
The Quantile Snapshot Scan: Comparing Quantiles of Spatial Data
from Two Snapshots in Time

Travis Moore Weng-Keen Wong
School of EECS

Oregon State University

Abstract

We introduce the Quantile Snapshot Scan
(Qsnap), a spatial scan algorithm which iden-
tifies spatial regions that differ the most be-
tween two snapshots in time. Qsnap is de-
signed for spatial data with a numeric re-
sponse and a vector of associated covariates
for each spatial data point. Qsnap focuses on
differences involving a specific quantile of the
data distribution. A naive implementation
of Qsnap is too computationally expensive
for large datasets but our novel incremen-
tal update provides an order of magnitude
speedup. We demonstrate Qsnap’s effective-
ness over an extensive set of experiments on
simulated data. In addition, we apply Qsnap
to two real-world problems: discovering bird
migration paths and identifying regions with
dramatic changes in drought conditions.

1 Introduction

Suppose an analyst is comparing counts of a specific
species between the current year and the previous year.
Each data point represents a geographic location with
a response (e.g. the number of individuals observed)
and an associated vector of covariates (e.g. features
related to the observation process such as the time of
day, time spent observing, etc.). The spatial aspect
of the data is important, as is how the distribution
of the response varies between locations. A common
task when comparing spatial data from two different
time periods is to look for the spatial region that is the
most different between the two snapshots in time. In
addition, the analyst may be interested in regions that

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

differ according to a specific quantile of the response
value. For example, the analyst may be interested in
areas of high density for the species, such as those
in the 75th percentile, and thus focus on how these
regions have changed between the two snapshots.

This type of spatial analysis is applicable to many
other spatial datasets, such as data from crop yields,
property tax assessments and unemployment surveys.
To solve problems of this nature, we introduce a novel
algorithm called the Quantile Snapshot Scan (Qsnap
for short) which is based on the Spatial Scan Statistic
(SSS) (Kulldorff, 1997) framework. The original SSS
was intended for purely spatial data (i.e. from a sin-
gle snapshot in time). The SSS algorithm searches for
the highest scoring region according to a hypothesis
test and then computes a p-value characterizing the
unusualness of that region. Different from the SSS,
Qsnap finds the most different spatial region between
two time periods, where the difference is measured rel-
ative to a specific quantile of the response variable.
More precisely, Qsnap looks for differences relative
to the two models predicting the conditional quantile
function for the two snapshots. We show that Qs-
nap is more robust at detecting quantile differences for
a variety of distributions than competing approaches,
and we develop an efficient incremental update that
speeds up a naive implementation of the algorithm by
an order of magnitude. We also apply Qsnap to the
tasks of identifying bird migration routes and detect-
ing changes in drought conditions.

2 Background and Related Work

2.1 Quantile Regression

The τth quantile1 (where 0 ≤ τ ≤ 1) of a continuous
random variable Y is defined as the value qτ such that

1We will also refer to the pth percentile, which is equiv-
alent to the p/100th quantile

The Quantile Snapshot Scan: Comparing Quantiles of Spatial Data from Two Snapshots in Time

qτ = inf
y
{F (y) ≥ τ} = F�1(τ) (1)

where F (Y) = P (Y ≤ y) is the cumulative distribu-
tion function of Y . Intuitively, qτ is the value where
the proportion τ of the Y values are less than qτ and
(1− τ) of the Y values are greater than qτ .

Just as least squares regression estimates the condi-
tional mean function E[Y |X] = X�, quantile regres-
sion (Koenker and Bassett, 1978) fits the τth condi-
tional quantile function QY (τ |X) = X�(τ). The pa-
rameters of the regression line are defined by solving:

�̂(τ) = arg min
�

nX
i=1

pτ (yi − xi�) (2)

where pτ (r) = r(τ − I(r < 0)) and (yi,xi) is the ith

data instance. This optimization finds a value of �̂(τ)
such that the proportion τ of the total residuals are
negative, and the proportion (1− τ) of the total resid-
uals are positive. For notational convenience, we will
drop the τ parameter on �.

Quantile regression provides more flexibility and ro-
bustness than mean-based regression. τ can be set to
focus the analysis on the quantile of interest, reducing
the influence of other parts of the data distribution.
For example, τ can be set close to 1 or 0 to model
the extreme values of the distribution, or to 0.5 to fit
the median. Distribution quantiles are also inherently
more robust than means, which can be greatly influ-
enced by extreme values (Rousseeuw and Leroy, 1987).

2.2 Rank Test for Quantile Regression

A key part of our algorithm requires comparing two
quantile regression models using a hypothesis test. If
we decompose the regression model at the τth quan-
tile as QY (τ |X, X̃) = X�1 + X̃�2, where X and X̃
are each a set of covariates, then we can look at the
hypothesis test H0 : �2 = 0 vs Ha : �2 6= 0. For the
region detection task, X̃ is an indicator of whether
the data is from the region of interest or not. The test
then equates to determining if data from the region
follows the same model as the rest of the dataset.

One way to perform this hypothesis test is using the
rank test for quantile regression (Gutenbrunner et al.,
1993), which takes the form T = S0M�1S, where S
is the score vector and M is the Fischer information
matrix. For the hypothesis test defined above, the
information matrix takes the form M = n�1(X̃ −
HX̃)0(X̃ −HX̃) with H = X(X 0X)X 0.

