
Gaussianization Flows

Chenlin Meng* Yang Song* Jiaming Song Stefano Ermon
Computer Science Department, Stanford University

Abstract

Iterative Gaussianization is a fixed-point iter-
ation procedure that can transform any con-
tinuous random vector into a Gaussian one.
Based on iterative Gaussianization, we pro-
pose a new type of normalizing flow model
that enables both efficient computation of like-
lihoods and efficient inversion for sample gen-
eration. We demonstrate that these models,
named Gaussianization flows, are universal
approximators for continuous probability dis-
tributions under some regularity conditions.
Because of this guaranteed expressivity, they
can capture multimodal target distributions
without compromising the efficiency of sam-
ple generation. Experimentally, we show that
Gaussianization flows achieve better or compa-
rable performance on several tabular datasets
compared to other efficiently invertible flow
models such as Real NVP, Glow and FFJORD.
In particular, Gaussianization flows are easier
to initialize, demonstrate better robustness
with respect to different transformations of
the training data, and generalize better on
small training sets.

1 INTRODUCTION

Maximum likelihood is a widely adopted approach for
density estimation. However, for very expressive proba-
bilistic models, e.g ., those parameterized by deep neural
networks, evaluating likelihood can be intractable. Sev-
eral special architectures have been proposed to build
probabilistic models with tractable likelihoods. One
such family of models is normalizing flows (Rezende
and Mohamed, 2015; Dinh et al., 2014, 2015). These
models learn a bijective mapping T that pushes forward
the data distribution to a simple target distribution

*Joint first authors. Proceedings of the 23rdInternational
Conference on Artificial Intelligence and Statistics (AIS-
TATS) 2020, Palermo, Italy. PMLR: Volume 108. Copyright
2020 by the author(s).

(typically Gaussian or uniform) such that the log deter-
minant of the transformation’s Jacobian (log |det JT|)
is efficient to compute. The corresponding likelihood
can then be efficiently computed via the change of vari-
ables formula, enabling efficient training via maximum
likelihood.

Given a density model, it is often desirable to generate
samples from it in an efficient way. This requires an
additional property for normalizing flow models: the in-
verse of Tmust also be easy to compute. Unfortunately,
even though flow models are invertible by construction,
they are not always efficiently invertible in practice.
For example, models like MAF (Papamakarios et al.,
2017), NAF (Huang et al., 2018), Block-NAF (De Cao
et al., 2019) all need D times more computation for
inversion than for likelihood evaluation, where D is the
data dimension. Continuous flow models, such as Neu-
ral ODE (Chen et al., 2018) and FFJORD (Grathwohl
et al., 2018), take roughly the same time for inversion
and likelihood evaluation, but both directions involve
slow numerical integration procedures. Models based
on coupling layers, e.g ., Real NVP (Dinh et al., 2016)
and Glow (Kingma and Dhariwal, 2018), have efficient
procedures for both inversion and likelihood computa-
tion, yet it is unclear whether their architectures are
sufficiently expressive to capture all distributions.

To explore different flow architectures that are expres-
sive and permit efficient sampling, we draw inspiration
from iterative Gaussianization. First proposed in Chen
and Gopinath (2000), it is an iterative approach to
transform the data distribution to a standard (mul-
tivariate) Gaussian distribution. Specifically, we first
transform each data point with a linear mapping (typi-
cally an orthogonal matrix computed by ICA or PCA),
and then individually “Gaussianize” the marginal dis-
tributions of each data dimension. This is achieved by
estimating each univariate CDF, mapping each data
dimension to a uniform random variable, and then
transforming it to a Gaussian by CDF inversion. Intu-
itively, the linear mapping in Gaussianization amounts
to finding a specific direction where the marginals of
the data distribution are as “non-Gaussian” as possible;
this “non-Gaussianity” is reduced by the subsequent
Gaussianization step performed for each marginal dis-

Gaussianization Flows

tribution. As proved in Chen and Gopinath (2000), the
transformed data distribution converges to a standard
normal if this procedure is repeated a sufficiently large
number of times (under some conditions). Though theo-
retically satisfying, this method has many limitations in
practice. First, Gaussianizing marginal distributions is
practically difficult, even in the univariate case, because
non-parametric methods for CDF estimation (such as
kernel density estimation) can be inaccurate and hard
to tune. Second, finding optimal linear mappings such
that the marginal distributions are “non-Gaussian” is
challenging and traditional methods such as linear ICA
do not have closed-form solutions and can be very slow
to run for large scale datasets.

