
Supplementary Material: A Characterization of Mean Squared Error
for Estimator with Bagging

1 Proof of Theorem 2.1

Recall that the estimator with bagging is given by:

θ̃(L,B) =

∑N
k=1 θ̂(LUk)

N
,

where B = (U1, .., UN ) is a set of N sampling with
replacement of the dataset L = (X1, ..., Xn), taken in-
dependently and uniformly from U = {1, .., n}{1,..,m} =
(uk)k=1..nm . Since we assumed that ∀i ∈ [|1, nm|],
EL(θ̂(Lui)2) < ∞ and B living in a finite set, θ̃ is
well defined and the Fubini’s theorem is always avail-
able for interchange between different expectations.

Lemma 1.1 Let U be a random variable uniformly
distributed over U . Then the expected value of the
bagged estimator θ̃ does not depend on N and is equal
to ELEU (θ̂(LU )).

Proof. For N independent identically distributed
bagged samples represented by U1, ...UN ∈ {1, .., n}m,
it follows by linearity of the expectation operator and
Fubini’s theorem that:

E(L,B)(θ̃(L,B)) = EL

(
EB

(
1

N

N∑
i=1

θ̂(LUi)

))

= EL

(
1

N

N∑
i=1

EUi

(
θ̂(LUi)

))

= EL

(
1

N

N∑
i=1

EU

(
θ̂(LU )

))
= EL(EU (θ̂(LU ))).

The proof is completed.

Now we turn to the variance. Previous lemma 1.1
computes the expectations, therefore we only need to
compute the second moment.

Lemma 1.2 The expected value of the bagged estima-
tor satisfies:

E(L,B)(θ̃
2) = EL(EU (θ̂(LU ))

2)+
1

N
EL(VarU (θ̂(LU ))),

where U is a random variable uniformly distributed
over U and

VarU (θ̂(LU ))) = EU (θ̂(LU )
2)− EU (θ̂(LU ))2.

Proof. Remark that:

E(L,B)(θ̃
2) = EL[EB(θ̃

2)],

and

EB(θ̃
2) = EB

(
1

N

N∑
i=1

θ̂(LUi)

)2

.

Since U i is uniformly distributed on U , EB(θ̃2) is a
symmetric polynomial with respect to {θ̂(Lui

)}ui∈U .
Thus there exists two constants C1 and C2 such that
for any function θ̂,

EB(θ̃
2) = C1

(
nm∑
i=1

θ̂(Lui)
2

)
+C2

 ∑
(i,j) i6=j

θ̂(Lui)θ̂(Luj )

 .

(1)
Let θ̂ = θ̂1 ≡ 1, it holds

1 = C1n
m + C2n

m(nm − 1). (2)

Now define θ̂ = θ̂2, such that θ̂2(Lu1
) = 1 and

θ̂2(Lui) = 0 for all i 6= 1. The right hand side of
equation (1) equals to C1 and we need to compute the
value of left hand side. Observe that

θ̃2 =
1

N

N∑
i=1

θ̂2(LUi),

where U i is uniformly and independently distribute
on U . Thus {θ̂2(LUi)}i is a family of independent
Bernoulli with parameter 1/nm. The second moment
of Nθ̃2 is thus binomial distributed with parameter
(N, 1/nm). Recall that the second moment of a bi-
nomial distribution with parameter (N, p) equals to
N(N − 1)p2 +Np. Therefore:

EB(θ̃
2
2) =

1

N2

(
EB(Nθ̃2)

2
)

=
1

N2

(
N(N − 1)n−2m +Nn−m

)
.

Simplifying equation (1) we have:

C1 =
N − 1

N
n−2m +

1

N
n−m.
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Together with (2), we deduce :

C2 =
N − 1

N
n−2m.

Hence,

EB(θ̃
2)

=
N − 1

N
n−2m

∑
i

θ̂(Lui
)2 +

∑
i6=j

θ̂(Lui
)θ̂(Luj

)


+

1

N
n−m

∑
i

θ̂(Lui
)2

=
N − 1

N
EU (θ̂(LU ))

2 +
1

N
EU (θ̂(LU )

2)

=EU (θ̂(LU ))
2 +

1

N
VarU (θ̂(LU )).

The proof is completed.

