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Abstract

In this paper we consider solving saddle
point problems using two variants of Gradient
Descent-Ascent algorithms, Extra-gradient
(EG) and Optimistic Gradient Descent As-
cent (OGDA) methods. We show that both
of these algorithms admit a unified analysis
as approximations of the classical proximal
point method for solving saddle point prob-
lems. This viewpoint enables us to develop a
new framework for analyzing EG and OGDA
for bilinear and strongly convex-strongly con-
cave settings. Moreover, we use the proximal
point approximation interpretation to gener-
alize the results for OGDA for a wide range
of parameters.

1 Introduction

In this paper, we study the following saddle point
problem

min
x∈Rm

max
y∈Rn

f(x,y), (1)

where the function f : Rm × Rn → R is a convex-
concave function, i.e., f(·,y) is convex for all y ∈ Rn
and f(x, ·) is concave for all x ∈ Rm. We are interested
in computing a saddle point of problem (1) defined as
a pair (x∗,y∗) ∈ Rm × Rn that satisfies the condition

f(x∗,y) ≤ f(x∗,y∗) ≤ f(x,y∗),

for all x ∈ Rm,y ∈ Rn. This problem formulation ap-
pears in several areas, including zero-sum games (Basar
and Olsder, 1999), robust optimization (Ben-Tal et al.,
2009), robust control (Hast et al., 2013) and more re-
cently in machine learning in the context of Generative
Adversarial Networks (GANs); see (Goodfellow et al.,
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2014) for an introduction to GANs and (Arjovsky et al.,
2017) for the formulation of Wasserstein GANs.

Motivated by the interest in computational methods
for solving the minmax problem in (1), in this paper we
consider convergence rate analysis of discrete-time gra-
dient based optimization algorithms for finding a sad-
dle point of problem (1). We focus on Extra-gradient
(EG) and Optimistic Gradient Descent Ascent (OGDA)
methods, which have attracted much attention in the
recent literature because of their superior empirical
performance in GAN training (see (Liang and Stokes,
2019), (Daskalakis et al., 2017)). EG is a classical
method which was introduced by Korpelevich (1976).
Its linear rate of convergence for smooth and strongly
convex-strongly concave functions f(x,y) and bilinear
functions, i.e., f(x,y) = x>Ay, was established in
the variational inequality literature (see (Facchinei and
Pang, 2007) and (Tseng, 1995)). The convergence prop-
erties of OGDA were recently studied in (Daskalakis
et al., 2017), which showed the convergence of the
iterates to a neighborhood of the solution when the
objective function is bilinear. The recent paper (Liang
and Stokes, 2019) used a dynamical system approach
to prove the linear convergence of the OGDA and EG
methods for the special case when f(x,y) = x>Ay and
the matrix A is square and full rank. It also presented
a linear convergence rate of the vanilla Gradient Ascent
Descent (GDA) method when the objective function
f(x,y) is strongly convex-strongly concave. In a recent
paper (Gidel et al., 2019), a variant of the EG method
is considered, relating it to OGDA updates, and show
the linear convergence of the corresponding EG iterates
in the case where f(x,y) is strongly convex-strongly
concave1 (though without showing the convergence rate
for the OGDA iterates).

The previous works use disparate approaches to analyze
EG and OGDA methods, obtaining results in several
different settings and making it difficult to see the con-
nections and unifying principles between these iterative

1f(x,y) is strongly convex-strongly concave when it is
strongly convex with respect to x and strongly concave
with respect to y.
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Figure 1: Convergence trajectories of proximal point
(PP), extra-gradient (EG), optimistic gradient descent
ascent (OGDA), and gradient descent ascent (GDA)
for minxmaxy xy. The proximal point method has the
fastest convergence. EG and OGDA approximate the
trajectory of PP and both converge to the optimal
solution. The GDA method is the only method that
diverges.

methods. In this paper, we show that the update of EG
and OGDA can be interpreted as approximations of
the Proximal Point (PP) method, introduced in (Mar-
tinet, 1970) and studied in (Rockafellar, 1976b). This
viewpoint allows us to understand why EG and OGDA
are convergent for a bilinear problem. It also enables us
to generalize OGDA (in terms of parameters) and ob-
tain new convergence rate results for these generalized
algorithms for the bilinear case. Our results recover
the linear convergence rate results of Tseng (1995) for
EG and the linear rate results of Liang and Stokes
(2019) for the bilinear case of OGDA. We obtain new
linear convergence rate estimates for OGDA for the
strongly convex-strongly concave case as well as linear
convergence rates for the generalized OGDA method.

