
1 Supplemental Material

1.1 Theorems and Proofs

Theorem 1 Let xt+1 be the new row added to Xt at
iteration t+ 1. If the QR factorization Qt

XRt
X = Xt

is known, then

Ht+1 =

[
1 0
0 Ht

]
− vv′ (1)

where v is the last column of Qt+1
X .

Proof: We start by finding the new QR factorization
of Xt+1.

Xt+1 =

[
xt+1

Xt

]
(2)

Qt
X is an orthonormal basis for Xt, meaning

Qt′
XQt

X = I, and thus Qt′
XXt = Rt

X . We can ex-
pand the size of Qt

X to account for the increased size
of Xt+1 while maintaining orthonormality, giving us

[
1 0
0 Qt′

X

]
Xt+1 =

[
1 0
0 Qt′

X

] [
xt+1

Xt

]
=

[
xt+1

Rt
X

]
= R̃X

(3)

In equation 3, we use a boldface zero (0) to indicate
the rest of the row or column of the matrix is filled
with 0s.

Our goal is then to refactor R̃X into an upper trian-
gular matrix while preserving the orthonormality of
Qt+1

X . Givens rotations are a common tool used to ac-
complish this refactoring efficiently in QR factorization
algorithms. R̃X is upper Hessenberg, meaning we can
quickly construct the upper triangular matrix G′XR̃X

using only p Givens rotations GX,1 . . .GX,p = GX

(where GX,k indicates the kth Givens rotation ma-
trix). Note that GXG′X = I. Thus we have

G′X

[
1 0
0 Qt′

X

]
Xt+1 = G′X

[
1 0
0 Qt′

X

] [
xt+1

Xt

]
(4)

= G′X

[
xt+1

Rt
X

]
(5)

= Rt+1
X (6)

Qt+1
X =

[
1 0
0 Qt

X

]
GX (7)

However, in this form Qt+1
X is an (n + 1) × (p + 1)

matrix, which has one more column than we need for

an orthonormal basis of Xt+1. Rt+1
X has dimensions

(p + 1) × p and is almost a triangular matrix except
its last row is 0. This means that the last column of
Qt+1

X , denoted as v, is part of the left null space of
Xt+1 and contributes nothing to the reconstruction of
Xt+1. Thus we can safely remove this column from
Qt+1

X and the last row of Rt+1
X without changing the

factorization.

We can represent this removal mathematically by mul-

tiplication by

[
Ip
0

]
, where Ip is the p× p identity ma-

trix.

Recall that H = QXQ′X when QX is an orthonormal
basis for X. Let us denote the last column of Qt+1

X as
v. Using the vector removal notation from above, we
can rewrite the form of Ht+1, where 0p is the p × p
zero matrix:

Ht+1 = Qt+1
X

[
Ip
0

] [
Ip 0

]
Qt+1′

X = (8)

Qt+1
X

(
Ip+1 −

[
0p 0
0 1

])
Qt+1′

X = (9)

Qt+1
X Qt+1′

X −Qt+1
X

[
0p 0
0 1

]
Qt+1′

X = (10)

[
1 0
0 Qt

X

]
GXG′X

[
1 0
0 Qt′

X

]
−Qt+1

X

[
0
1

] [
0 1

]
Qt+1′

X =

(11)

[
1 0
0 Qt

XQt′
X

]
− vv′ = (12)

[
1 0
0 Ht

]
− vv′ (13)

�

Theorem 2 If Zt and Qt+1
X are known, then

Zt+1 =

[
0
Zt

]
+ vg′ (14)

where g = [x̃t+1, X̃t]v and v is the last column of
Qt+1

X .

Proof: From Theorem 1 we know how to express the
form of Ht+1. Let x̃t+1 be the row added to X̃t.