To mitigate these limitations while preserving theo-
retical guarantees, we propose to parameterize the
Gaussianization procedure to make it jointly trainable,
in lieu of following the original iterative refining ap-
proach. This results in a new family of flow models
named Gaussianization flows. More specifically, we
parameterize the linear mapping by stacking several
Householder transformations with learnable parame-
ters. After this linear mapping, we parameterize an
element-wise non-linear transformation by composing
the inverse Gaussian CDF with the CDF of a trainable
mixture of logistic distributions. Combining the linear
mapping and element-wise non-linear transformation,
we get a differentiable Gaussianization module whose
Jacobian determinant is available in closed-form, and
inversion is easy to compute. We can stack several
Gaussianization modules to form a Gaussianization
flow model which is also easy to invert.

We can show that Gaussianization flows are univer-
sal approximators when the model is sufficiently wide
and deep, meaning that the model architecture is theo-
retically expressive enough to transform any data dis-
tribution with strictly positive density to a Gaussian
distribution (under some regularity conditions). Due
to the connection between Gaussianization flows and
iterative Gaussianization, the layers of Gaussianization
flows have a natural interpretation. For example, the
mixture of logistics in a Gaussianization flow should
ideally capture the marginal distribution obtained af-
ter applying the Householder layer. We can therefore
initialize the parameters of the mixture of logistic used
for Gaussianization using a kernel density estimator
with logistic kernels for better training. Because of
the non-parametric nature of kernel density estimation,
this intialization is more adaptive, providing some ro-
bustness with respect to re-parameterizations of the
data.

In our experiments, we demonstrate that Gaussianiza-
tion flows achieve better or comparable performance
on density estimation for tabular data, compared to

some efficient invertible baselines such as Real NVP,
Glow and FFJORD. In particular, we achieve better
performance when the number of training data points
is limited, and our models show more robustness to
reparameterizations of the data.

2 BACKGROUND

2.1 Density Estimation with Flow Models

Let D = {xj ∈ RD}Nj=1 be a dataset of continuous
observations which are i.i.d. samples from an unknown
continuous data distribution (denoted as pdata). Given
this dataset D, the goal of density estimation is to
approximate pdata with a probabilistic model parame-
terized by θ (denoted as pθ). Specifically, we learn an
invertible model Tθ : RD → RD, which performs a bi-
jective, differentiable transformation of x to z = Tθ(x).
Using the change of variables formula,

pθ(x) = pz(Tθ(x))

∣∣∣∣det
∂Tθ(x)

∂x

∣∣∣∣ = pz(z)|det JTθ
(x)|,

where det JTθ
(x) denotes the determinant of the Ja-

cobian matrix evaluated at x, and pz(z) is a simple
fixed distribution with tractable density (e.g . the mul-
tivariate standard Gaussian N (0, I)). Note that in
order to evaluate the likelihood pθ(x), the determi-
nant of Jacobian det JTθ

(x) must be easy to compute.
Models with this property are named normalizing flow
models (Rezende and Mohamed, 2015).

Multiple flow models T1,T2, · · · ,TL can be stacked
together to yield a deeper and more expressive model
T = T1 ◦T2 ◦ · · · ◦TL. Since T−1 = T−1L ◦T

−1
L−1 ◦ · · · ◦

T−11 , and det JT = det JT1 det JT2 · · · det JTL , as long
as each component Ti is invertible and has tractable
determinant of Jacobian, the combined model T also
shares such properties.

2.2 Iterative Gaussianization

Training a flow model with maximum likelihood
amounts to solving

min
θ

Epdata(x)[− log pθ(x)]

= min
θ
DKL (pdata(x) ‖ pθ(x)) + const. (1)

When pθ(x) is the likelihood of a flow model Tθ(x)
given by Eq. (1), we can transform the above objec-
tive using the fact that KL divergence is invariant to
bijective mappings of random variables, which gives us

min
θ
DKL (pdata(x) ‖ pθ(x)) + const

= min
θ
DKL (pTθ

(z) ‖ N (0, I)) + const, (2)

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

where pTθ
denotes the distribution of z = Tθ(x), when

x is sampled from pθ(x). Intuitively, Eq. (2) means
that training a flow model with maximum likelihood
is equivalent to finding an invertible transformation
to warp the data distribution to a multivariate stan-
dard normal distribution. This task is well-known as
Gaussianization (Chen and Gopinath, 2000).

For one-dimensional (univariate) data x ∼ pdata(x),
one could perform Gaussianzation by estimating its
cumulative density function (CDF, e.g . using kernel
density estimation) and applying the inverse Gaussian
CDF. To see this, let Φ be the CDF of the standard
normal distribution, and Fdata be the CDF of the data
distribution, we can transform any random variable
x ∼ pdata to a Gaussian random variable z by z =
Φ−1 ◦ Fdata(x).