Related Work. The result in (Tseng, 1995) showed
convergence of EG method to an ε optimal solution
with iteration complexity of O(κ log(1/ε)) (see Assump-
tion 1 and Remark 1 for the definition of κ) , when
the function f(x,y) is smooth and strongly convex-
strongly concave and when f is bilinear. A variational
inequality perspective of saddle point problems was
used in proving these results. More recently, Liang and
Stokes (2019) analyzed EG and OGDA for the case
when f is bilinear, using a dynamical system perspec-
tive. The authors showed a complexity of O(κ log(1/ε))
for OGDA and a complexity of O(κ2 log(1/ε)) for EG,
without anlyzing the general strongly convex-strongly
concave setting. In another recent independent work,
Gidel et al. (2019) analyzed the convergence of the
OGDA method using the interpretation that OGDA is
a variant of EG using extrapolation from the past. In

this connection, the OGDA iterates are the “midpoints"
whereas Gidel et al. (2019) provides a convergence of
the original points (not the OGDA iterates) to an error
of ε in O(κ log(1/ε)). In this paper, we establish an
overall complexity of O(κ log(1/ε)) for both OGDA and
EG in bilinear and strongly convex-strongly concave
settings by interpreting these methods as approxima-
tions of the proximal point method. The results of our
paper are compared with existing results in Table 1.
Apart from the algorithms summarized in Table 1, we
also propose a generalized version of OGDA which ex-
tends the classical OGDA algorithm to a wider range
of stepsize parameters and show its convergence for
bilinear case.

There are several papers that study the convergence
rate of algorithms for solving saddle point problems
over a compact set. Nemirovski (2004) showed O(1/k)
convergence rate for the mirror-prox algorithm (a spe-
cial case of which is the EG method) in convex-concave
saddle point problems over compact sets. This re-
sult was extended to unbounded sets by Monteiro and
Svaiter (2010) where a different error criterion was used.
Nedić and Ozdaglar (2009) analyzed the (sub)Gradient
Descent Ascent (GDA) algorithm for convex-concave
saddle point problems when the (sub)gradients are
bounded over the constraint set.

Several papers study the special case of Problem (1)
when the objective function is of the form f(x,y) =
g(x) + x>Ay − h(y), i.e., the cross term is bilinear.
For this case, when the functions g and h are strongly
convex, primal-dual gradient-type methods converge
linearly (Chen and Rockafellar, 1997; Bauschke et al.,
2011). Further, Du and Hu (2019) showed that GDA
achieves a linear convergence rate when g is convex
and h is strongly convex. Chambolle and Pock (2011)
introduced a primal-dual variant of the proximal point
method that converges to a saddle point at a sublinear
rate when g and h are convex and at a linear rate when
g and h are strongly convex.

For the case when f(x,y) is strongly concave with
respect to y, but possibly nonconvex with respect to
x, Sanjabi et al. (2018a) provided convergence to a
first-order stationary point using an algorithm that
requires running multiple updates with respect to y at
each step. Recently, Sanjabi et al. (2018b) extended
this result to the setting when f is Polyak-Lojasiewicz
with respect to y.

There are several papers which solve stochastic version
of Problem (1), i.e., the case where one does not have
access to the exact gradients of the function, but in
fact an unbiased estimate of it. Papers including (Ne-
mirovski et al., 2009; Juditsky et al., 2011; Chen et al.,
2014) solve this problem in the case where the objec-
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Reference Assumptions on f(x,y) Rate (EG) Rate (OGDA)
Liang and Stokes (2019) Bilinear O(κ2 log(1/ε)) O(κ log(1/ε))
Liang and Stokes (2019) Strongly Convex-Strongly Concave 7 7

Gidel et al. (2019) Bilinear 7 7

Gidel et al. (2019) Strongly Convex-Strongly Concave 7 O(κ log(1/ε))?
Tseng (1995) Bilinear O(κ log(1/ε)) 7

Tseng (1995) Strongly Convex-Strongly Concave O(κ log(1/ε)) 7

This paper Bilinear O(κ log(1/ε)) O(κ log(1/ε))
This paper Strongly Convex-Strongly Concave O(κ log(1/ε)) O(κ log(1/ε))

Table 1: Comparison of rates in different papers
(?- Gidel et al. (2019) shows the convergence of the half points and not the original OGDA iterates.)

tive function is convex in x and concave in y. More
recently Palaniappan and Bach (2016) uses a variance
reduced version of the proximal gradient method and
Chavdarova et al. (2019) uses a variance reduced ver-
sion of the EG method to solve Problem (1) when the
function is strongly convex in x and strongly concave
in y and the function has a finite sum structure.

