulls its assigned arm 2p

c

times and records the
received reward. Then another communication phase begins,
during which each follower sends her observed estimated
mean for the arms to the leader. More precisely, for each
explored arm, the follower truncates the estimated mean (a
number in [0, 1]) and sends only the pc+1

2 most significant
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bits of this number to the leader. The leader updates the
estimated weights and everyone proceeds to the next epoch.
If at some point the list of candidate matchings C becomes
a singleton, it means that (with high probability) the actual
maximum matching is unique and has been found; so all
players jointly pull that matching for the rest of the game
(the exploitation phase).

Possible Exploitation Phase Note that in the presence of
several optimal matchings, the players will not enter the
exploitation phase but will keep exploring several optimal
matchings, which still ensures small regret. On the con-
trary, in the presence of a unique optimal matching, they are
guaranteed to eventually enter the exploitation phase.3 Also,
observe that the set C of candidate optimal matchings does
not necessarily contain all potentially optimal matchings,
but all the edges in those matchings remain in E and are
guaranteed to be explored.

The pseudocode for the leader’s algorithm is given below,
while the corresponding follower algorithm appears in Ap-
pendix A. In the pseudocodes, (comm.) refers to a call to
the communication protocol.

5 Analysis of M-ETC-Elim

We may assume that K ≤ T , otherwise all parts of Theo-
rem 1 would be trivial, sinceRT ≤MT always. Theorem 3
provides a non-asymptotic upper bound on the regret of M-
ETC-Elim when ∆ 6=∞.

Theorem 3. Let πm,k be the best suboptimal matching
assigning arm k to player m, namely,

πm,k ∈ argmax {U(π) : π(m) = k and U(π) < U?} .

For all c ≥ 1, let T0(c) := exp

(
2

cc

lnc(1+ 1
2c

)

)
. For all

T ≥ T0(c), if ∆ 6= ∞, the regret of M-ETC-Elim with
parameter c is upper bounded as4

RT ≤ 2 +MK ln(e2K2T ) + 6M2K lg(K)(lg T )1/c

+ e2MK(lg T )1+1/c +
2M3K lg(K)√

2− 1

√
ln(2M2KT 2)

+
2
√

2

3− 2
√

2
M2K

√
ln(2M2KT 2) lg(ln(T ))

+
2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

(
32M2 ln(2M2KT 2)

∆(πm,k)

)1+1/c

.

The first statement of Theorem 1(a) easily follows by lower
bounding ∆(πm,k) ≥ ∆ for all m, k. The second statement

3This different behavior is the main reason for the improved
regret upper bound obtained when the optimal matching is unique.

4In this paper, ln(·) and lg(·) denote the natural logarithm and
the logarithm in base 2, respectively.

Procedure LeaderAlgorithm(M) for the M-ETC-Elim
algorithm with parameter c
Input: Number of players M

1 E ←− [M ]× [K] // list of candidate edges
2 µ̃mk ←− 0 for all (m, k) ∈ [M ]× [K] // empirical

estimates for utilities
3 for p = 1, 2, . . . do
4 C ←− ∅ // list of associated matchings

5 π1 ←− argmax
{∑M

n=1 µ̃
n
π(n) : π ∈M

}
// using

Hungarian algorithm
6 for (m, k) ∈ E do
7 π ←− argmax

{∑M
n=1 µ̃

n
π(n) : π(m) = k

}
// using Hungarian algorithm

8 if
∑M
n=1

{
µ̃nπ1(n)

− µ̃nπ(n)
}
≤4Mεp then add π to C

9 else remove (m, k) from E
10 end
11 for each player m = 2, . . . ,M do
12 Send to player m the value of size(C)// (comm.)

for i = 1, 2, . . . , size(C) do
13 Send to player m the arm associated to player m

in C[i] // (comm.)
14 end
15 Send to player m the communication arm of the

leader and player m, namely π1(1) and π1(m)
16 end
17 if size(C) = 1 then pull for the rest of the game the arm

assigned to player 1 in the unique matching in C
// enter the exploitation phase

18 for i = 1, 2, . . . , size(C) do
19 pull 2p

c

times the arm assigned to player 1 in the
matching C[i] // exploration

20 end
21 for k = 1, 2, . . . ,K do
22 µ̃1

k ←− empirically estimated utility of arm k if it
was pulled in this epoch, 0 otherwise

23 end
24 Receive the values µ̃m1 , µ̃m2 , . . . , µ̃mK from each player m

// (comm.)
25 end

is proved by noting that if ∆ = ∞, then the exploration
phases incur zero regret, so in that case a variant of The-
orem 3 holds without the last term on the right-hand-side.
Parts (b) and (c) of Theorem 1 similarly follow respectively
from Theorems 8 and 9 in Appendices C and D, with proofs
similar to that of Theorem 3 presented below.