For high dimensional data, one key observation is that
the KL divergence between a distribution p(x) and
a multivariate standard Gaussian distribution can be
decomposed as follows (Chen and Gopinath, 2000):

DKL (p(x) ‖ N (0, I)) , J(x) = I(x) + Jm(x) (3)

where I(x) is the multi-information that measures the
statistical dependence among components of x:

I(x) = DKL

(
p(x)

∥∥∥∥∥
D∏
i

pi(x
(i))

)
, (4)

and Jm(x) is the sum of KL divergences between the
marginal distributions and univariate standard normal
distributions:

Jm(x) =

D∑
i=1

DKL

(
pi(x

(i))
∥∥∥ N (0, 1)

)
. (5)

Here we represent x = (x(1), x(2), · · · , x(D))ᵀ, and let
pi(x

(i)) be the marginal distribution of p(x). Intuitively,
to transform the data distribution into a multivariate
unit Gaussian, we need to make each dimension inde-
pendent (I(x) = 0), and each marginal distribution
univariate standard normal (Jm(x) = 0).

Based on the decomposition Eq. (3), a particular it-
erative Gaussianization (Chen and Gopinath, 2000)
approach—Rotation-Based Iterative Gaussianization
(RBIG, Laparra et al. (2011))—alternates between ap-
plying one-dimensional Gaussianization and rotations
to the data. Specifically, RBIG estimates the marginal
distribution corresponding to each dimension of the
data distribution, and performs one-dimensional Gaus-
sianization of all marginal distributions. Then, RBIG
applies a rotation matrix to the transformed data.

The rationale behind RBIG is that dimension-wise
Gaussianization will decrease Jm(x) and leave I(x)

invariant, due to the fact I(x) is invariant under
dimension-wise invertible transformations (Laparra
et al., 2011), whereas applying rotation to p(x) will not
modify the overall KL divergence objective I(x)+Jm(x)
since KL is invariant under bijective transformations
(rotation in particular) and N (0, I) is rotationally in-
variant. Therefore, DKL (p(x) ‖ N (0, I)) will not in-
crease (typically decreases) at each RBIG iteration. To
improve the performance of RBIG, one could consider
rotation operators that make Jm(x) as large as possi-
ble, so that the subsequent marginal Gaussianization
step removes Jm(x) and results in a large decrease in
DKL (p(x) ‖ N (0, I)). Popular choices of rotation ma-
trices include random matrices and those computed by
independent component analysis (ICA) and principal
component analysis (PCA). However, all three candi-
dates are less than desirable. For random rotations
and PCA, the procedure could require many RBIG
steps to converge (Laparra et al., 2011). ICA, on the
other hand, is optimal yet does not have closed-form
solutions and is expensive to compute in practice.

3 METHOD

While iterative Gaussianization possesses the ability to
transform a complex distribution to standard normal,
density estimation with iterative Gaussianization is
still difficult, because of the following challenges:

• One-dimensional (1D) Gaussianization is challeng-
ing for certain data distributions;

• Finding optimal rotation matrices is challenging
(as in the case of ICA rotation matrices, which
have no closed form solution).

In this section, we address these challenges with a new
type of invertible flow model based on the iterative
Gaussianization (RBIG) method, named Gaussianiza-
tion Flows (GF). Specifically, GF improves the two
components of RBIG where we replace 1D Gaussianiza-
tion with a trainable kernel layer and a fixed rotation
matrix with a trainable orthogonal matrix layer.

3.1 Building Trainable Kernel Layers

Marginal Gaussianization plays a crucial role in RBIG
since it reduces the objective value Jm(x) in Eq. (5) and
is the only procedure that decreases the KL objective
in Eq. (3) (rotation does not change the KL divergence
because KL is invariant to bijective mappings, however,
it enables progress in the next iteration). For a set of 1D
scalars {xj}Mj=1, one could perform Gaussianization by
first estimating a CDF (denoted as Fdata(x)), and then
applying the transformation φ : x 7→ Φ−1 ◦ Fdata(x)
where Φ is the CDF for a 1D standard Gaussian.

Gaussianization Flows

One approach to estimate the CDF is via 1D density
estimation, where the CDF can be computed from
the PDF by taking the integral. As we are assum-
ing the underlying data distribution is continuous, we
can naturally employ kernel density estimation (KDE)
methods to fit the data PDF, and then obtain the CDF
by integrating out the kernels in closed-form. How-
ever, there are two shortcomings of KDE for large-scale
density estimation. Firstly, the complexity of com-
puting the KDE for each sample scales quadratically
with the number of samples, making it prohibitive for
larger batches/datasets; secondly, the performance of
KDE largely depends on the sample size (Parzen, 1962;
Devroye and Wagner, 1979) and bandwidth selection
(Sheather, 2004), yet optimal bandwidths are difficult
to obtain even with good bandwidth selection heuristics
(Scott and Sheather, 1985).