Optimistic gradient methods have also been studied
in the context of convex online learning. In particular,
Rakhlin and Sridharan (2013a,b) introduced the general
version of the Optimistic Mirror Descent algorithm in
the framework of online optimization. Prior to this
work, a special case of Optimistic Mirror descent was
analyzed by Chiang et al. (2012), again in the context
of online learning.

Outline. The rest of the paper is organized as follows.
We start the paper by presenting some definitions and
preliminaries required for presenting our results in Sec-
tion 2. Then, we revisit the Proximal Point (PP) point
method in Section 3 and present its convergence prop-
erties for bilinear (Theorem 1) and general strongly
convex-strongly concave (Theorem 2) problems. In Sec-
tion 4, we show that the Optimistic Gradient Descent
Ascent (OGDA) is an approximation of PP (Propo-
sition 1) and prove its linear convergence rate for bi-
linear (Theorem 3) and strongly convex-strongly con-
cave (Theorem 4) problems. We generalize the OGDA
method in terms of its parameters and show the conver-
gence of the generalized OGDA method for the bilinear
case (Theorem 5). In Section 5, we recap the update of
Extra-gradient (EG) method for solving a saddle point
problem. Then, we show that EG can be interpreted as
an approximation of PP (Proposition 2) and use this in-
terpretation to study the convergence properties of EG
in bilinear problems (Theorem 6) and general strongly
convex-strongly concave problems (Theorem 7). In
Section 6, we present our numerical results, comparing
the performance of PP, EG, and OGDA for solving
both a bilinear problem and a quadratic program. We
close the paper with concluding remarks.

Notation. Lowercase boldface v denotes a vector and
uppercase boldface A denotes a matrix. We use ‖v‖
to denote the Euclidean norm of vector v. Given a
multi-input function f(x,y), its gradient with respect
to x and y at (x0,y0) are denoted by ∇xf(x0,y0) and
∇yf(x0,y0), respectively. We refer to the largest and
smallest eigenvalues of a matrix A by λmax(A) and
λmin(A), respectively.

2 Preliminaries

In this section we present properties and notations used
in our results.

Definition 1. A function φ : Rn → R is L-smooth if
it has L-Lipschitz continuous gradients on Rn, i.e., for
any x, x̂ ∈ Rn, we have ||∇φ(x)−∇φ(x̂)|| ≤ L||x− x̂||.
Definition 2. A continuously differentiable function
φ : Rn → R is µ-strongly convex on Rn if for any x, x̂ ∈
Rn, we have φ(x̂) ≥ φ(x) +∇φ(x)T (x̂ − x) + µ

2 ||x̂ −
x||2. Further, φ(x) is µ-strongly concave if −φ(x) is
µ-strongly convex. If we set µ = 0, then we recover the
definition of convexity for a continuous differentiable
function.

Definition 3. The pair (x∗,y∗) is a saddle point of a
convex-concave function f : Rn × Rm → R, if for any
x ∈ Rn and y ∈ Rm, we have f(x∗,y) ≤ f(x∗,y∗) ≤
f(x,y∗).

Throughout the paper, we consider two specific cases
of Problem (1) stated in the next set of assumptions.

Assumption 1. The function f(x,y) is a bilinear
function of the form f(x,y) = x>By, where B ∈ Rd×d
is a square full-rank matrix. The point (x∗,y∗) = (0,0)
is the unique saddle point. In this case, we define the
condition number of the problem as κ := λmax(B

>B)
λmin(B>B)

.

Assumption 2. The function f(x,y) is continuously
differentiable in x and y. Further, f is µx-strongly
convex in x and µy-strongly concave in y. The unique
saddle point of f(x,y) is denoted by (x∗,y∗). We define
µ = min{µx, µy}.



Extra-gradient and Optimistic Gradient Methods for Saddle Point Problems

Assumption 3. The gradient ∇xf(x,y), is Lx-
Lipschitz in x and Lxy-Lipschitz in y, i.e.,

‖∇xf(x1,y)−∇xf(x2,y)‖ ≤ Lx‖x1 − x2‖ for all y,
‖∇xf(x,y1)−∇xf(x,y2)‖ ≤ Lxy‖y1 − y2‖ for all x.