The constant T0(c) in Theorem 3 equals 252 for c = 1 but
becomes large when c increases. Still, the condition on T
is explicit and independent of the problem parameters. In
the case of multiple optimal matchings, our contribution
is mostly theoretical, as we would need a large enough
value of c and a long time T0(c) for reaching a prescribed
ln1+o(1)(T ) regret. However, in the case of a unique optimal
matching (common in practice, and sometimes assumed in
other papers), for the choice c = 1, the logarithmic regret
upper bound stated in Theorem 8 is valid for all T ≥ 1.
Even if there are several optimal matchings, the minimax
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bound of Theorem 9 gives an O(
√
T lnT ) regret bound

that is a best-possible worst-case bound (also known as
the minimax rate), up to the

√
lnT factor. Hence M-ETC-

Elim with c = 1 is particularly good, both in theory and in
practice. Our experiments also confirm that for c = 1, 2 the
algorithm performs well (i.e., beats our competitors) even
in the presence of multiple optimal matchings.

5.1 Sketch of Proof of Theorem 3

The analysis relies on several lemmas with proofs delayed
to Appendix E. Let Cp denote the set of candidate matchings
used in epoch p, and for each matching π let Ũp(π) be the
utility of π that the leader can estimate based on the infor-
mation received by the end of epoch p. Let p̂T be the total
number of epochs before the (possible) start of the exploita-
tion phase. As 2p̂

c
T ≤ T , we have p̂T ≤ lg(T ). Recall that

a successful initialization means all players identify M and
their ranks are distinct. Define the good event

GT :=
{

INIT(K, 1/KT ) is successful and

∀p ≤ p̂T ,∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp

}
. (2)

During epoch p, for each candidate edge (m, k), player m
has pulled arm k at least 2p

c

times and the quantization error
is smaller than εp. Hoeffding’s inequality and a union bound
over at most lg(T ) epochs (see Appendix E.1) together with
Lemma 2 yield that GT holds with large probability.
Lemma 4. P (GT ) ≥ 1− 2

MT .

If GT does not hold, we may upper bound the regret by MT .
Hence it suffices to bound the expected regret conditional
on GT , and the unconditional expected regret is bounded by
this value plus 2.

Suppose that GT happens. First, the regret incurred
during the initialization phase is upper bounded by
MK ln(e2K2T ) by Lemma 2. Moreover, the gap between
the best estimated matching of the previous phase and the
best matching is at most 2Mεp−1 during epoch p. Any
single communication round then incurs regret at most
2+2Mεp−1, the first term being due to the collision between
the leader and a follower, the second to the gap between the
optimal matching and the matching used for communication.
Summing over all communication rounds and epochs leads
to Lemma 5 below.
Lemma 5. The regret due to communication is bounded by

3M2K lg(K)p̂T +
2c
√

2

3− 2
√

2
M2K

√
ln(2/δ)

+MK(p̂T )c+1 +
2M3K lg(K)√

2− 1

√
ln(2/δ).

For large horizons, Lemma 6 bounds some terms such as
p̂T and (p̂T )c. When c = 1, tighter bounds that are valid for
any T are used to prove Theorems 1(b) and 1(c).

Lemma 6. For any suboptimal matching π, let P (π) :=
inf{p ∈ N : 8Mεp < ∆(π)}. The assumption T ≥
T0(c) implies that for any matching π, ∆(π)2P (π)c ≤(

32M2 ln(2M2KT 2)
∆(π)

)1+ 1
c

. Also, 2c ≤ 2 lg(ln(T )), p̂T ≤
2(lg T )1/c and (p̂T )c ≤ e lg T .

Hence for T ≥ T0(c), we can further upper bound the first
three terms of the sum in Lemma 5 by

6M2K lg(K)(lg T )1/c + e2MK(lg T )1+1/c

+
2
√

2

3− 2
√

2
M2K

√
ln(2/δ) lg(ln(T )). (3)

It then remains to upper bound the regret incurred during
exploration and exploitation phases. On GT , during the
exploitation phase the players are jointly pulling an optimal
matching and no regret is incurred. For an edge (m, k),
let ∆̃m,k

p := U? − U(π̃m,kp ) be the gap of its associated
matching at epoch p. During any epoch p, the incurred
regret is then

∑
π∈Cp ∆(π)2p

c

=
∑

(m,k)∈E ∆̃m,k
p 2p

c

.