To alleviate the limitations of existing non-parametric
KDE approaches, we propose to learn a “parameter-
ized KDE” for each data dimension, leading to train-
able kernel layers. For each data dimension (indexed
by d = 1, 2, · · · , D), we learn a set of anchor points
{µ(d)

j }Kj=1 and bandwidth parameters {h(d)j }Kj=1. This
leads to a total of 2KD parameters for a trainable
kernel layer. Mathematically, we parameterize a CDF
with the following

F
(d)
θ (x) ,

1

K

K∑
j=1

σ

(
x(d) − µ(d)

j

h
(d)
j

)
, d = 1, · · · , D, (6)

where σ(·) denotes the sigmoid function throughout
the paper, and θ denotes the collection of all trainable
parameters ({µ(d)

j }Kj=1 and {h(d)j }Kj=1). Learning this
CDF amounts to performing KDE with a logistic kernel
when σ(·) is the sigmoid function. Then, the Gaussian-
ization procedure for dimension d can be parameterized
as

Ψ
(d)
θ (x) , Φ−1 ◦ F (d)

θ (x), d = 1, · · · , D, (7)

and we denote Ψθ = (Ψ
(1)
θ ,Ψ

(2)
θ , · · · ,Ψ(D)

θ)ᵀ.

By making anchor points and bandwidths trainable,
our parametric trainable kernel layer can be more sam-
ple efficient compared to the traditional non-parametric
KDE approach (when trained, for example, with maxi-
mum likelihood). We find that 20 to 100 anchor points
work well in practice. In stark contrast, naïve KDE
needs thousands of sample points to get comparable
results, which is particularly inefficient given that the
computational complexity scales quadratically with
respect to K.

We note that Ψ is a transformation with a Jacobian
whose determinant is tractable. Additionally, Ψ can be
efficiently inverted:

• Φ,Φ′,Φ−1 are not computable by elementary func-
tions, yet they can be efficiently evaluated via
numerical methods.

• As both Φ−1 and F (d)
θ are monotonic, Ψ

(d)
θ = Φ−1◦

F
(d)
θ is also monotonic. We can therefore efficiently

invert Ψθ by inverting all of its dimensions with
the bisection method in parallel.

• The Jacobian of Ψ is a diagonal matrix. The
log-determinant is therefore the sum of the log-
derivatives of Φ−1 ◦ F (d)

θ (x) over all dimensions.

3.2 Building Trainable Rotation Matrix
Layers

In iterative Gaussianization, we transform the data
using a rotation matrix after the marginal Gaussian-
ization step. As mentioned in Section 2.2, finding a
good rotation matrix is challenging using methods like
ICA or PCA. Here, we discuss our approach to finding
rotations by optimizing trainable rotation matrices.

3.2.1 Householder Reflections

We can parameterize the rotation matrix using House-
holder reflections, defined for any vector v ∈ RD:

H = I − 2vvᵀ

‖v‖22
. (8)

Any D×D orthogonal matrix R can be represented as
the product of at most D Householder reflections (Tom-
czak and Welling, 2016), i.e., R = H1H2 · · ·HD.

By parameterizing the rotation matrix with multiple
trainable Householder reflections, we define a trainable
orthogonal matrix layer. Since the inverse of a rotation
matrix is the transpose of itself, one can efficiently
obtain the inverse by multiplying the transpose of the
orthogonal matrix. Moreover, because the Jacobian
determinant of an orthogonal transformation is always
one, we can easily compute the Jacobian determinant
of this layer, which is also equal to one.

One caveat is that each Householder reflection requires
D parameters, and thus fully parameterizing a rota-
tion matrix will require O(D2) parameters. This is
reasonable when the data dimension is small. How-
ever, this may no longer be feasible in cases where D
is large. For example, CIFAR-10 (Krizhevsky et al.,
2009) images have D = 3072, and ImageNet (Deng
et al., 2009) images can have D as large as 106. In
such cases, one may need to trade off model flexibility
for computational efficiency by using a smaller number
(< D) of Householder reflections. Below, we explore
one such approach that exploits the structure of im-
ages and utilizes a patch-based parameterization of

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

Figure 1: A patch-based rotation matrix where L =
4, p = 2 and k = 2. All entries with the grey color are
zeros. Each 4× 4 block on the diagonal corresponds to
a new subspace of neighboring pixels, where we perform
Householder reflections.

rotation matrices to significantly reduce the number of
parameters.

3.2.2 Patch-Based Rotation Matrices

Intuitively, a pixel in an image is more correlated to
its neighboring pixels than far away ones. Based on
this intuition, we propose “patch-based” Householder
reflections for parameterizing rotation matrices for im-
ages. Recalling that the role of the rotation matrix
in RBIG is to render the components as independent
as possible, patch-based Householder reflections are
designed to focus on the components where we expect
to get the biggest gains, i.e., the ones that are farthest
from being independent.