Moreover, the gradient ∇yf(x,y), is Ly-Lipschitz in y
and Lyx-Lipschitz in x, i.e.,

‖∇yf(x,y1)−∇xf(x,y2)| ≤ Ly‖y1 − y2‖ for all x,
‖∇yf(x1,y)−∇xf(x2,y)‖ ≤ Lyx‖x1 − x2‖ for all y.

We define L = max{Lx, Lxy, Ly, Lyx}.
Remark 1. Under Assumptions 2 and 3, we define
the condition number of the problem as κ := L/µ.

In the following sections, we present and analyze three
different iterative algorithms for solving the saddle
point problem introduced in (1). The k-th iterates of
any of these algorithms are denoted by (xk,yk). We
denote

rk = ‖xk − x∗‖2 + ‖yk − y∗‖2, (2)

as the distance to the saddle point (x∗,y∗) at iteration
k.

3 Proximal Point method

We start our analysis by Proximal Point (PP) method,
which will serve as a benchmark for the analysis of
Extra-gradient and Optimistic Gradient Descent Ascent
methods. The update of PP method for minimizing a
convex function h is defined as

xk+1=prox 1
η ,h

(xk)=argmin

{
h(x) +

1

2η
‖x− xk‖2

}
,

(3)
where η is a positive scalar (Bertsekas, 1999; Beck,
2017). Using the optimality condition of the update in
(3), one can also write the update of the PP method as
xk+1 = xk − η∇h(xk+1). This expression shows that
the PP method is an implicit algorithm. Convergence
properties of PP for convex minimization have been
extensively studied (Rockafellar, 1976a; Güler, 1991;
Ferris, 1991; Eckstein and Bertsekas, 1992; Parikh et al.,
2014; Beck, 2017). The extension of PP for solving
saddle point problems has been also studied in Rock-
afellar (1976b). Here, we recap the update of PP for
solving the min-max problem in (1). To do so, we
define the iterates {xk+1,yk+1} as the unique solution
to the saddle point problem

min
x∈Rm

max
y∈Rn

{
f(x,y) +

1

2η
‖x− xk‖2 −

1

2η
‖y − yk‖2

}
.

(4)

Using the optimality conditions of (4) (which are neces-
sary and sufficient since the problem in (4) is convex),

the update of the PP method for the saddle point
problem in (1) can be written as

xk+1 = xk − η∇xf(xk+1,yk+1),

yk+1 = yk + η∇yf(xk+1,yk+1). (5)

Note that implementing the system of updates in (5)
requires computing the operators (I+η∇xf)

−1 and (I+
η∇yf)

−1, and, therefore, may not be computationally
affordable for any general function f .

In the following theorem, we show that the PP method
converges linearly to (x∗,y∗) = (0,0) which is the
unique solution of the problem minx maxy x>By. This
result was established in Theorem 2 of (Rockafellar,
1976b) and we mention it here for completeness and
we later use it as a benchmark.

Theorem 1. Consider the saddle point problem in (1)
under Assumption 1 and the proximal point method in
(5). Further, recall the definition of rk in (2). Then,
for any η > 0, the iterates {xk,yk}k≥0 generated by
the proximal point method satisfy

rk+1 ≤
1

1+η2λmin(B>B)
rk.

In the following theorem, we characterize the conver-
gence rate of PP for a function f(x,y) that is strongly
convex with respect to x and strongly concave with
respect to y. Once again, this result was established
in (Rockafellar, 1976b) and we mention it here for
completeness and we later use it as a benchmark.

Theorem 2. Consider the saddle point problem in (1)
under Assumption 2 and the proximal point method in
(5). Further, recall the definition of rk in (2). Then,
for any η > 0, the iterates {xk,yk}k≥0 generated by
the proximal point method satisfy

rk+1 ≤
1

1 + ηµ
rk.

Theorem 2 states that for the general saddle point prob-
lem in (1), if the function is strongly convex-strongly
concave, the iterates generated by the PP method con-
verge linearly to the optimal solution.

4 Optimistic Gradient Descent Ascent
method

In this section, we study the Optimistic Gradient De-
scent Ascent (OGDA) method for solving saddle point
problems. We first show that OGDA can be considered
as an approximation of the proximal point method.
Then, we use this interpretation to analyze its con-
vergence properties for bilinear and strongly convex-
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Algorithm 1 OGDA method for saddle point prob-
lems
Require: η > 0, vectors x−1,y−1,x0,y0 ∈ Rd

1: for k = 1, 2, . . . do
2: xk+1=xk−2η∇xf(xk,yk) + η∇xf(xk−1,yk−1);

3: yk+1=yk+2η∇yf(xk,yk)− η∇yf(xk−1,yk−1);

4: end for

strongly concave settings. The proximal point approxi-
mation approach also allows us to generalize the update
of OGDA as we discuss in detail in Section 4.2.