Recall that πm,k is the best suboptimal matching assign-
ing arm k to player m. Observe that for any epoch p >
P (πm,k), since GT happens, πm,k (and any worse match-
ing) is not added to Cp; thus during any epoch p > P (πm,k),
the edge (m, k) is either eliminated from the set of candi-
date edges, or it is contained in some optimal matching and
satisfies ∆̃m,k

p = 0. Hence, the total regret incurred during
exploration phases is bounded by

∑
(m,k)∈[M ]×[K]

P (πm,k)∑
p=1

∆̃m,k
p 2p

c

. (4)

The difficulty for bounding this sum is that ∆̃m,k
p is random

since π̃m,kp is random. However, ∆̃m,k
p can be related to

∆(πm,k) by ∆̃m,k
p ≤ εp−1

ε
P (πm,k)

∆(πm,k). A convexity ar-

gument then allows us to bound the ratio εp−1

ε
P (πm,k)

, which

yields Lemma 7, proved in Appendix E.4.
Lemma 7. For any edge (m, k), if p < P (πm,k) then

∆̃m,k
p 2p

c ≤ ∆(πm,k) 2P (πm,k)c

√
2
P (πm,k)−(p+1)

.

By Lemma 7,
∑P (πm,k)
p=1 ∆̃m,k

p 2p
c

is upper bounded by(∑∞
p=01/

√
2
p
)

∆(πm,k)2P (πm,k)c + ∆̃m,k
P (πm,k)

2P (πm,k)c .

As π̃m,k
P (πm,k)

is either optimal or its gap is larger than
∆(πm,k), Lemma 6 yields

∆̃m,k

P (πm,k)
2P (πm,k)c ≤

(
32M2 ln(2M2KT 2)

∆(πm,k)

)1+1/c

in both cases. Therefore, we find that
P (πm,k)∑
p=1

∆̃m,k
p 2p

c

≤ 2
√

2− 1√
2− 1

(
32M2 ln(2M2KT 2)

∆(πm,k)

)1+1/c

.

Plugging this bound in (4), the bound (3) in Lemma 5 and
summing up all terms yields Theorem 3.
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Figure 1: RT as a function of T with reward matrices U1 (left) and U2 (right) and Bernoulli rewards.

5.2 Proof of Theorem 1(b), Unique Optimal Matching

The reader may wonder why can we obtain a better (loga-
rithmic) bound if the maximum matching is unique. The
intuition is as follows: in the presence of a unique optimal
matching, M-ETC-Elim eventually enters the exploitation
phase (which does not happen with multiple optimal match-
ings), and we can therefore provide a tighter bound on the
number of epochs before exploitation phase compared with
the one provided by Lemma 6. More precisely, in that
case we have p̂T ≤ lg

(
64M2∆−2 ln(2M2KT 2)

)
. Moreover,

another bound given by Lemma 6 can be tightened when
c = 1 regardless of whether the optimal matching is unique
or not: ∆(π)2P (π) ≤ 64M2 ln(2M2KT 2)/∆(π).These two
inequalities lead to Theorem 1(b), proved in Appendix C.

5.3 Proof of Theorem 1(c), Minimax Regret Bound

Using the definition of the elimination rule, on GT we have
∆̃m,k
p ≤ 8Mεp−1. Directly summing over these terms

for all epochs yields an exploration regret scaling with∑
m,k

√
tm,k, where tm,k roughly corresponds to the num-

ber of exploration rounds associated with edge (m, k). This
regret is maximized when all tm,k are equal, which leads to
the sublinear regret bound of Theorem 1(c). See Appendix
D for the rigorous statement and proof.

6 Numerical Experiments

We executed the following algorithms:5 M-ETC-Elim with
c = 1 and c = 2, GoT (the latest version in Bistritz and
Leshem (2019)) with parameters6 δ = 0, ε = 0.01, c1 =
500, c2 = c3 = 6000 and Selfish-UCB, a heuristic studied
by Besson and Kaufmann (2018a); Boursier and Perchet
(2019) in the homogeneous setting which often performs
surprisingly well despite the lack of theoretical evidence.
In Selfish-UCB, each player runs the UCB1 algorithm of

5The source codes are included in the supplementary material.
6These parameters and the reward matrix U1 are taken from

the simulations section of Bistritz and Leshem (2019).