For an image with dimension L×L, the rotation matrix
will have size L2 × L2. Assuming p is a divisor of L
and L = p×k, we can partition the matrix into k2×k2
smaller blocks each with size p2 × p2. Instead of di-
rectly parameterizing the L2×L2 rotation matrix using
L2 Householder reflections, we parameterize a block-
diagonal rotation matrix with k2 blocks. Each block on
the diagonal is a p2×p2 rotation matrix, which requires
p2 Householder reflections to parameterize. Since rota-
tion is now only performed in each p× p-dimensional
subspace, we leverage a “shift” operation on the input
vectors to introduce dependency across different rota-
tional subspaces. We call this block-diagonal rotation
matrix a “patch-based rotation matrix” (see Fig. 1),
and relegate extra details to Appendix B.

3.3 Deep Gaussianization Flows

Our proposed model, Gaussianization flow, is con-
structed by stacking trainable kernel layers (Section 3.1)
and orthogonal matrix layers (Section 3.2) alternatively.

Formally, we define an Gaussianization flow with L
trainable kernel layers and orthogonal layers as:

Tθ(x) = ΨθL ◦RL ◦ΨθL−1
◦ · · · ◦Ψθ1 ◦R1x (9)

where θ denotes the collection of all parameters.

Note that both forward and backward computations
of the Gaussianization flow are efficient, and the log
determinant of its Jacobian can be computed in closed-
form. Consequently, we can train Gaussianization flows
jointly with maximum likelihood, as well as producing
samples efficiently. This is to the contrary of RBIG,
which is a non-trainable iterative procedure.

3.4 Gaussianization Flows are Universal
Approximators

We hereby prove that Gaussianization flows can trans-
form any continuous distribution with a compact sup-
port to a standard normal, given that the number of
layers and the number of parameters in each layer are
sufficiently large. Ours is the first universal approxi-
mation result we are aware of for efficiently invertible
normalizing flows.

Our results closely follow that of Chen and Gopinath
(2000). However, we note that their results are weaker
than what we need: they assume the marginal Gaus-
sianization step can be done perfectly, whereas we use
the learnable kernel layers for doing marginal Gaus-
sianization. We defer all proofs to Appendix A.

Our proof starts by showing that mixtures of logistic
distributions (as used in our learnable kernel layers) are
universal approximators for continuous densities (see
Lemma 2 in Appendix). Therefore, our learnable ker-
nel layers will be able to do arbitrarily good marginal
Gaussianization when sufficiently many anchor points
are used. Based on this, we show that Gaussianiza-
tion flow is a universal approximator given a sufficient
number of layers:
Theorem 1. Let p be any continuous distribu-
tion supported on a compact set X ⊂ RD, and
infx∈X p(x) ≥ δ for some constant δ > 0. Then,
there exists a sequence of marginal Gaussianization
layers {Ψθ1

,Ψθ2
, · · · ,Ψθk , · · · } and rotation matrices

{R1, R2, · · · , Rk, · · · } such that the transformed ran-
dom variable

Ψθk ◦Rk ◦Ψθk−1
◦Rk−1 ◦ · · · ◦Ψθ1

◦R1X
d→ N (0, I),

where X ∼ p.

3.5 Building Invertible Networks with
Proper Initializations

Since our Gaussianization flow is a trainble extension
of RBIG, we propose to provide good initializations

Gaussianization Flows

for Gaussianization flows using RBIG. In the train-
able rotation matrix layers, we randomly initialize each
Householder reflection vector with samples from an
isotropic Gaussian. This amounts to using random
rotation matrices in RBIG. We abstain from using
ICA/PCA layers for providing initialization both for
the aforementioned computational issues, and for the
fact that they provide similar results in practice.

In the trainable kernel layer, we consider a data-
dependent initialization approach, using N random
samples from the dataset. To initialize KDE anchor
points in the first layer, we randomly draw N samples
from the dataset. More generally, we initialize the KDE
anchor points at layer l + 1 using the outputs of the
l-th trainable rotation matrix layer.

In fact, the initial state of our model corresponds to
an iterative Gaussianization method, which, as shown
previously, is capable of capturing distributions to a
certain level. This allows our GF to outperform other
normalizing flows at initial iterations. Because of the
good initialization, our model also exhibit better ro-
bustness with respect to re-parameterizations of the
data.