Now we are in position to prove theorem:

Proof of theorem. According to lemma 1.1 and 1.2,
the variance of the bagging estimator is:

Var(L,B)(θ̃)

=E(L,B)(θ̃
2)− E(L,B)(θ̃)

2

=EL

(
EU (θ̂(LU ))

2
)

+
1

N
EL(VarU (θ̂(LU )))− EL(EU (θ̂(LU ))2

=
1

N
EL(VarU (θ̂(LU ))) + VarL(EU (θ̂(LU ))).

Hence, the MSE of θ̃ is :

MSE(θ̃) = Var(θ̃) + Bias(θ̃)

=
1

N
EL
(
VarU (θ̂(LU ))

)
+VarL

(
EU (θ̂(LU ))

)
+
(
EL(EU (θ̂(LU )))− θ

)2
.

2 Proof of Theorem 3.1

We recall that v̂(L) can be rewritten as:

v̂(L) =
1

n(n− 1)

∑
i<j

(Xi −Xj)
2. (3)

We begin with some lemmas.

Lemma 2.1 Let X be a random variable with finite
forth moment satisfying E(X) = 0. Let X1, ..., Xn be
independent copies of X and L = (X1, ..., Xn). De-
note i, j, k, l four distinct index of {1, ..., n}. Then the
following statements hold.

1. E
(
(Xi −Xj)

4
)
= 6µ2

2 + 2µ4,

2. E
(
(Xi −Xj)

2(Xi −Xk)
2
)
= 3µ2

2 + µ4,

3. E
(
(Xi −Xj)

2(Xk −Xl)
2
)
= 4µ2

2,

where µ4 := E(X4) is the forth moment of X.
Now denote

P =
∑
i,j

(Xi −Xj)
4,

Q =
∑
i,j,k

(Xi −Xj)
2(Xi −Xk)

2,

and

R =
∑
i,j,k,l

(Xi −Xj)
2(Xk −Xl)

2.

Then the following equations hold:

4. EL(P ) = 3n(n− 1)µ2
2 + n(n− 1)µ4,

5. EL(Q) = 3
2n(n−1)(n−2)µ2

2+
1
2n(n−1)(n−2)µ4,

6. EL(R) = 1
2n(n− 1)(n− 2)(n− 3)µ2

2.

Proof. The proof of the three first items is immediate
by independence of Xi, Xj , Xk, Xl.

Proof of item 4. P =
∑
i,j(Xi −Xj)

4 contains n(n−
1)/2 terms. Combining the item 1, the equation holds.

Item 5 and item 6 can be deduce by similar arguments.

According to theorem 2.1 , we need to com-
pute EL(EU (v̂(LU ))), EL

(
VarU (v̂(LU ))

)
and

VarL
(
EU (v̂(LU ))

)
. We begin with EU (v̂(LU ))

and EU (v̂2(LU )).

Lemma 2.2 Let X be a random variable with finite
forth moment satisfying E(X) = 0. Let X1, ..., Xn be
independent copies of X and L = (X1, ..., Xn). Let
U be a random variable uniformly distributed over U .
Then the following equations hold:

EL(EU (v̂(LU ))) =
n− 1

n
µ2, (4)

EL(EU (v̂(LU ))
2) (5)

=
(n− 1)(n2 − 2n+ 3)

n3
µ2
2 +

(n− 1)2

n3
µ4,

EL(EU (v̂(LU )
2)) (6)

=
n− 1

nm(m− 1)

(
3m− 3 +

n2 − 2n+ 3

n2
(m− 2)(m− 3)

)
µ2
2

+
n− 1

nm(m− 1)

(
m− 1 +

n− 1

n2
(m− 2)(m− 3)

)
µ4.

(7)



Proof. Item 1. Since U is uniformly distributed on U ,
it holds

EU (v̂(LU )) =
1

nm

nm∑
i=1

v̂(Lui)

=
1

nm

nm∑
i=1

1

m(m− 1)

∑
j<k

(Xui(j) −Xui(k))
2. (8)

Remark that
∑nm

i=1

∑
j<k,j,k≤m(XLui

(j) −XLui
(k))

2 is
a symmetric polynomial of (Xj −Xk)

2, there exists a
constant A such that
nm∑
i=1

∑
j<k,j,k≤m

(Xui(j)−Xui(k))
2 = A

∑
j<k,j,k≤n

(Xj−Xk)
2.