Auer et al. (2002) on the reward sequence (Rm(t))∞t=1.7 We
experiment with Bernoulli rewards and the following reward
matrices, whose entry (m, k) gives the value of µmk :

U1 =

[
0.1 0.05 0.9
0.1 0.25 0.3
0.4 0.2 0.8

]
, U2 =

 0.5 0.49 0.39 0.29 0.5
0.5 0.49 0.39 0.29 0.19
0.29 0.19 0.5 0.499 0.39
0.29 0.49 0.5 0.5 0.39
0.49 0.49 0.49 0.49 0.5


Figure 1 reports the algorithms’ regrets for various time
horizons T , averaged over 100 independent replications.
The first instance (matrix U1, left plot) has a unique optimal
matching and we observe that M-ETC-Elim has logarithmic
regret (as promised by Theorem 1) and largely outperforms
all competitors. The second instance (matrix U2, right plot)
is more challenging, with more arms and players, two op-
timal matchings and several near-optimal matchings. M-
ETC-Elim with c = 1 performs the best for large T as well,
though Selfish-UCB is also competitive. Yet there is very
little theoretical understanding of Selfish-UCB, and it fails
badly on the other instance. Appendix B contains additional
experiments corroborating our findings, where we also dis-
cuss practical aspects of implementing M-ETC-Elim.

7 Conclusion

We have presented a practical algorithm for the heteroge-
neous multiplayer multi-armed bandit problem, which can
be used in the presence of either unique or multiple optimal
matchings and get a nearly logarithmic regret in both cases,
as well as a sublinear regret in the worst case. M-ETC-Elim
crucially relies on the assumption that the collision indica-
tors are observed in each round. In future work, we aim to
find algorithms with logarithmic regret in the setting when
the players observe their rewards Rm(t) only. So far, such
algorithms have been proposed only in the homogeneous
setting, see (Lugosi and Mehrabian, 2018; Boursier and
Perchet, 2019).

7Note that this sequence is not i.i.d. due to some observed zeros
that are due to collisions.
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A Description of the Initialization Procedure and Followers’ Pseudocode

The pseudocode of the INIT(K, δ0) procedure, first introduced by Boursier and Perchet (2019), is presented in Algorithm 2
for the sake of completeness. We now provide a proof of Lemma 2.

Algorithm 2: INIT, the initialization algorithm
Input: number of arms K, failure probability δ0
Output: Ranking R, number of players M
// first, occupy a distinct arm using the musical chairs algorithm

1 k ←− 0
2 for T0 := K ln(K/δ0) rounds do // rounds 1, . . . , T0

3 if k = 0 then
4 pull a uniformly random arm i ∈ [K]
5 if no collision occurred then k ←− i // arm k is occupied
6 else
7 pull arm k
8 end
9 end
// next, learn M and identify your ranking

10 R←− 1
11 M ←− 1
12 for 2k − 2 rounds do // rounds T0 + 1, . . . , T0 + 2k − 2
13 pull arm k
14 if collision occurred then
15 R←− R+ 1
16 M ←−M + 1

17 end
18 end
19 for i = 1, 2, . . . ,K − k do // rounds T0 + 2k − 1, . . . , T0 +K + k − 2
20 pull arm k + i
21 if collision occurred then
22 M ←−M + 1
23 end
24 end
25 for K − k rounds do // rounds T0 +K + k − 1, . . . , T0 + 2K − 2
26 pull arm 1
27 end

Let T0 := K ln(K/δ0). During the first T0 rounds, each player tries to occupy a distinct arm using the so-called musical
chairs algorithm, first introduced in Rosenski et al. (2016): she repeatedly pulls a random arm until she gets no collision,
and then sticks to that arm. We claim that after T0 rounds, with probability 1− δ0 all players have succeeded in occupying
some arm. Indeed, the probability that a given player A, who has not occupied an arm so far, does not succeed in the next
round is at most 1− 1/K, since there exists at least one arm that is not pulled in that round, and this arm is chosen by A
with probability 1/K. Hence, the probability that A does not succeed in occupying an arm during these T0 rounds is not
more than

(1− 1/K)T0 < exp(−T0/K) = δ0/K ≤ δ0/M,

and a union bound over the M players proves the claim.

Once each player has occupied some arm, the next goal is to determine the number of players and their rankings. This part
of the procedure is deterministic. The players’ rankings will be determined by the indices of the arms they have occupied: a
player with a smaller index will have a smaller ranking. To implement this, a player that has occupied arm k ∈ [K] will pull
this arm for 2k − 2 more rounds (the waiting period), and will then sweep through the arms k + 1, k + 2, . . . ,K, and can
learn the number of players who have occupied arms in this range by counting the number of collisions she gets. Moreover,
she can learn the number of players occupying arms 1, . . . , k − 1 by counting the collisions during the waiting period; see
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Algorithm 2 for details. The crucial observation to verify the correctness of the algorithm is that two players occupying arms
k1 and k2 will collide exactly once, and that happens at round T0 + k1 + k2 − 2.

Next, we present the pseudocode that the followers execute in M-ETC-Elim. Recall that (comm.) refers to a call to the
communication protocol.