4 EXPERIMENTS

We evaluate our Gaussianization Flow (GF) on sev-
eral datasets; these include synthetic 2D toy datasets,
benchmark tabular UCI datasets (Papamakarios et al.,
2017) (Power, Gas, Hepmass, MiniBoone, BSDS300)
and two image datasets (MNIST and Fashion-MNIST).
We compare with several popular invertible mod-
els for density estimation, including RealNVP (Dinh
et al., 2015), Glow (Kingma and Dhariwal, 2018),
FFJORD (Grathwohl et al., 2018), MAF (Papa-
makarios et al., 2017), TAN (Oliva et al., 2018) and
NAF (Huang et al., 2018); we also compare directly
with RBIG (Laparra et al., 2011) for reference.

Figure 2: 2D density estimation results. Top: Ground
truth samples. Middle: Glow. Bottom: GF.

Our experiments aim to answer the following questions:

• Is GF competitive against other methods in terms
of density estimation (4.1, 4.2)?

• Does GF have better initialization than other nor-
malizing flow models?

• Is GF robust against re-parameterization of the
data with simple transformations (4.4)?

• Does GF achieve good performance when the train-
ing set is small (4.5)?

4.1 2D Toy Datasets

We first perform density estimation on four synthetic
datasets drawn from complex two-dimensional distri-
butions with various shapes and number of modes. We
train the model by warping the predicted probability
distribution to an isotropic Gaussian distribution. In
Fig. 2, we visualize the estimated density of our Gaus-
sianization Flow and Glow. The results show that our
model is capable of fitting both continuous and dis-
continuous, connected and disconnected multi-modal
distributions. Glow, on the other hand, has trouble
modeling disconnected distributions.

4.2 Tabular and Image Datasets

We perform density estimation on five tabular datasets
which are preprocessed using the method in Papamakar-
ios et al. (2017). We compare our results directly with
RealNVP, Glow and FFJORD as these are also effi-
ciently invertible models which can be used for sample
generation and inference; we list MAF, MADE, TAN
and NAF results as reference as they have higher com-
putational costs in sampling but are competitive in
density estimation. From Tab. 1, we observe that GF
achieves the top negative log-likelihood results in 3 out
of 5 tabular datasets, and obtain comparable results
on the remaining two. As expected, Gaussianization
flow outperforms RBIG on all tasks by a large mar-
gin, which demonstrates the strong advantages of joint
training by maximum likelihood.

For tabular datasets, we use D Householder reflections
for each trainable rotation matrix layer where D equals
the data dimension, so that the model possesses the
ability to parameterize all possible rotation matrices.
See Appendix D for more training details.

We also consider two image datasets, MNIST and
Fashion-MNIST, and perform density estimation on the
continuous distribution of uniformly dequantized im-
ages (see Tab. 1). For image data, we use patch-based
rotation matrices as trainable rotation matrix layers.

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

Figure 3: Negative log-likelihood (loss in nats) on training and test sets over initial training iterations.

Table 1: Negative log-likelihood for tabular datasets measured in nats, and image datasets measured in bpd.
Smaller values are better.

Method POWER GAS HEPMASS MINIBOONE BSDS300 MNIST FMNIST

Real NVP -0.17 -8.33 18.71 13.55 -153.28 1.06 2.85
Glow -0.17 -8.15 18.92 11.35 -155.07 1.05 2.95
FFJORD -0.46 -8.59 14.92 10.43 -157.40 0.99 -
RBIG 1.02 0.05 24.59 25.41 -115.96 1.71 4.46
GF(ours) -0.57 -10.13 17.59 10.32 -152.82 1.29 3.35

MADE 3.08 -3.56 20.98 15.59 -148.85 2.04 4.18
MAF -0.24 -10.08 17.70 11.75 -155.69 1.89 -
TAN -0.48 -11.19 15.12 11.01 -157.03 - -
MAF-DDSF -0.62 -11.96 15.09 8.86 -157.73 - -

Specifically, we set the patch size to 4 and randomly
pick the shifting constant c at each layer. We provide
more training details in Appendix D. From the results
in Tab. 1 we see that Gaussianization flow outperforms
all other non-convolutional models on image datasets,
including those that cannot be inverted efficiently, such
as MAF and MADE (Germain et al., 2015).

4.3 Initial Performance

The data-dependent initialization of our model allows
the training process to converge faster. To illustrate
this, we choose four tabular datasets (pre-processed as
described in Papamakarios et al. (2017)), where we set
the batch size to be 500 and perform training for 3000
iterations using the default settings and model architec-
tures. From the results in Fig. 3, Gaussianization flow
achieves better training and validation performance
across most iterations on the four datasets compared
with other models such as RealNVP, Glow, FFJORD,
MAF and NAF.