A is thus the coefficient of (X1 − X2)
2 in both side.

For U ∈ U , denote n1(U) and n2(U) the number of
X1 and the number of X2 in the sample of bagging
{XU(j)}j=1,...,m. Then the coefficient of (X1 − X2)

2

in
∑
j<k,j,k≤m(XU(j)−XU(k))

2 is n1(U)n2(U). There-
fore,

A =

nm∑
j=1

n1(uj)n2(uj). (9)

Consider the function

G(X1, ..., Xn) = EU

(
exp

(
m∑
i=1

XU(i)

))
.

Since G can also be rewritten as

G =
1

nm

nm∑
j=1

n∏
i=1

exp(ni(uj)Xi),

we deduce that
nm∑
i=1

n1(ui)n2(ui) = nm∂1∂2G(0, ..., 0).

On the other hand, uniformly pick a U out of
U is equivalent to uniformly pick the value of
U(1), U(2), · · · , U(m) out of {1, · · · , n} independently.
Hence,

G(X1, ..., Xn) = EU

(
exp

(
m∑
i=1

XU(i)

))

=

m∏
i=1

EU
(
exp

(
XU(i)

))
= EB (exp (Xu))

m
,

where u is uniformly distributed on {1, · · · , n}. There-
fore

G(X1, ..., Xn) = EU (exp (Xu))
m

=
1

nm

(
n∑
i=1

exp(Xi)

)m
, (10)

and
nm∂1∂2G(0, ..., 0) = m(m− 1)nm−2.

Together with equation (9), it holds:

A = m(m− 1)nm−2.

Plugin into equation (8), we have

EU (v̂(LU )) =
1

n2

∑
j<k

(Xj −Xk)
2. (11)

Recall that the standard variance estimator is an unbias
estimator and can be written as:

v̂(L) =
1

n(n− 1)

∑
j<k

(Xj −Xk)
2,

we deduce that

EL(EU (v̂(LU ))) =
n− 1

n
µ2.

Item 2. By equation (11) and a simple development,

EU (v̂(LU ))
2 =

1

n4

∑
j<k

(Xj −Xk)
2

2

=
1

n4
(P + 2Q+ 2R). (12)

Combining with lemma 2.1, it holds:

EL(EU (v̂(LU ))
2) =

1

n4
(E(P ) + 2E(Q) + 2E(R))

=
(n− 1)(n2 − 2n+ 3)

n3
µ2
2 +

(n− 1)2

n3
µ4. (13)

Item 3. We remark again EL(EU (v̂(LU )2)) is a symmet-
ric polynomial function of (Xi −Xj)

2 and the degree
of this polynomial is 4. Thus there exists constants
α, β and γ such that:

EU (v̂
2(LU )) =

1

nm
1

m2(m− 1)2

nm∑
i=1

v̂2(Lui)

=
1

nm
1

m2(m− 1)2
(αP + βQ+ γR).

(14)

The coefficients α, β and γ are the coefficients of (X1−
X2)

4, (X1−X2)
2(X1−X3)

2 and (X1−X2)
2(X3−X4)

2

respectively. We use similar arguments as in the proof
of item 1. Denote ni(U) the number of Xi in the
sample of bagging {XU(j)}j=1,...,m. Again according
to property of G, then it holds:

α =

nm∑
i=1

n1(ui)
2n2(ui)

2

= nm∂21∂
2
2G(0, · · · , 0),
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β = 2

nm∑
i=1

n1(ui)
2n2(ui)n3(ui)

= 2nm∂21∂2∂3G(0, · · · , 0),

and

γ = 2

nm∑
i=1

n1(ui)n2(ui)n3(ui)n4(ui)

= 2nm∂1∂2∂3∂4G(0, · · · , 0).

Therefore, with equation (10) and (14), we have

EU (v̂
2(LU ))

=

(
1

n2m(m− 1)
+

2(m− 2)

n3m(m− 1)
+
(m− 2)(m− 3)

n4m(m− 1)

)
P

+

(
2(m− 2)

n3m(m− 1)
+

2(m− 2)(m− 3)

n4m(m− 1)

)
Q

+
2(m− 2)(m− 3)

n4m(m− 1)
R. (15)

Item 3 follows with equation (15) and lemma 2.1.

