
Gaussianization Flows

Chenlin Meng* Yang Song* Jiaming Song Stefano Ermon
Computer Science Department, Stanford University

Abstract

Iterative Gaussianization is a fixed-point iter-
ation procedure that can transform any con-
tinuous random vector into a Gaussian one.
Based on iterative Gaussianization, we pro-
pose a new type of normalizing flow model
that enables both efficient computation of like-
lihoods and efficient inversion for sample gen-
eration. We demonstrate that these models,
named Gaussianization flows, are universal
approximators for continuous probability dis-
tributions under some regularity conditions.
Because of this guaranteed expressivity, they
can capture multimodal target distributions
without compromising the efficiency of sam-
ple generation. Experimentally, we show that
Gaussianization flows achieve better or compa-
rable performance on several tabular datasets
compared to other efficiently invertible flow
models such as Real NVP, Glow and FFJORD.
In particular, Gaussianization flows are easier
to initialize, demonstrate better robustness
with respect to different transformations of
the training data, and generalize better on
small training sets.

1 INTRODUCTION

Maximum likelihood is a widely adopted approach for
density estimation. However, for very expressive proba-
bilistic models, e.g ., those parameterized by deep neural
networks, evaluating likelihood can be intractable. Sev-
eral special architectures have been proposed to build
probabilistic models with tractable likelihoods. One
such family of models is normalizing flows (Rezende
and Mohamed, 2015; Dinh et al., 2014, 2015). These
models learn a bijective mapping T that pushes forward
the data distribution to a simple target distribution

*Joint first authors. Proceedings of the 23rdInternational
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2020, Palermo, Italy. PMLR: Volume 108. Copyright
2020 by the author(s).

(typically Gaussian or uniform) such that the log deter-
minant of the transformation’s Jacobian (log |det JT|)
is efficient to compute. The corresponding likelihood
can then be efficiently computed via the change of vari-
ables formula, enabling efficient training via maximum
likelihood.

Given a density model, it is often desirable to generate
samples from it in an efficient way. This requires an
additional property for normalizing flow models: the in-
verse of Tmust also be easy to compute. Unfortunately,
even though flow models are invertible by construction,
they are not always efficiently invertible in practice.
For example, models like MAF (Papamakarios et al.,
2017), NAF (Huang et al., 2018), Block-NAF (De Cao
et al., 2019) all need D times more computation for
inversion than for likelihood evaluation, where D is the
data dimension. Continuous flow models, such as Neu-
ral ODE (Chen et al., 2018) and FFJORD (Grathwohl
et al., 2018), take roughly the same time for inversion
and likelihood evaluation, but both directions involve
slow numerical integration procedures. Models based
on coupling layers, e.g ., Real NVP (Dinh et al., 2016)
and Glow (Kingma and Dhariwal, 2018), have efficient
procedures for both inversion and likelihood computa-
tion, yet it is unclear whether their architectures are
sufficiently expressive to capture all distributions.

To explore different flow architectures that are expres-
sive and permit efficient sampling, we draw inspiration
from iterative Gaussianization. First proposed in Chen
and Gopinath (2000), it is an iterative approach to
transform the data distribution to a standard (mul-
tivariate) Gaussian distribution. Specifically, we first
transform each data point with a linear mapping (typi-
cally an orthogonal matrix computed by ICA or PCA),
and then individually “Gaussianize” the marginal dis-
tributions of each data dimension. This is achieved by
estimating each univariate CDF, mapping each data
dimension to a uniform random variable, and then
transforming it to a Gaussian by CDF inversion. Intu-
itively, the linear mapping in Gaussianization amounts
to finding a specific direction where the marginals of
the data distribution are as “non-Gaussian” as possible;
this “non-Gaussianity” is reduced by the subsequent
Gaussianization step performed for each marginal dis-

Gaussianization Flows

tribution. As proved in Chen and Gopinath (2000), the
transformed data distribution converges to a standard
normal if this procedure is repeated a su�ciently large
number of times (under some conditions). Though theo-
retically satisfying, this method has many limitations in
practice. First, Gaussianizing marginal distributions is
practically di�cult, even in the univariate case, because
non-parametric methods for CDF estimation (such as
kernel density estimation) can be inaccurate and hard
to tune. Second, �nding optimal linear mappings such
that the marginal distributions are �non-Gaussian� is
challenging and traditional methods such as linear ICA
do not have closed-form solutions and can be very slow
to run for large scale datasets.