4.1 Convergence rate of the OGDA Method

The main idea behind the updates of the OGDA
method is the addition of a “negative-momentum" term
to the updates which can be clearly seen when we write
the iterations as follows:

xk+1 = xk − η∇xf(xk,yk)

− η (∇xf(xk,yk)−∇xf(xk−1,yk−1)) ,

yk+1 = yk + η∇yf(xk,yk)

+ η (∇yf(xk,yk)−∇yf(xk−1,yk−1)) .

The last term in parenthesis for each of the updates
can be interpreted as a “negative-momentum", dif-
ferentiating the OGDA method from vanilla Gra-
dient Descent Ascent (GDA). It can be seen that
OGDA is approximating the proximal point update
direction using linear extrapolation of the previous
gradients, i.e., ∇xf(xk+1,yk+1)) ≈ ∇xf(xk,yk) +
(∇xf(xk,yk)−∇xf(xk−1,yk−1)) and similarly for
∇yf(·, ·).

We analyze the OGDA method as an approximation of
the Proximal Point (PP) method presented in Section
3. We first focus on the bilinear case (Assumption 1)
for which the OGDA updates are

xk+1 = xk − 2ηByk + ηByk−1,

yk+1 = xk + 2ηB>xk + ηB>xk−1.

Note that the update of the PP method for the variable
x in the considered bilinear problem is

xk+1 = (I + η2BB>)−1(xk − ηByk)

= (I − η2BB> + o(η2))(xk − ηByk)

= xk−ηByk − ηB(ηB>xk−η2B>Byk)+o(η
2),

where we used the fact that I − η2BB> is an approxi-
mation of (I + η2BB>)−1 with an error of o(η2). Re-
grouping the terms and using the updates of the PP

method yield

xk+1 = xk − 2ηByk

− ηB(ηB>xk − (1 + η2B>B)yk) + o(η2)

= xk − 2ηByk

− ηB(ηB>xk − yk−1 − ηB>xk−1) + o(η2)

= xk − 2ηByk + ηByk−1 + o(η2),

where the last expression is the OGDA update for
variable x plus an additional error of o(η2). A similar
derivation can be done for the update of variable y
to show that OGDA is an approximation of the PP
method up to o(η2). In the following proposition, we
show that this observation can be generalized for any
general smooth (possibly nonconvex) function f(x,y).
Proposition 1. Consider the saddle point problem
in (1). Given a point (xk,yk), let (x̂k+1, ŷk+1) be
the point we obtain by performing the PP update on
(xk,yk), and let (xk+1,yk+1) be the point we obtain by
performing the OGDA update on (xk,yk). Then, for a
given stepsize η > 0 we have

‖xk+1 − x̂k+1‖ ≤ o(η2),
‖yk+1 − ŷk+1‖ ≤ o(η2). (6)

To analyze the convergence of OGDA, we view it as
a proximal point algorithm with an additional error
term. In the following theorem, we characterize the
convergence rate of the OGDA method for the bilinear
saddle point problem defined in Assumption 1.
Theorem 3 (Bilinear case). Consider the saddle point
problem in (1) under Assumption 1 and the OGDA
method outlined in Algorithm 1. Further, recall the def-
inition of rk in (2). If we set η = (1/40

√
λmax(B>B)),

then the iterates {xk,yk}k≥0 generated by the OGDA
method satisfy

rk+1 ≤
(
1− cκ−1

)k
r̂0,

where r̂0 = max{r2, r1, r0} and c is a positive constant
independent of the problem parameters.

The result in Theorem 3 shows linear convergence of
OGDA in a bilinear problem of the form f(x,y) =
x>By where matrix B is square and full rank. It
further shows that the overall number of iterations
to obtain an ε-accurate solution is of O(κ log(1/ε)),
where κ is the problem condition number as defined in
Assumption 1. We would like to mention that this result
is similar to the one shown in (Liang and Stokes, 2019),
except here we analyze OGDA as an approximation of
PP.