Procedure FollowerAlgorithm(R,M) for the M-ETC-Elim algorithm with parameter c
Input: Ranking R, number of players M

1 for p = 1, 2, . . . do
2 Receive the value of size(C) // (comm.)
3 for i = 1, 2, . . . , size(C) do
4 Receive the arm assigned to this player in C[i] // (comm.)
5 end
6 Receive the communication arm of the leader and of this player
7 if size(C) = 1 // (enter exploitation phase)
8 then
9 pull for the rest of the game the arm assigned to this player in the unique matching in C

10 end
11 for i = 1, 2, . . . , size(C) do
12 pull 2p

c

times the arm assigned to this player in the matching C[i]
13 end
14 for k = 1, 2, . . . ,K do
15 µ̂Rk ←− empirically estimated utility of arm k if arm k has been pulled in this epoch, 0 otherwise
16 Truncate µ̂Rk to µ̃Rk using the pc+1

2 most significant bits
17 end
18 Send the values µ̃R1 , µ̃

R
2 , . . . , µ̃

R
K to the leader // (comm.)

19 end

B Practical Considerations and Additional Experiments

B.1 Implementation Enhancements for M-ETC-Elim

In the implementation of M-ETC-Elim, the following enhancements significantly improve the regret in practice (and have
been used for the reported numerical experiments), but only by constant factors in theory, hence we have not included them
in the analysis for the sake of brevity.

First, to estimate the means, the players are better off taking into account all pulls of the arms, rather than just the last epoch.
Note that after the exploration phase of epoch p, each candidate edge has been pulled Np :=

∑p
i=1 2i

c

times. Thus, with
probability at least 1− 2 lg(T )/(MT ), each edge has been estimated within additive error ≤ ε′p =

√
ln(M2TK)/2Np by

Hoeffding’s inequality. The players then truncate these estimates using b := d− lg(0.1ε′p)e bits, adding up to 0.1ε′p additive
error due to quantization. They then send these b bits to the leader. Now, the threshold for eliminating a matching would be
2.2Mε′p rather than 4M ×

√
ln(2M2KT 2)/21+pc (compare with line 8 of the LeaderAlgorithm presented on page 6).

The second enhancement is to choose the set C of matchings to explore more carefully. Say that a matching is good if
its estimated gap is at most 2.2Mε′p, and say an edge is candidate (lies in E) if it is part of some good matching. There
are at most MK candidate edges, and we need only estimate those in the next epoch. Now, for each candidate edge, we
can choose any good matching containing it, and add that to C. This guarantees that |C| ≤ MK, which gives the bound
in Theorem 1. But to reduce the size of C in practice, we do the following: initially, all edges are candidate. After each
exploration phase, we do the following: we mark all edges as uncovered. For each candidate uncovered edge e, we compute
the maximum matching π′ containing e (using estimated means). If this matching π′ has gap larger than 2.2Mε′p, then it is
not good hence we remove e from the set of candidate edges. Otherwise, we add π′ to C, and moreover, we mark all of its
edges as covered. We then look at the next uncovered candidate edge, and continue similarly, until all candidate edges are
covered. This guarantees that all the candidate edges are explored, while the number of explored matchings could be much
smaller than the number of candidate edges, which results in faster exploration and a smaller regret in practice.

To reduce the size of C even further, we do the following after each exploration phase: first, find the maximum matching
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(using estimated means), add it to C, mark all its edges as covered, and only then start looking for uncovered candidate edges
as explained above.

B.2 Other Reward Distributions

In our model and analysis, we have assumed Y mk,t ∈ [0, 1] for simplicity (this is a standard assumption in online learning),
but it is immediate to generalize the algorithm and its analysis to reward distributions bounded in any known interval via
a linear transformation. Also, we can adapt our algorithm and analysis to subgaussian distributions with mean lying in a
known interval. A random variable X is σ-subgaussian if for all λ ∈ R we have E[eλ(X−EX)] ≤ eσ

2λ2/2. This includes
Gaussian distributions and distributions with bounded support. Suppose for simplicity that the means lie in [0, 1]. Then the
algorithm need only change in two places: first, when the followers are sending the estimated means to the leader, they must
send 0 and 1 if the empirically estimated mean is < 0 and > 1, respectively. Second, the definition of εp must be changed to
εp :=

√
σ2 ln(2/δ)/2pc−1. The only change in the analysis is that instead of using Hoeffding’s inequality which requires a

bounded distribution, one has to use a concentration inequality for sums of subgaussian distributions, see, e.g., (Wainwright,
2019, Proposition 2.5).

We executed the same algorithms as in Section 6 with the same reward matrices but with Gaussian rewards with variance
0.05. The results are somewhat similar to the Bernoulli case and can be found in Figure 2.

Figure 2: Numerical comparison of M-ETC-Elim, GoT and Selfish-UCB on reward matrices U1 (left) and U2 (right) with
Gaussian rewards and variance 0.05. The x-axis has logarithmic scale in both plots. The y-axis has logarithmic scale in the
right plot.