To mitigate these limitations while preserving theo-
retical guarantees, we propose to parameterize the
Gaussianization procedure to make it jointly trainable,
in lieu of following the original iterative re�ning ap-
proach. This results in a new family of �ow models
named Gaussianization �ows. More speci�cally, we
parameterize the linear mapping by stacking several
Householder transformations with learnable parame-
ters. After this linear mapping, we parameterize an
element-wise non-linear transformation by composing
the inverse Gaussian CDF with the CDF of a trainable
mixture of logistic distributions. Combining the linear
mapping and element-wise non-linear transformation,
we get a di�erentiable Gaussianization modulewhose
Jacobian determinant is available in closed-form, and
inversion is easy to compute. We can stack several
Gaussianization modules to form a Gaussianization
�ow model which is also easy to invert.

We can show that Gaussianization �ows are univer-
sal approximators when the model is su�ciently wide
and deep, meaning that the model architecture is theo-
retically expressive enough to transform any data dis-
tribution with strictly positive density to a Gaussian
distribution (under some regularity conditions). Due
to the connection between Gaussianization �ows and
iterative Gaussianization, the layers of Gaussianization
�ows have a natural interpretation. For example, the
mixture of logistics in a Gaussianization �ow should
ideally capture the marginal distribution obtained af-
ter applying the Householder layer. We can therefore
initialize the parameters of the mixture of logistic used
for Gaussianization using a kernel density estimator
with logistic kernels for better training. Because of
the non-parametric nature of kernel density estimation,
this intialization is more adaptive, providing some ro-
bustness with respect to re-parameterizations of the
data.

In our experiments, we demonstrate that Gaussianiza-
tion �ows achieve better or comparable performance
on density estimation for tabular data, compared to

some e�cient invertible baselines such as Real NVP,
Glow and FFJORD. In particular, we achieve better
performance when the number of training data points
is limited, and our models show more robustness to
reparameterizations of the data.

2 BACKGROUND

2.1 Density Estimation with Flow Models

Let D = f x j 2 RD gN
j =1 be a dataset of continuous

observations which are i.i.d. samples from an unknown
continuous data distribution (denoted as pdata). Given
this dataset D, the goal of density estimation is to
approximate pdata with a probabilistic model parame-
terized by � (denoted asp�). Speci�cally, we learn an
invertible model T � : RD ! RD , which performs a bi-
jective, di�erentiable transformation of x to z = T � (x).
Using the change of variables formula,

p� (x) = pz (T � (x))

�
�
�
�det

@T � (x)
@x

�
�
�
� = pz (z)j det JT � (x)j;

where det JT � (x) denotes the determinant of the Ja-
cobian matrix evaluated at x, and pz (z) is a simple
�xed distribution with tractable density (e.g. the mul-
tivariate standard Gaussian N (0; I)). Note that in
order to evaluate the likelihood p� (x), the determi-
nant of Jacobian det JT � (x) must be easy to compute.
Models with this property are named normalizing �ow
models (Rezende and Mohamed, 2015).

Multiple �ow models T 1; T 2; � � � ; T L can be stacked
together to yield a deeper and more expressive model
T = T 1 � T 2 � � � � � T L . SinceT � 1 = T � 1

L � T � 1
L � 1 � � � � �

T � 1
1 , and det JT = det JT 1 det JT 2 � � � det JT L , as long

as each componentT i is invertible and has tractable
determinant of Jacobian, the combined modelT also
shares such properties.