In the following theorem, we again use the proximal
point approximation interpretation of OGDA to pro-
vide a convergence rate estimate for this algorithm
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when it is used for solving a general strongly convex-
strongly concave saddle point problem.
Theorem 4 (Strongly convex-strongly concave case).
Consider the saddle point problem in (1) under As-
sumptions 2 and 3 and the OGDA method outlined in
Algorithm 1. Further, recall the definition of rk in (2).
If we set η = (1/(8L)), then the iterates {xk,yk}k≥0
generated by OGDA satisfy

rk+1 ≤
(
1− cκ−1

)k
r̂0,

where r̂0 = c1κ
2r0 and c, c1 are positive constant inde-

pendent of the problem parameters.

The result in Theorem 4 shows that OGDA converges
linearly to the optimal solution under the assumptions
that f is smooth and strongly convex-strongly concave.
In other words, it shows that to achieve a point with
error rk ≤ ε, we need to run at most O(κ log(1/ε))
iterations of OGDA. This result can be compared with
the results in (Gidel et al., 2019), a recent independent
work which derived the OGDA updates as a variant of
the EG updates (interpreting OGDA as extrapolation
from the past). In this connection, the OGDA iter-
ates are the “midpoints" whereas (Gidel et al., 2019)
provides a convergence of the original points (not the
OGDA iterates) to an error of ε in O(κ log(1/ε)).

4.2 Generalized OGDA method

The update of OGDA both in theory and practice is
only studied for the case that the coefficients of both
∇xf(xk,yk) and ∇xf(xk,yk)−∇xf(xk−1,yk−1) are
η. This implies that in the OGDA update at step k,
the coefficient of the current gradient, i.e., ∇xf(xk,yk),
should be exactly twice the coefficient of the negative
of the previous gradient, i.e., −∇xf(xk,yk). It has
been an open question to see if different stepsizes can
be used for these terms. In this section, we generalize
OGDA where the coefficients for the gradient descent
and the negative momentum terms are not necessary
equal to each other. We consider the following OGDA
dynamics with general stepsize parameters α, β > 0:

xk+1 = xk − (α+ β)∇xf(xk,yk) + β∇xf(xk−1,yk−1),
(7)

yk+1 = yk + (α+ β)∇yf(xk,yk)− β∇yf(xk−1,yk−1).
(8)

Note that for α = β, we recover the original OGDA
method. Our goal is to show that OGDA is conver-
gent even if α and β are not equal to each other, as
long as their difference is sufficiently small. In the
following theorem, we formally state our result for the
generalized OGDA method described in (7) and (8)
when the objective function f has a bilinear form of
f(x,y) = x>By.

Theorem 5 (Generalized bilinear case). Consider
the saddle point problem in (1) under Assumption 1
and the generalized OGDA method in (7)-(8). Fur-
ther, recall the definition of rk in (2). If we set
α = 1/(40

√
λmax(B>B)) and α and β satisfy the con-

ditions 0 < α − Kα2 ≤ β ≤ α for some constant
K > 0, then the iterates {xk,yk}k≥0 generated by the
generalized OGDA method satisfy

rk+1 ≤
(
1− cκ−1

)k
r̂0,

where r̂0 = max{r2, r1, r0} and c is a positive constant
independent of the problem parameters.

Theorem 5 shows that it is not necessary to use a factor
of 2 in the OGDA update to have a linearly convergent
method and for a wide range of parameters this result
holds. A result similar to Theorem 5 can be established
when β > α. We do not state the results here due to
space limitations.

5 Extra-gradient method

In this section, we study the Extra-gradient (EG)
method for solving the general saddle point problem
in (1) and provide linear rates of convergence for the
bilinear and the strongly convex-strongly concave case
by interpreting this algorithm as an approximation of
the proximal point method. 2

The main idea of the EG method is to use the gradient
at the current point to find a mid-point, and then
use the gradient at that mid-point to find the next
iterate. To be more precise, given a stepsize η > 0, the
update of EG at step k for solving the saddle point
problem in (1) has two steps. First, we find mid-point
iterates xk+1/2 and yk+1/2 by performing a primal-dual
gradient update as

xk+1/2 = xk − η∇xf(xk,yk),

yk+1/2 = yk + η∇yf(xk,yk).

Then, the gradients evaluated at the midpoints xk+1/2

and yk+1/2 are used to compute the new iterates xk+1

and yk+1 by performing the updates

xk+1 = xk − η∇xf(xk+1/2,yk+1/2),

yk+1 = yk + η∇yf(xk+1/2,yk+1/2).

The steps of the EG method for solving saddle point
problems are outlined in Algorithm 2.