The reason we performed these Gaussian experiments is to have a more fair comparison against GoT. Indeed, the numerical
experiments of Bistritz and Leshem (2019) rely on the same reward matrix U1 and Gaussian rewards.

C Regret Analysis in the Presence of a Unique Maximum Matching

In Theorem 8 below we provide a refined analysis of M-ETC-Elim with parameter c = 1 if the maximum matching is
unique, justifying the O(KM

3

∆ ln(T )) regret upper bound stated in Theorem 1(b). Its proof, given below, follows essentially
the same line as the finite-time analysis given in Section 5, except for the last part. Recall that ln(·) denotes the natural
logarithm and lg(·) denotes logarithm in base 2.
Theorem 8. If the maximum matching is unique, for any T > 0 the regret of the M-ETC-Elim algorithm with parameter
c = 1 is upper bounded by

2 +MK ln(e2K2T ) + 3M2K lg(K) lg

(
64M2 ln(2M2KT 2)

∆2

)
+MK lg2

(
64M2 ln(2M2KT 2)

∆2

)
+

4
√

2− 2

3− 2
√

2
M3K lg(K)

√
ln(2M2KT 2) +

2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 ln(2M2KT 2)

∆(πm,k)
.

Proof. The good event and the regret incurred during the initialization phase are the same as in the finite-time analysis given
in Section 5. Recall the definition of P , which is P (π) = inf{p ∈ N : 8Mεp < ∆(π)}. When there is a unique optimal
matching, if the good event happens, the M-ETC-Elim algorithm will eventually enter the exploitation phase, so p̂T can be
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much smaller than the crude upper bound given by Lemma 6. Specifically, introducing π′ as the second maximum matching
so that ∆(π′) = ∆, we have, on the event GT ,

p̂T ≤ P (π′) ≤ lg

(
64M2 ln(2M2KT 2)

∆2

)
.

Plugging this bound in Lemma 5 yields that the regret incurred during communications is bounded by

3M2K lg(K) lg

(
64M2 ln(2M2KT 2)

∆2

)
+MK lg2

(
64M2 ln(2M2KT 2)

∆2

)
+

2M3K lgK√
2− 1

√
ln(2/δ) +

2
√

2

3− 2
√

2
M2K

√
ln(2/δ).

Also, for c = 1 and any matching π, the definition of εp in (1) gives

P (π) ≤ 1 + lg

(
32M2 ln(2M2KT 2)

∆(π)2

)
.

In particular, ∆(π)2P (π) ≤ 64M2 ln(2M2KT 2)
∆(π) . Using the same argument as in Section 5, the regret incurred during the

exploration phases is bounded by
2
√

2− 1√
2− 1

∑
(m,k)∈[M ]×[K]

64M2 ln(2M2KT 2)

∆(πm,k)
.

Summing up the regret bounds for all phases proves Theorem 8.

�

D Minimax Regret Analysis

In Theorem 9 below we provide a minimax regret bound for M-ETC-Elim with parameter c = 1, justifying the
O
(
M

3
2

√
KT ln(T )

)
regret upper bound stated in Theorem 1(c).

Theorem 9. For all T , the regret of the M-ETC-Elim algorithm with parameter c = 1 is upper bounded by

2 +MK ln(e2K2T ) + 3M2K lg(K) lg (T ) +MK lg2 (T )

+
4
√

2− 2

3− 2
√

2
M3K lg(K)

√
ln(2M2KT 2) +

8√
2− 1

K
1
2M

3
2

√
T ln(2M2KT 2).

Note that the above regret bound is independent of the suboptimality gaps.

Proof. The good event and the regret incurred during the initialization phase are the same as in the finite-time analysis
given in Section 5. Furthermore, using Lemma 5 stated therein and since p̂T ≤ lg(T ), the regret incurred during the
communication phases is bounded by

3M2K lg(K) lg (T ) +MK lg2 (T ) +
4
√

2− 2

3− 2
√

2
M3K lg(K)

√
ln(2M2KT 2).