2.2 Iterative Gaussianization

Training a �ow model with maximum likelihood
amounts to solving

min
�

Epdata (x) [� logp� (x)]

= min
�

DKL (pdata (x) k p� (x)) + const : (1)

When p� (x) is the likelihood of a �ow model T � (x)
given by Eq. (1), we can transform the above objec-
tive using the fact that KL divergence is invariant to
bijective mappings of random variables, which gives us

min
�

DKL (pdata (x) k p� (x)) + const

= min
�

DKL (pT � (z) k N (0; I)) + const ; (2)

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

wherepT � denotes the distribution of z = T � (x), when
x is sampled from p� (x). Intuitively, Eq. (2) means
that training a �ow model with maximum likelihood
is equivalent to �nding an invertible transformation
to warp the data distribution to a multivariate stan-
dard normal distribution. This task is well-known as
Gaussianization (Chen and Gopinath, 2000).

For one-dimensional (univariate) data x � pdata (x),
one could perform Gaussianzation by estimating its
cumulative density function (CDF, e.g. using kernel
density estimation) and applying the inverse Gaussian
CDF. To see this, let � be the CDF of the standard
normal distribution, and Fdata be the CDF of the data
distribution, we can transform any random variable
x � pdata to a Gaussian random variablez by z =
� � 1 � Fdata (x).

For high dimensional data, one key observation is that
the KL divergence between a distribution p(x) and
a multivariate standard Gaussian distribution can be
decomposed as follows (Chen and Gopinath, 2000):

DKL (p(x) k N (0; I)) , J (x) = I (x) + Jm (x) (3)

where I (x) is the multi-information that measures the
statistical dependence among components ofx:

I (x) = DKL

p(x)

DY

i

pi (x (i))

!

; (4)

and Jm (x) is the sum of KL divergences between the
marginal distributions and univariate standard normal
distributions:

Jm (x) =
DX

i =1

DKL

�
pi (x (i))

 N (0; 1)

�
: (5)

Here we representx = (x (1) ; x (2) ; � � � ; x (D)) | , and let
pi (x (i)) be the marginal distribution of p(x). Intuitively,
to transform the data distribution into a multivariate
unit Gaussian, we need to make each dimension inde-
pendent (I (x) = 0), and each marginal distribution
univariate standard normal (Jm (x) = 0).

Based on the decomposition Eq.(3), a particular it-
erative Gaussianization (Chen and Gopinath, 2000)
approach�Rotation-Based Iterative Gaussianization
(RBIG, Laparra et al. (2011))�alternates between ap-
plying one-dimensional Gaussianization and rotations
to the data. Speci�cally, RBIG estimates the marginal
distribution corresponding to each dimension of the
data distribution, and performs one-dimensional Gaus-
sianization of all marginal distributions. Then, RBIG
applies a rotation matrix to the transformed data.

The rationale behind RBIG is that dimension-wise
Gaussianization will decreaseJm (x) and leave I (x)

invariant, due to the fact I (x) is invariant under
dimension-wise invertible transformations (Laparra
et al., 2011), whereas applying rotation top(x) will not
modify the overall KL divergence objectiveI (x)+ Jm (x)
since KL is invariant under bijective transformations
(rotation in particular) and N (0; I) is rotationally in-
variant. Therefore, DKL (p(x) k N (0; I)) will not in-
crease (typically decreases) at each RBIG iteration. To
improve the performance of RBIG, one could consider
rotation operators that make Jm (x) as large as possi-
ble, so that the subsequent marginal Gaussianization
step removesJm (x) and results in a large decrease in
DKL (p(x) k N (0; I)) . Popular choices of rotation ma-
trices include random matrices and those computed by
independent component analysis (ICA) and principal
component analysis (PCA). However, all three candi-
dates are less than desirable. For random rotations
and PCA, the procedure could require many RBIG
steps to converge (Laparra et al., 2011). ICA, on the
other hand, is optimal yet does not have closed-form
solutions and is expensive to compute in practice.