Note that in the update of the EG method, as
the name suggests, requires evaluation of extra

2Note that while Nemirovski (2004) shows that EG is
related to ‘conceptual mirror prox’ (similar to PP), unlike
our analysis, Nemirovski (2004) does not analyze EG as an
approximation of PP.
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Algorithm 2 Extra-gradient method for saddle point
problem

Require: Stepsize η > 0, initial vectors x0,y0 ∈ Rd

1: for k = 1, 2, . . . do
2: Compute xk+1/2 = xk − η∇xf(xk,yk) and

yk+1/2 = yk + η∇yf(xk,yk);
3: Update xk+1 = xk − η∇xf(xk+1/2,yk+1/2) and

yk+1 = yk + η∇yf(xk+1/2,yk+1/2);
4: end for

gradients at the midpoints xk+1/2 and yk+1/2

which doubles the computational complexity of
EG compared to the vanilla Gradient Descent
Ascent (GDA) method. The midpoints of EG
evolve as xk+1/2 = xk−1/2 − η∇xf(xk−1/2,yk−1/2) −
η (∇xf(xk,yk)−∇xf(xk−1,yk−1)) (and simi-
larly for y), which shows that the EG method
approximates the PP update direction as
∇xf(xk+1/2,yk+1/2)) ≈ ∇xf(xk−1/2,yk−1/2) +
(∇xf(xk,yk)−∇xf(xk−1,yk−1)) We show next EG
approximates the Proximal Point (PP) method
more accurately, as compared to the GDA method.
Consider the bilinear saddle point problem defined
in Assumption 1. By following the update of PP in
Section 3 and simplifying the expressions, the PP
update for the bilinear problem under Assumption 1
can be written as

xk+1 = (I + η2BB>)−1(xk − ηByk),

yk+1 = (I + η2B>B)−1(yk + ηB>xk).

As the computation of the inverse (I+η2B>B)−1 could
be costly, one can use I instead with an error of o(η).
This approximation retrieves the update of GDA which
is known to possibly diverge for bilinear saddle point
problems (see Daskalakis et al. (2017)). If we use
the more accurate approximation (I + η2BB>)−1 ≈
(I− η2BB>) which has an error of o(η2), we obtain

xk+1 = (I− η2BB> + o(η2))(xk − ηByk)

= xk − ηByk − η2BB>xk + o(η2), (9)

yk+1 = (I− η2B>B + o(η2))(yk + ηB>xk)

= yk + ηB>xk − η2B>Byk + o(η2). (10)

If we ignore the extra terms in (9)-(10) which are of
o(η2), we recover the update of the EG method for the
bilinear saddle point problem defined in Assumption 1.
Therefore, in the bilinear problem, the EG method can
be interpreted as an approximation of the PP method
with an error of o(η2). In the following proposition,
we extend this result and show that for any general
smooth (possibly nonconvex) function f(x,y), EG is
an o(η2) approximation of PP.

Proposition 2. Consider the saddle point problem
in (1). Given a point (xk,yk), let (x̂k+1, ŷk+1) be
the point we obtain by performing the PP update on
(xk,yk), and let (xk+1,yk+1) be the point we obtain
by performing the EG update on (xk,yk). Then, for a
given stepsize η > 0 we have

‖yk+1 − ŷk+1‖ ≤ o(η2),
‖xk+1 − x̂k+1‖ ≤ o(η2). (11)

The next theorem views the EG method as the PP
method with an error and properly bounds the error to
provide convergence rate estimates for the EG method
in the bilinear case.
Theorem 6 (Bilinear case). Consider the saddle point
problem in (1) under Assumption 1 and the extra-
gradient (EG) method outlined in Algorithm 2. Fur-
ther, recall the definition of rk in (2). If we set η =
1/(2

√
2λmax(B>B)), then the iterates {xk,yk}k≥0

generated by the EG method satisfy

rk+1 ≤
(
1− cκ−1

)
rk, (12)

where c is a positive constant independent of the prob-
lem parameters.

The result in Theorem 6 shows linear convergence of
the iterates generated by the EG method for a bilinear
problem of the form f(x,y) = x>By where the matrix
B is square and full rank. In other words, we obtain
that the overall number of iterations to reach a point
satisfying ‖xk‖2 + ‖yk‖2 ≤ ε is at most O(κ log(1/ε))
which matches the rate achieved in Tseng (1995) for
bilinear problems. It is worth mentioning that we
obtain this optimal complexity of O(κ log(1/ε)) for
EG in bilinear problems by analyzing this algorithm
as an approximation of the PP method which differs
from the approach used in (Tseng, 1995) that directly
analyzes EG using a variational inequality approach.
We further would like to add that this result improves
the O(κ2 log(1/ε)) of (Liang and Stokes, 2019) for EG
in bilinear problems.