Zt+1 = X̃t+1 −Ht+1X̃t+1 = (15)



[
x̃t+1

X̃t

]
−
([

1 0
0 Ht

]
− vv′

)[
x̃t+1

X̃t

]
= (16)

[
x̃t+1

X̃t

]
−
[
x̃t+1

HtX̃t

]
+ vv′

[
x̃t+1

X̃t

]
= (17)

[
0
Zt

]
+ vg′ (18)

where g = [x̃t+1, X̃t]v. �

Theorem 3 Assume the QR factorization Zt =
Qt

ZR
t
Z is known. Two sets of O(p) Givens rotations

GR = GR,1 . . .GR,(p−1) and GB = GB,1 . . .GB,p

can be constructed such that the factorization of Zt+1

is

Zt+1 = Qt+1
Z Rt+1

Z (19)

Qt+1
Z = QtG′RG′B (20)

Rt+1
Z = GBGR

( [ 0
Rt

Z

]
+ cg′

)
(21)

where c = Qt′
Zv and g is as defined in Theorem 2.

Proof: Given an existing decomposition Zt = Qt
ZR

t
Z ,

Zt+1 =

[
0
Zt

]
+ vg′

=

[
0

Qt
ZR

t
Z

]
+ vg′

= Qt
Z

( [ 0
Rt

Z

]
+ cg′

)

where c = Qt′
Zv.

We can compute a set of (p−1) Givens rotations GR =
GR,1 . . .GR,(p−1) such that GRc = ||c||e1 where e1 is

the first unit basis vector. Then GR(

[
0

Rt
Z

]
+ cg′) =[

0

R̃

]
+ ||c||e1g′ = B. The matrix B is guaranteed

to be upper Hessenberg; as before, we can construct
p Givens rotations GB = GB,1 . . .GB,p such that
GBB = Rt+1 is upper triangular. It then follows
that Qt+1 = QtG′RG′B. �

1.2 Reproduction of Results

Code to reproduce the results docu-
mented in this paper can be found at
https://github.com/Qsnap/AIStats20. The reposi-
tory contains matlab code for running Qsnap, TESS,
SSS-Moods, and the non-optimized rank-test quantile
snapshot scan algorithm. It contains scripts to exactly
reproduce the experiments detailed in this paper. The
simulation data from our experiments, as well as the
code for generated the simulated data, are included,
along with the subset of eBird and climate data used
in the experiments.

1.3 Partial AUC Calculation

For our simulation experiments we evaluate each algo-
rithm by computing the partial AUC of the TPR vs
FPR graph, over the FPR range [0,0.2]. For each of the
30 datasets in each experiment setup, each algorithm
reports the best region discovered, which we denote as
C∗. Any points in C∗ that are generated from the
shifted distribution are true positives (TP), while all
other points in C∗ are false positives (FP). Points out-
side C∗ generated by the shifted distribution are false
negatives (FN), while the other data points outside C∗

are true negatives (TN).

For each dataset, we compute the TPR and FPR of the
best region from each algorithm as tpr = TP

TP+FN and

fpr = FP
FP+TN . In our setup we must either accept

the entire region or none of it. This means that TPR
= 0 when FPR < fpr, and TPR = tpr when FPR ≥
fpr. This produces a step graph for each algorithm
on each dataset. We calculate the partial AUC as the
area under each graph in the FPR range [0,0.2]. Note
that if fpr > 0.2, then the partial AUC is 0. We report
the average partial AUC over all 30 datasets for each
algorithm.

In our synthetic experiments, the highest possible par-
tial AUC score is 0.2, if TPR = 1. This value is ex-
tremely unlikely, since our true positive points are not
perfectly grouped together. Any region that overlaps
all true positive points will almost certainly overlap
negative points as well.

1.4 Additional Simulation Experiments

Figure 1 shows the full suite of experiments we
performed with our data simulator, with τ =
{0.1, 0.3, 0.5, 0.7, 0.9} and K = 1, 3, 5. These ad-
ditional experiments show the same trends as those
reported in the main paper, with TESS performing
poorly when K > 1, and SSS-Moods unable to do well
in any setup.



(a) Normal Noise Distribution.

(b) Exponential Noise Distribution.

(c) Uniform Noise Distribution.

Figure 1: Partial AUC of TESS, SSS-Moods, and Qsnap on simulated data. The best performing algorithms are
bolded, * indicates the best algorithm is statistically significant (Wilcoxon signed-rank test, α = 0.05).