3 METHOD

While iterative Gaussianization possesses the ability to
transform a complex distribution to standard normal,
density estimation with iterative Gaussianization is
still di�cult, because of the following challenges:

� One-dimensional (1D) Gaussianization is challeng-
ing for certain data distributions;

� Finding optimal rotation matrices is challenging
(as in the case of ICA rotation matrices, which
have no closed form solution).

In this section, we address these challenges with a new
type of invertible �ow model based on the iterative
Gaussianization (RBIG) method, named Gaussianiza-
tion Flows (GF). Speci�cally, GF improves the two
components of RBIG where we replace 1D Gaussianiza-
tion with a trainable kernel layer and a �xed rotation
matrix with a trainable orthogonal matrix layer.

3.1 Building Trainable Kernel Layers

Marginal Gaussianization plays a crucial role in RBIG
since it reduces the objective valueJm (x) in Eq. (5) and
is the only procedure that decreases the KL objective
in Eq. (3) (rotation does not change the KL divergence
because KL is invariant to bijective mappings, however,
it enables progress in the next iteration). For a set of 1D
scalarsf x j gM

j =1 , one could perform Gaussianization by
�rst estimating a CDF (denoted as Fdata (x)), and then
applying the transformation � : x 7! � � 1 � Fdata (x)
where � is the CDF for a 1D standard Gaussian.

Gaussianization Flows

One approach to estimate the CDF is via 1D density
estimation, where the CDF can be computed from
the PDF by taking the integral. As we are assum-
ing the underlying data distribution is continuous, we
can naturally employ kernel density estimation (KDE)
methods to �t the data PDF, and then obtain the CDF
by integrating out the kernels in closed-form. How-
ever, there are two shortcomings of KDE for large-scale
density estimation. Firstly, the complexity of com-
puting the KDE for each sample scales quadratically
with the number of samples, making it prohibitive for
larger batches/datasets; secondly, the performance of
KDE largely depends on the sample size (Parzen, 1962;
Devroye and Wagner, 1979) and bandwidth selection
(Sheather, 2004), yet optimal bandwidths are di�cult
to obtain even with good bandwidth selection heuristics
(Scott and Sheather, 1985).

To alleviate the limitations of existing non-parametric
KDE approaches, we propose to learn a �parameter-
ized KDE� for each data dimension, leading totrain-
able kernel layers. For each data dimension (indexed
by d = 1 ; 2; � � � ; D), we learn a set of anchor points
f � (d)

j gK
j =1 and bandwidth parameters f h(d)

j gK
j =1 . This

leads to a total of 2KD parameters for a trainable
kernel layer. Mathematically, we parameterize a CDF
with the following

F (d)
� (x) ,

1
K

KX

j =1

�

x (d) � � (d)

j

h(d)
j

!

; d = 1 ; � � � ; D; (6)

where � (�) denotes the sigmoid function throughout
the paper, and � denotes the collection of all trainable
parameters (f � (d)

j gK
j =1 and f h(d)

j gK
j =1). Learning this

CDF amounts to performing KDE with a logistic kernel
when � (�) is the sigmoid function. Then, the Gaussian-
ization procedure for dimensiond can be parameterized
as

	 (d)
� (x) , � � 1 � F (d)

� (x); d = 1 ; � � � ; D; (7)

and we denote	 � = ((1)
� ; 	 (2)

� ; � � � ; 	 (D)
�) | .

By making anchor points and bandwidths trainable,
our parametric trainable kernel layer can be more sam-
ple e�cient compared to the traditional non-parametric
KDE approach (when trained, for example, with maxi-
mum likelihood). We �nd that 20 to 100 anchor points
work well in practice. In stark contrast, naïve KDE
needs thousands of sample points to get comparable
results, which is particularly ine�cient given that the
computational complexity scales quadratically with
respect to K .