We next bound the exploration regret. Fix any edge (m, k), and let P̃m,k be the last epoch in which this edge is explored.
If this edge belongs to an optimal matching, i.e., if πm,k is optimal, we instead define P̃m,k as the last epoch in which
the pulled matching π̃m,kp associated with (m, k) is suboptimal. In either case, the contribution of the edge (m, k) to the

exploration regret can be bounded by
∑P̃m,k

p=1 ∆̃m,k
p 2p.
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Fix an epoch p ≤ P̃m,k. Recall that Cp contains at least one actual maximum matching, which we denote by π?. Also, let
π̃?p denote the maximum empirical matching right before the start of epoch p. Since (m, k) is candidate in epoch p, we have

∆̃m,k
p = U? − Up−1(π?) + Up−1(π?)− Up−1(π̃m,kp ) + Up−1(π̃m,kp )− U(π̃m,k)

≤ (U? − Up−1(π?)) + (Up−1(π̃?p)− Up−1(π̃m,kp ) + (Up−1(π̃m,kp )− U(π̃m,kp ))

≤ 2Mεp−1 + 4Mεp + 2Mεp−1

≤ 8Mεp−1 = 8M

√
ln(2/δ)

2p
,

so, the contribution of the edge (m, k) to the exploration regret can further be bounded by

P̃m,k∑
p=1

∆̃m,k
p 2p ≤ 8M

√
ln(2/δ)

P̃m,k∑
p=1

√
2
p

 <
8
√

2M
√

ln(2/δ)√
2− 1

√
2
P̃m,k

.

To bound the total exploration regret, we need to sum this over all edges (m, k).

Note that during each epoch p = 1, 2, . . . , P̃m,k, there are exactly 2p exploration rounds associated with the edge (m, k).
Since the total number of rounds is T , we find that

∑
(m,k)∈[M ]×[K]

P̃m,k∑
p=1

2p ≤ T,

and in particular, ∑
(m,k)∈[M ]×[K]

2P̃m,k ≤ T,

hence by the Cauchy-Schwarz inequality,∑
(m,k)∈[M ]×[K]

√
2
P̃m,k

=
∑

(m,k)∈[M ]×[K]

√
2P̃m,k ≤

√
MKT,

so the total exploration regret can be bounded by

8
√

2M
√

ln(2/δ)√
2− 1

∑
(m,k)∈[M ]×[K]

√
2
P̃m,k

≤
8
√

2M
√

ln(2/δ)√
2− 1

√
MKT,

completing the proof of Theorem 9.

�

E Proofs of Auxiliary Lemmas for Theorems 3 and 8

E.1 Proof of Lemma 4

We recall Hoeffding’s inequality.

Proposition 10 (Hoeffding’s inequality (Hoeffding, 1963, Theorem 2)). Let X1, . . . , Xn be independent random variables
taking values in [0, 1]. Then for any t ≥ 0 we have

P
(∣∣∣∣ 1n∑Xi − E

[
1

n

∑
Xi

]∣∣∣∣ > t

)
< 2 exp(−2nt2).

Recall the definition of the good event

GT =
{

INIT(K, 1/KT ) is successful and ∀p ≤ p̂T ,∀π ∈ Cp+1, |Ũp(π)− U(π)| ≤ 2Mεp

}
.
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and recall that εp :=
√

ln(2/δ)/2pc+1 and δ = 1/M2KT 2. LetH be the event that INIT(K, 1/KT ) is successful for all
players. Then,

P (GcT ) ≤ P (Hc) + P
(
H happens and ∃p ≤ p̂T ,∃π ∈M with candidate edges such that |Ũp(π)− U(π)| > 2Mεp

)
≤ 1

KT
+ P

(
H happens and ∃p ≤ lg(T ),∃π ∈M with candidate edges such that|Ũp(π)− U(π)| > 2Mεp

)
,

where we have used that p̂T ≤ lg(T ) deterministically.

Fix an epoch p and a candidate edge (m, k). We denote by µ̂mk (p) the estimated mean of arm k for player m at the end of
epoch p and by µ̃mk (p) the truncated estimated mean sent to the leader by this player at the end of epoch p.

By Hoeffding’s inequality and since this estimated mean is based on at least 2p
c

pulls, we have

P (|µ̂mk (p)− µmk | > εp) < δ.

The value µ̃mk (p) ∈ [0, 1] which is sent to the leader uses the (pc + 1)/2 most significant bits. The truncation error is thus at
most 2−(pc+1)/2 < εp, hence we have

P (|µ̃mk (p)− µmk | > 2εp) < δ.

Given the eventH that the initialization is successful, the quantity Ũp(π) is a sum of M values µ̃mk (p) for M different edges
(m, k) ∈ [M ]× [K]. Hence, we have

P
(
H happens and ∃π ∈M with candidate edges such that |Ũp(π)− U(π)| > 2Mεp|

)
≤ P (∃ candidate edge (m, k) such that |µ̃mk (p)− µmk | > 2εp) ≤ KMδ.