Now we are ready to prove theorem 3.1.

Proof of theorem 3.1 According to theorem 2.1 and
lemma 2.2, it holds

E(L,B)(ṽ) = EL(EU (v̂(LU ))) =
n− 1

n
µ2. (16)

On the other hand, applying lemma 2.2 successively,
we have:

EL
(
VarU (v̂(LU ))

)
=EL

(
EU
(
v̂(LU )

2
))
− EL

(
EU (v̂(LU ))

2
)

=
n− 1

nm(m− 1)

(
3m− 3 +

n2 − 2n+ 3

n2
(6− 4m)

)
µ2
2

+
n− 1

nm(m− 1)

(
m− 1 +

n− 1

n2
(6− 4m)

)
µ4,

and:

VarL
(
EU (v̂(LU ))

)
=EL

(
EU (v̂(LU ))

2
)
− EL (EU (v̂(LU )))

2

=
(n− 1)(n2 − 2n+ 3)

n3
µ2
2 +

(n− 1)2

n3
µ4 −

(n− 1)2

n2
µ2
2

=
(3− n)(n− 1)

n3
µ2
2 +

(n− 1)2

n3
µ4. (17)

The proof is completed.

3 Proof of theorem 3.3

According to theorem 2.1 and proposition 3.2, it holds

MSE(ṽ(L,B))−MSE(v̂)

=
1

N
EL
(
VarU (v̂(LU ))

)
+

(
5n− 3

n3
− 2

n(n− 1)

)
µ2
2

+
−2n+ 1

n3
µ4

=
1

n2
(
−2µ4 + 3µ2

2

)
+

1

n3
(
µ4 − µ2

2

)
+

1

N
EL
(
VarU (v̂(LU ))

)
+O

(
1

n4

)
.

On the other hand, simplifying equation (1) from theo-
rem 2.1, we have:

1

N
E
(
VarU (v̂(LU ))

)
=

1

Nm

(
µ4 − µ2

2

)
+ o

(
1

Nm

)
.

We deduce therefore

MSE(ṽ(L,B))−MSE(v̂)

=
1

Nm

(
µ4 − µ2

2

)
+

1

n2
(
−2µ4 + 3µ2

2

)
+ o

(
1

Nm
+

1

n2

)
.

We deduce theorem 3.3 by comparing the latter equa-
tion with 0.

4 Algorithm Complexity

The algorithm complexity decomposes as follows: The
estimation of the kurtosis takes O(n), The estimation
of each inner variance takes O(n), thus the estimation
of the bagged variance takes O(Nn). The total com-
plexity is thus O(n) + O(Nn) ≈ O(Nn). Given that
the condition N > n

2 must hold, we deduce that the
complexity is in O(n2). Compared to traditional vari-
ance estimation in O(n), the complexity is thus greater.
As a result, this algorithm can only be useful in cases
where the sample size n is not too large.

5 Experimental Setup Details

For all experiments, whenever possible we optimized
and parallelized our computation using the Python
Numba1 library. All the experiments were run on a
single CPU 3,1 GHz Intel Core i5 with 8 GB of RAM.

5.1 First Experiment

To generate the datasets, we used the make_regression
function from sklearn2. Regarding the first experi-
ment, we used the Numpy library to estimate the

1http://numba.pydata.org/
2https://scikit-learn.org/stable/modules/

generated/sklearn.datasets.make_regression.html

http://numba.pydata.org/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html


parameters of the linear regression (linalg.lstsq func-
tion with default hyperparamters3). For the Decision
Tree regression, we use the scikit-learn implementation4

with default hyperparameters. To fit the non-linear
curve on the estimated data points, we used the opti-
mize.curve_fit function from the Scipy package5.

5.2 Second Experiment

For the second experiment, we essentially used the
random module from the Numpy library6.

5.3 Third Experiment

For the third experiment, we used the rv_discrete mod-
ule from the Scipy library to design a custom discrete
distribution7.