The following theorem characterizes the convergence
rate of the EG method when f(x,y) is strongly convex-
strongly concave.
Theorem 7 (Strongly convex-strongly concave case).
Consider the saddle point problem in (1) under As-
sumptions 2 and 3 and the extra-gradient (EG) method
outlined in Algorithm 2. Further, recall the definition of
the condition number κ in Remark 1 and the definition
of rk in (2). If we set η = 1/(8L), then the iterates
{xk,yk}k≥0 generated by the EG method satisfy

rk+1 ≤
(
1− cκ−1

)
rk,

where c is a positive constant independent of the prob-
lem parameters.
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Figure 2: Convergence of proximal point (PP), extra-
gradient (EG), and optimistic gradient descent ascent
(OGDA) in terms of number of iterations for the bilin-
ear problem in (13). All algorithms converge linearly,
and the proximal point method has the best perfor-
mance. Stepsizes of EG and OGDA were tuned for
best performance.

The result in Theorem 7 characterizes a linear conver-
gence rate for the EG algorithm in a general smooth
and strongly convex-strongly concave case. Similar
to the bilinear case, our proof relies on interpreting
EG as an approximation of the PP method. Theo-
rem 7 further shows that the computational complex-
ity of EG to achieve an ε-suboptimal solution, i.e.,
‖xk+1 − x∗‖2 + ‖yk+1 − y∗‖2 ≤ ε, is O(κ log(1/ε)),
where κ = L/µ is the condition number of the number.
Note that this complexity bound can also be obtained
from the results in (Tseng, 1995).

6 Numerical Experiments

In this section, we compare the performance of the Prox-
imal Point (PP) method with the Extra–Gradient (EG),
Gradient Descent Ascent (GDA), and Optimistic Gra-
dient Descent Ascent (OGDA) methods.

We first focus on the following bilinear problem

min
x∈Rd

max
y∈Rd

x>By. (13)

where we set B ∈ Rd×d to be a diagonal matrix with
a condition number of 100, and we set the dimension
of the problem to d = 10. The iterates are initialized
at x0 = 10 and y0 = 10, where 10 is a d dimensional
vector with all elements equal to 10. Figure 2 demon-
strates the errors of PP, OGDA, and EG versus number
of iterations for this bilinear problem. Note that in this
figure we do not show the error of GDA since it diverges
for this problem, as illustrated in Figure 1 (For more
details check (Daskalakis et al., 2017)). We can ob-
serve that all the three considered algorithms converge
linearly to the optimal solution (x∗,y∗) = (0,0).

We proceed to study the performance of PP, EG, GDA,
and OGDA for solving the following strongly convex-
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Figure 3: Convergence of proximal point (PP), extra-
gradient (EG), optimistic gradient descent ascent
(OGDA), and gradient descent ascent (GDA) in terms
of number of iterations for the quadratic problem in
(14). Stepsizes of EG, OGDA and GDA were tuned for
best performance.

strongly concave saddle point problem

min
x∈Rd

max
y∈Rn

1

n

[
−1

2
‖y‖2−b>y+y>Ax

]
+
λ

2
‖x‖2 (14)

This is the saddle point reformulation of the linear
regression

min
x∈Rd

1

2n
‖Ax− b‖2 (15)

with an L2 regularization, as shown in Du and Hu
(2019). As done in Du and Hu (2019), we generate
the rows of the matrix A according to a Gaussian
distribution N (0, Id). Here, we set d = 50 and n =
10, and assume b = 0. We also set the regularizer
to λ = 1/n. Figure 3 illustrates the distance to the
optimal solution of the considered algorithms versus the
number of iterations. As we can see, EG and OGDA
perform better than GDA and their convergence paths
are closer to the one for PP which has the fastest rate.
This observation matches our theoretical claim that
EG and OGDA are more accurate approximations of
PP relative to GDA.

7 Conclusions
We considered discrete time gradient based methods
for solving saddle point problems, with a focus on
the Extra-gradient (EG) and the Optimistic Gradient
Descent Ascent (OGDA) methods. We showed that
EG and OGDA can be seen as approximations of the
classical Proximal Point (PP) method and used this
interpretation to establish linear convergence rate for
both of these algorithms in the bilinear and strongly
convex-strongly concave settings. We further intro-
duced a generalized version of OGDA and established
its convergence guarantees for a wide range of parame-
ters. We also compared the performance of EG, OGDA
and PP for a strongly-convex strongly-concave saddle
point problem.
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