We note that 	 is a transformation with a Jacobian
whose determinant is tractable. Additionally, 	 can be
e�ciently inverted:

� � ; � 0; � � 1 are not computable by elementary func-
tions, yet they can be e�ciently evaluated via
numerical methods.

� As both � � 1 and F (d)
� are monotonic,	 (d)

� = � � 1 �

F (d)
� is also monotonic. We can therefore e�ciently

invert 	 � by inverting all of its dimensions with
the bisection method in parallel.

� The Jacobian of 	 is a diagonal matrix. The
log-determinant is therefore the sum of the log-
derivatives of � � 1 � F (d)

� (x) over all dimensions.

3.2 Building Trainable Rotation Matrix
Layers

In iterative Gaussianization, we transform the data
using a rotation matrix after the marginal Gaussian-
ization step. As mentioned in Section 2.2, �nding a
good rotation matrix is challenging using methods like
ICA or PCA. Here, we discuss our approach to �nding
rotations by optimizing trainable rotation matrices.

3.2.1 Householder Re�ections

We can parameterize the rotation matrix using House-
holder re�ections, de�ned for any vector v 2 RD :

H = I �
2vv |

kvk2
2

: (8)

Any D � D orthogonal matrix R can be represented as
the product of at most D Householder re�ections (Tom-
czak and Welling, 2016),i.e., R = H1H2 � � � HD .

By parameterizing the rotation matrix with multiple
trainable Householder re�ections, we de�ne atrainable
orthogonal matrix layer. Since the inverse of a rotation
matrix is the transpose of itself, one can e�ciently
obtain the inverse by multiplying the transpose of the
orthogonal matrix. Moreover, because the Jacobian
determinant of an orthogonal transformation is always
one, we can easily compute the Jacobian determinant
of this layer, which is also equal to one.

One caveat is that each Householder re�ection requires
D parameters, and thus fully parameterizing a rota-
tion matrix will require O(D 2) parameters. This is
reasonable when the data dimension is small. How-
ever, this may no longer be feasible in cases whereD
is large. For example, CIFAR-10 (Krizhevsky et al.,
2009) images haveD = 3072, and ImageNet (Deng
et al., 2009) images can haveD as large as106. In
such cases, one may need to trade o� model �exibility
for computational e�ciency by using a smaller number
(< D) of Householder re�ections. Below, we explore
one such approach that exploits the structure of im-
ages and utilizes a patch-based parameterization of

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

Figure 1: A patch-based rotation matrix where L =
4; p = 2 and k = 2 . All entries with the grey color are
zeros. Each4 � 4 block on the diagonal corresponds to
a new subspace of neighboring pixels, where we perform
Householder re�ections.

rotation matrices to signi�cantly reduce the number of
parameters.

3.2.2 Patch-Based Rotation Matrices

Intuitively, a pixel in an image is more correlated to
its neighboring pixels than far away ones. Based on
this intuition, we propose �patch-based� Householder
re�ections for parameterizing rotation matrices for im-
ages. Recalling that the role of the rotation matrix
in RBIG is to render the components as independent
as possible, patch-based Householder re�ections are
designed to focus on the components where we expect
to get the biggest gains, i.e., the ones that are farthest
from being independent.

For an image with dimensionL � L , the rotation matrix
will have size L 2 � L 2. Assuming p is a divisor of L
and L = p� k, we can partition the matrix into k2 � k2

smaller blocks each with sizep2 � p2. Instead of di-
rectly parameterizing the L 2 � L 2 rotation matrix using
L 2 Householder re�ections, we parameterize a block-
diagonal rotation matrix with k2 blocks. Each block on
the diagonal is ap2 � p2 rotation matrix, which requires
p2 Householder re�ections to parameterize. Since rota-
tion is now only performed in eachp � p-dimensional
subspace, we leverage a �shift� operation on the input
vectors to introduce dependency across di�erent rota-
tional subspaces. We call this block-diagonal rotation
matrix a �patch-based rotation matrix� (see Fig. 1),
and relegate extra details to Appendix B.