6 Comparison with (Buja and
Stuetzle, 2006)

The paper of (Buja and Stuetzle, 2006) studied the
bagging-statistic and they have shown that, for the
empirical variance v̂bs = mean(X2)−mean(X)2, bene-
ficial effects of bagging (in terms of MSE) exist iff κ > 2.
In their paper, the empirical variance is denoted by
U and the corresponding bagging statistic is denoted
by U bag, in order to avoid ambiguity of notations and
keep the simplicity, we denoted it by v̂bs instead of U
and kept U bag the bagging statistic describe in (Buja
and Stuetzle, 2006). Here we will use our approach to
recover this results.

According to our notations, the empirical variance

v̂bs(L) =
1

n

n∑
i

X2
i −

1

n2

(
n∑
i

Xi

)2

=
Card(L)− 1

Card(L)
v̂(L) =

n− 1

n
v̂(L).

The bagging-statistic defined by (Buja and Stuetzle,
2006) is in fact EU (v̂bs(LU )). On can easily check it by
applying the equation of part 2 in (Buja and Stuetzle,
2006), we found:

U bag =
(n− 1)(m− 1)

mn2

∑
i

X2
i −

m− 1

mn2

∑
j,k

XjXk.

3https://docs.scipy.org/doc/numpy-1.13.0/
reference/generated/numpy.linalg.lstsq.html

4https://scikit-learn.org/stable/modules/
generated/sklearn.tree.DecisionTreeRegressor.html

5https://docs.scipy.org/doc/scipy/reference/
generated/scipy.optimize.curve_fit.html

6https://docs.scipy.org/doc/numpy/reference/
routines.random.html

7https://docs.scipy.org/doc/scipy/reference/
generated/scipy.stats.rv_discrete.html

On the other hand, from (11), it holds

EU (v̂bs(LU )) =
m− 1

m
EU (v̂(LU )) =

m− 1

mn2

∑
j<k

(Xj−Xk)
2,

which is agreed with U bag by expanding the latter
expression.

Now we are able to compute the bagging effect for
estimator v̂bs. Noticing that v̂bs(L) = n−1

n v̂(L) and
v̂bs(LU ) =

m−1
m v̂(LU ). By (16) and (17),

E(U bag) = EL(EU (v̂bs(LU ))) =
(m− 1)(n− 1)

mn
µ2,

and

Var(U bag) = VarL(EU (v̂bs(LU )))

=
(m− 1)2

m2

(
(3− n)(n− 1)

n3
µ2
2 +

(n− 1)2

n3
µ4

)
.

On the other hand, since v̂bs(L) is the empirical vari-
ance,

EL(v̂bs(L)) =
n− 1

n
µ2,

and according to Proposition 3.2,

Var(v̂bs(L)) = Var

(
n− 1

n
v̂(L)

)
=

(3− n)(n− 1)

n2(n− 1)
µ2
2 +

(n− 1)2

n3
µ4.

Now, denote as in (Buja and Stuetzle, 2006) that g =
n/m and assuming 0 < g <∞, simplifying expressions
of Var(v̂bs(L)), EL(v̂bs(L)), Var(U bag) and E(U bag) we
are able to compare the MSE of v̂bs and U bag:

MSE(U bag)−MSE(v̂bs)

=
1

n2
g(−2µ4 + (4 + g)µ2

2) +O
(

1

n3

)
.

Therefore, we deduce that the bagging statistic has a
smaller MSE iff to κ > 2 + g/2. In (Buja and Stuetzle,
2006), assuming one can take an optimal g, then bag-
ging statistic has a smaller MSE iff κ > 2. We recall
that the bagging statistic is the quantity requires the
number of iterationsN goes to∞. A similar calculation
as in the proof of Theorem 3.3, we can reformulate and
extend result of (Buja and Stuetzle, 2006) as following,
which gives an indication of the number of iteration
needed and the optimal sample size.

Theorem 6.1 As n goes to ∞, bagging reduces on
average the MSE of the empirical variance estimator if
and only if:

−2µ4 +
(
4 +

n

m

)
µ2
2 < 0,

and

N >
µ4 − µ2

2

2µ4 − 4µ2
2 − (n/m)µ2

2

n.

https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://docs.scipy.org/doc/numpy-1.13.0/reference/generated/numpy.linalg.lstsq.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.rv_discrete.html
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We can see that for distribution with κ > 2, the sam-
ple size m should greater than 2n

κ−2 in order to have
beneficial effect for the empirical variance estimator.
Compare to theorem 3.3, there is no constraint on
sample size for the unbiased variance estimator.
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