Finally, a union bound on p yields

P (GcT ) ≤ 1

KT
+ lg(T )KMδ ≤ 1

MT
+

1

MT
,

completing the proof of Lemma 4

E.2 Proof of Lemma 5

For each epoch p, the leader first communicates to each player the list of candidate matchings. There can be up to MK
candidate matchings, and for each of them the leader communicates to the player the arm she has to pull (there is no need to
communicate to her the whole matching) which requires lgK bits, and there are a total of M players, so this takes at most
M2K lg(K) many rounds.8

At the end of the epoch, each player sends the leader the empirical estimates for the arms she has pulled, which requires
at most MK(1 + pc)/2 many rounds. As players use the best estimated matching as communication arms for the
communication phases, a single communication round incurs regret at most 2 + 2Mεp−1, since the gap between the
best estimated matching of the previous phase and the best matching is at most 2Mεp−1 conditionally to GT (we define

ε0 :=
√

ln(2/δ)
2 ≥ 1

2 ). The first term is for the two players colliding, while the term 2Mεp−1 is due to the other players who
are pulling the best estimated matching instead of the real best one. With p̂T denoting the number of epochs before the
(possible) start of the exploitation, the total regret due to communication phases can be bounded by

Rc ≤
p̂T∑
p=1

(
2M2K lg(K) +MK(1 + pc)

)
(1 +Mεp−1)

≤ 3M2K lg(K)p̂T +MK(p̂T )c+1 +M2K

p̂T∑
p=1

(2M lg(K) + (1 + pc)) εp−1.

8Strictly speaking, the leader also sends her communication arm and the size of the list she is sending, but there are at most
MK −M + 1 candidate matchings, as the best one is repeated M times. So, this communication still takes at most M2K lgK many
rounds.
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We now bound the sum as:
p̂T∑
p=1

(2M lg(K) + (1 + pc)) εp−1 = 2M lg(K)
√

ln(2/δ)

p̂T−1∑
p=0

1
√

2
1+pc +

√
ln(2/δ)

p̂T−1∑
p=0

1 + (p+ 1)c
√

2
1+pc

≤ 2M lg(K)
√

ln(2/δ)

∞∑
n=1

1√
2
n +

√
ln(2/δ)

∞∑
n=1

n2c√
2
n

≤ 2M lg(K)
√

ln(2/δ)
1√

2− 1
+
√

ln(2/δ)
2c
√

2

(
√

2− 1)2
,

completing the proof of Lemma 5.

E.3 Proof of Lemma 6

The assumption T ≥ exp(2
cc

lnc(1+ 1
2c

) ) gives lg(lnT )1/c ≥ c
ln(1+1/2c) . In particular, (lg T )1/c ≥ c. We will also use the

inequality
(x+ 1)c ≤ ec/xxc, (5)

which holds for all positive x, since (x+ 1)c/xc = (1 + 1/x)c ≤ exp(1/x)c = exp(c/x).

Using a crude upper bound on the number of epochs that can fit within T rounds, we get p̂T ≤ 1 + (lg T )1/c. As
(lg T )1/c ≥ c ≥ 1 we have p̂T ≤ 2(lg T )1/c. Also (5) gives (p̂T )c ≤ e lg T .

Also, 2 lg(ln(T )) ≥ 2cc ≥ 2c. It remains to show the first inequality of Lemma 6.

Straightforward calculations using the definition of εp in (1) give

P (π) ≤ 1 + L(π)1/c, where L(π) := lg

(
32M2 ln(2M2KT 2)

∆(π)2

)
.

We claim that we have

P (π)c ≤
(

1 +
1

2c

)
L(π). (6)

Indeed, since ∆(π) ≤M , we have L(π)1/c > (lg lnT )1/c ≥ c
ln(1+1/2c) and so (5) with x = L(π)1/c gives (6). Hence,

∆(π)2P (π)c ≤ ∆(π)

(
32M2 ln(2M2KT 2)

∆(π)2

)1+1/2c

≤
(

32M2 ln(2M2KT 2)

∆(π)

)1+1/c

, (7)

completing the proof of Lemma 6.

E.4 Proof of Lemma 7

For brevity we define, for this proof, ∆ := ∆(πm,k), P := P (πm,k) and ∆p := ∆̃m,k
p . First, ∆ > 8MεP by definition of

P . Also, ∆p ≤ 8Mεp−1 for any p ≤ P − 1, otherwise the edge (m, k) would have been eliminated before epoch p. It then
holds

∆p ≤
εp−1

εP
∆ =

√
2
P c−(p−1)c

∆. (8)

It comes from the convexity of x 7→ xc that (p+ 1)c + (p− 1)c − 2pc ≥ 0, and thus

P c + (p− 1)c − 2pc ≥ P c − (p+ 1)c ≥ P − (p+ 1).

It then follows

pc +
P c − (p− 1)c

2
≤ P c +

p+ 1− P
2

.

Plugging this in (8) gives

2p
c

∆p ≤
2P

c

√
2
P−(p+1)

∆,

completing the proof of Lemma 7.
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