4.4 Stretched Tabular Datasets

In density estimation applications (such as anomaly
detection), one could receive a stream of data that

might not be sampled i.i.d. from a fixed distribution.
In these cases, it would be difficult to find suitable
pre-processing techniques to normalize the data, so it
is desirable if our models can be robust under distri-
butions that are not normalized. To evaluate whether
the flow models are robust against certain distribution
shifts (that could make normalization difficult), we
consider density estimation on datasets that are not
normalized. In particular, we select three pre-processed
UCI datasets and transform the data using some sim-
ple invertible transformations before training. Here we
keep the transformations invertible and differentiable
so that we can use the change of variables formula to
compute the likelihoods defined in the original data
space. We consider two transformations: cubic, where
f(x) = x3; and affine where f(x) = 1000x+ 51.

From the results in Tab. 2, we observe that Gaussian-
ization flows have stable and consistent performance
for both transformations and on all three datasets. In
contrast, all other methods can fail in some settings.
MAF-DDSF has numerical issues that lead to NaNs
on datasets processed with the affine transformation;
RealNVP, Glow, and MAF all have cases where test
loss does not go down when training loss goes down;
FFJORD has convergence issues when training on GAS

Gaussianization Flows

Table 2: Negative log-likelihood in nats for tabular datasets after simple transformations. “∗” stands for loss
larger than 1000. “∗∗” implies loss does not converge and varies largely on different batches. “-” implies loss
explosion on validation and test sets. “NaN” implies numerical issues encountered during training. Numbers in
parentheses for GF denote the corresponding likelihood value under the original normalized transformation.

Transformation f(x) = x3 f(x) = 1000x+ 51

Method POWER MINIBOONE GAS POWER MINIBOONE GAS

Real NVP 17.47 (21.53) 93.98 (109.96) 32.27 (32.85) - - -
Glow 1.67 (5.73) 91.86 (107.84) - 41.64 (0.19) 315.30 (18.27) 49.26 (-6.00)
FFJORD ∗ 88.29 (104.27) ∗∗ ∗ 329.97 (32.94) ∗
GF(ours) -4.41 (-0.35) 4.62 (20.60) -6.91 (-6.33) 41.00(-0.45) 325.72 (28.69) 47.69 (-7.57)

MAF 19.37 (23.43) 381.32 (397.3) 19.76 (20.34) - - -
MAF-DDSF -4.12 (-0.06) 7.88 (23.86) -4.52 (-3.94) NaN NaN NaN

Figure 4: Negative log-likelihood results (measured in nats) over small subsets of the original training set. The
subsets, with size ranging from 500 to 4500, are much smaller than the original training set size n as shown in the
parentheses. We exclude MAF, RealNVP and Glow in the figures as validation error does not decrease.

with the cubic transformation, and on POWER and
GAS with the affine transformation. Moreover, even
with the added transformation, we are still able to ob-
tain comparable likelihood when transformed back to
the original space (see Tab. 2 results in parentheses).

4.5 Small Training Sets

The ability to quickly adapt to new distributions with
relatively few samples (e.g . in a stream of data with
continuous covariate shifts) can also be helpful. To this
end, we further evaluate the generalization abilities of
the models when trained on small subsets of the tabular
datasets. We consider using the normalized tabular
datasets, where we mix the training, validation and
test datasets, shuffle them randomly and select 10,000
samples as validation/test sets respectively. We con-
sider training various model on small training subsets
with sizes ranging from 500 to 4500, where we perform
validation and testing on the new validation/test sets.

We compare GF with Glow, RealNVP, MAF, FFJORD
and NAF, using the same model architecture for the
original tabular experiments and explore the learning
rate to make the training process more stable. We
show the results in Fig. 4. We note that MAF, Glow
and RealNVP have trouble evaluating density on vali-

dation/test set when the training set is small enough,
as the validation/test loss goes up as train loss goes
down, which is the reason why we exclude them in
the plots. GF significantly outperforms FFJORD and
NAF in all settings except when subset size is 500 for
HEPMASS, which suggests that our learnable KDE
layers generalize well on test sets even when training
data is scarce.

5 CONCLUSION

We introduce Gaussianization flows (GF), a new family
of trainable flow models that builds upon rotation-
based iterative Gaussianization. GFs exhibit fast likeli-
hood evaluation and fast sample generation, and are
expressive enough to be universal approximators for
most continuous probability distributions. Empirical
results demonstrate that GFs achieve better or com-
parable performance against existing state-of-the-art
flow models that are efficiently invertible. Compared
to other efficiently invertible models, GFs have better
initializations, are more robust to distribution shifts in
training data, and have superior generalization when
training data are scarce. Combining the advantages of
GFs with other efficiently invertible flow models would
be an interesting direction for future research.

Chenlin Meng*, Yang Song*, Jiaming Song, Stefano Ermon

Acknowledgements

This research was supported by Amazon AWS, TRI,
NSF (#1651565, #1522054, #1733686), ONR (N00014-
19-1-2145), AFOSR (FA9550-19-1-0024).