3.3 Deep Gaussianization Flows

Our proposed model, Gaussianization �ow, is con-
structed by stacking trainable kernel layers (Section 3.1)
and orthogonal matrix layers (Section 3.2) alternatively.

Formally, we de�ne an Gaussianization �ow with L
trainable kernel layers and orthogonal layers as:

T� (x) = 	 � L � RL � 	 � L � 1 � � � � � 	 � 1 � R1x (9)

where � denotes the collection of all parameters.

Note that both forward and backward computations
of the Gaussianization �ow are e�cient, and the log
determinant of its Jacobian can be computed in closed-
form. Consequently, we cantrain Gaussianization �ows
jointly with maximum likelihood, as well as producing
samples e�ciently. This is to the contrary of RBIG,
which is a non-trainable iterative procedure.

3.4 Gaussianization Flows are Universal
Approximators

We hereby prove that Gaussianization �ows can trans-
form any continuous distribution with a compact sup-
port to a standard normal, given that the number of
layers and the number of parameters in each layer are
su�ciently large. Ours is the �rst universal approxi-
mation result we are aware of for e�ciently invertible
normalizing �ows.

Our results closely follow that of Chen and Gopinath
(2000). However, we note that their results are weaker
than what we need: they assume the marginal Gaus-
sianization step can be done perfectly, whereas we use
the learnable kernel layers for doing marginal Gaus-
sianization. We defer all proofs to Appendix A.

Our proof starts by showing that mixtures of logistic
distributions (as used in our learnable kernel layers) are
universal approximators for continuous densities (see
Lemma 2 in Appendix). Therefore, our learnable ker-
nel layers will be able to do arbitrarily good marginal
Gaussianization when su�ciently many anchor points
are used. Based on this, we show that Gaussianiza-
tion �ow is a universal approximator given a su�cient
number of layers:

Theorem 1. Let p be any continuous distribu-
tion supported on a compact setX � RD , and
inf x 2X p(x) � � for some constant � > 0. Then,
there exists a sequence of marginal Gaussianization
layers f 	 � 1 ; 	 � 2 ; � � � ; 	 � k ; � � � g and rotation matrices
f R1; R2; � � � ; Rk ; � � � g such that the transformed ran-
dom variable

	 � k � Rk � 	 � k � 1 � Rk � 1 � � � � � 	 � 1 � R1X d! N (0; I);

where X � p.

3.5 Building Invertible Networks with
Proper Initializations

Since our Gaussianization �ow is a trainble extension
of RBIG, we propose to provide good initializations

	INTRODUCTION
	BACKGROUND
	Density Estimation with Flow Models
	Iterative Gaussianization

	METHOD
	Building Trainable Kernel Layers
	Building Trainable Rotation Matrix Layers
	Householder Reflections
	Patch-Based Rotation Matrices

	Deep Gaussianization Flows
	Gaussianization Flows are Universal Approximators
	Building Invertible Networks with Proper Initializations

	EXPERIMENTS
	2D Toy Datasets
	Tabular and Image Datasets
	Initial Performance
	Stretched Tabular Datasets
	Small Training Sets

	CONCLUSION
	PROOFS
	Mixtures of Logistics are Universal Approximators
	Gaussianization Flows are Universal Approximators

	MORE DETAILS ON PATCH-BASED ROTATION MATRICES
	SAMPLES
	ADDITIONAL EXPERIMENTAL DETAILS FOR GF
	Tabular and Image Datasets
	Stretched Tabular Datasets
	Small Training Sets

	ADDITIONAL EXPERIMENTAL DETAILS FOR RBIG