References

Chen, S. S. and Gopinath, R. A. (2000). Gaussianiza-
tion.

Chen, T. Q., Rubanova, Y., Bettencourt, J., and Du-
venaud, D. K. (2018). Neural ordinary differential
equations. In Bengio, S., Wallach, H., Larochelle,
H., Grauman, K., Cesa-Bianchi, N., and Garnett,
R., editors, Advances in Neural Information Process-
ing Systems 31, pages 6571–6583. Curran Associates,
Inc.

De Cao, N., Titov, I., and Aziz, W. (2019).
Block neural autoregressive flow. arXiv preprint
arXiv:1904.04676.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and
Fei-Fei, L. (2009). ImageNet: A Large-Scale Hierar-
chical Image Database. In CVPR09.

Devroye, L. P. and Wagner, T. J. (1979). The l1 con-
vergence of kernel density estimates. Ann. Statist.,
7(5):1136–1139.

Dinh, L., Krueger, D., and Bengio, Y. (2014).
Nice: Non-linear independent components estima-
tion. arXiv preprint arXiv:1410.8516.

Dinh, L., Krueger, D., and Bengio, Y. (2015). NICE:
non-linear independent components estimation. In
3rd International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May 7-9,
2015, Workshop Track Proceedings.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Germain, M., Gregor, K., Murray, I., and Larochelle, H.
(2015). Made: Masked autoencoder for distribution
estimation. International Conference on Machine
Learning, 37:881–889.

Grathwohl, W., Ricky T. Q. Chen, Jesse Bettencourt,
I. S., and Duvenaud, D. (2018). Ffjord: Free-form
continuous dynamics for scalable reversible genera-
tive models. arXiv preprint arXiv:1810.01367.

Huang, C.-W., Krueger, D., Lacoste, A., and Courville,
A. (2018). Neural autoregressive flows. In Inter-
national Conference on Machine Learning, pages
2083–2092.

Huber, P. J. (1985). Projection pursuit. The annals of
Statistics, pages 435–475.

Kingma, D. P. and Dhariwal, P. (2018). Glow: Gen-
erative flow with invertible 1x1 convolutions. arXiv
preprint arXiv:1807.03039.

Krizhevsky, A. et al. (2009). Learning multiple layers of
features from tiny images. Technical report, Citeseer.

Laparra, V., Camps-Valls, G., and Malo, J. (2011). Iter-
ative gaussianization: from ica to random rotations.
IEEE transactions on neural networks, 22(4):537–
549.

Oliva, J. B., Dubey, A., Zaheer, M., Póczos, B.,
Salakhutdinov, R., Xing, E. P., and Schneider, J.
(2018). Transformation autoregressive networks.

Papamakarios, G., Pavlakou, T., and Murray, I. (2017).
Masked autoregressive flow for density estimation. In
Advances in Neural Information Processing Systems,
pages 2338–2347.

Parzen, E. (1962). On estimation of a probability den-
sity function and mode. The annals of mathematical
statistics, 33(3):1065–1076.

Rezende, D. and Mohamed, S. (2015). Variational
inference with normalizing flows. In Bach, F. and
Blei, D., editors, Proceedings of the 32nd Interna-
tional Conference on Machine Learning, volume 37
of Proceedings of Machine Learning Research, pages
1530–1538, Lille, France. PMLR.

Scott, D. W. and Sheather, S. J. (1985). Kernel density
estimation with binned data. Communications in
Statistics-Theory and Methods, 14(6):1353–1359.

Sheather, S. J. (2004). Density estimation. Statistical
science, pages 588–597.

Tomczak, J. M. and Welling, M. (2016). Improving vari-
ational auto-encoders using householder flow. arXiv
preprint arXiv:1611.09630.

	INTRODUCTION
	BACKGROUND
	Density Estimation with Flow Models
	Iterative Gaussianization

	METHOD
	Building Trainable Kernel Layers
	Building Trainable Rotation Matrix Layers
	Householder Reflections
	Patch-Based Rotation Matrices

	Deep Gaussianization Flows
	Gaussianization Flows are Universal Approximators
	Building Invertible Networks with Proper Initializations

	EXPERIMENTS
	2D Toy Datasets
	Tabular and Image Datasets
	Initial Performance
	Stretched Tabular Datasets
	Small Training Sets

	CONCLUSION
	PROOFS
	Mixtures of Logistics are Universal Approximators
	Gaussianization Flows are Universal Approximators

	MORE DETAILS ON PATCH-BASED ROTATION MATRICES
	SAMPLES
	ADDITIONAL EXPERIMENTAL DETAILS FOR GF
	Tabular and Image Datasets
	Stretched Tabular Datasets
	Small Training Sets

	ADDITIONAL EXPERIMENTAL DETAILS FOR RBIG