The score vector is the gradient of the log-likelihood.
When the likelihood is unknown, the score can be ap-

proximated by a rank-score process. This assigns a
best fit ranking to the datapoints as an empirical sub-
stitute for their probability. In our application, this
ranking can be assigned with respect to the quantile
of interest. For quantile regression, Machado and Silva
(2002) approximate S as S = n�1/2(X̃ −HX̃)0b̂.

The vector b̂ captures the rank score resulting from
fitting a quantile regression at the τth quantile under
H0. Using the value of β1 learned from H0, each point
is assigned a ranking value between τ and τ−1 depend-
ing on whether the point falls above, below, or on the
regression line. More specifically, b̂i = âi(τ)− (1− τ)
where âi = 1 if xi�1 > 0, âi = 0 if xi�1 < 0, and
0 ≤ âi ≤ 1 if xi�1 = 0, subject to the constraint
X 0â = (1−τ)X 01. The values â are the dual solution
of the quantile regression optimization.

Our final test statistic is T = S0M�1S/Ψ2, where
Ψ2 = τ(1− τ) is included to normalize the score func-

tion used to compute b̂. T follows a Chi-squared distri-
bution under the null hypothesis with p = |�2| degrees
of freedom. The rank test has the same asymptotic
power as the analogous Wald and likelihood ratio tests,
but does not require estimating the parameters under
alternative hypothesis Ha, which greatly reduces the
computation load for our algorithm’s inner loop.

2.3 Spatial Scan Statistic

The SSS (Kulldorff, 1997) detects regions in which the
frequency of occurrence of an event of interest is signif-
icantly different from expected. Events are modelled
as a Poisson distribution where q is the probability
of an event occurring. A scanning window search is
performed over the dataset, with each window repre-
senting a subset of the data. For each data subset C, a
likelihood ratio test is used to test the null hypothesis
that q(C) (the probability of an event in local region
C), is equal to the global probability q, versus the al-
ternative q(C) > q. The SSS returns the most unusual
window found, as determined by the p-value of the hy-
pothesis test. Due to multiple hypothesis testing, the
SSS uses a randomization test to produce an adjusted
p-value for the most unusual region.

In theory, the search over data subsets should be ex-
haustive, but in practice it is often performed on a
smaller number of subsets of a specific form, such as
circular regions of expanding radius or rectangles of
increasing size. Most variants of the SSS can be de-
composed into a search method over candidate regions,
and a test quantifying the unusualness of each region.

We briefly mention the most related SSS variants. The
Fast Subset Scan algorithm (Neill, 2012) finds the most
unusual subset of the data quickly if there exists an ef-

Travis Moore, Weng-Keen Wong

ficiently computed priority function to rank each data
point. While very fast, the subset-scan algorithm does
not guarantee that the subset is spatially contiguous,
and the corresponding priority function for quantile
regression does not meet its assumptions. The space-
time scan statistic (Kulldorff et al., 1998) finds un-
usual ”cylinders” in space-time relative to the entire
dataset. This approach fundamentally differs from our
setup, where the same spatial area is compared at two
different times to discover local changes.

Unlike most SSS variants, the Treatment Effect Spatial
Scan (TESS) (McFowland et al., 2018) tests the τth
quantile to find unusual regions rather than the distri-
bution means. The TESS algorithm divides the data
into a control and treatment group. It fits a model to
the control group, and uses it to produce a p-value for
every point in the treatment group. A subset-scan al-
gorithm is used to find a discrete set of features in the
treatment group where the p-values are most different
from the expected value. For a given subset C of the
treatment group, it computes the likelihood ratio test

statistic T = |C| (τ̃�τ)
2

τ(1�τ) , where τ̃ is the proportion of

p-values in C less than τ . The search is performed
on a range of quantiles [τ − α, τ + α], with the best
overall region reported. The treatment/control setup
of TESS can be adapted to our problem of looking
for differences between two snapshots in time, thereby
making TESS the closest related work to Qsnap.

Finally, the Quantile Spatial Scan Statistic (QSSS)
(Moore and Wong, 2018) operates on spatial data from
a single time slice and finds unusual spatial regions rel-
ative to the overall space. QSSS uses an efficient incre-
mental rank test on quantile regression to find unusual
regions at the τth quantile. A key factor in its com-
putational speed is that regardless of the candidate
region under consideration, under the null hypothe-
sis, the total comparison space X does not change.
This assumption is violated in the space-time setting
of Qsnap, where points outside of candidate region C
are not considered in the test, causing the comparison
space to change as C changes. Without its speedup,
QSSS is intractable to run on even moderate sized
datasets. Consequently, the incremental update for
Qsnap addresses a fundamentally different optimiza-
tion problem than the incremental update for QSSS.

2.4 Other Related Work

The computer vision and remote sensing communities
address a seemingly related problem of change detec-
tion for images and landsat data taken at different
times (see Radke et al. (2005), Zhu (2017) for sur-
veys). This line of research is different from our work
as the techniques are specifically intended for images

and regularly gridded landsat values, rather than ran-
domly located spatial data. In addition, these methods
do not compare quantiles of the data distributions.

Many statistical techniques have been developed to
produce a smooth surface representing a specific quan-
tile of a spatial distribution (e.g. Hallin et al. (2009);
Reich et al. (2011); Lum and Gelfand (2012); Macmil-
lan (2013)). One could apply these methods to fit
models to the data from the two snapshot time peri-
ods and then take a difference between these surfaces.
This difference would produce an informative visual-
ization but identifying a specific region that differs the
most between the two time periods would need to be
done manually; this manual inspection is time con-
suming, especially for a big region, or it can be done
somewhat clumsily with an additional post-processing
algorithm, which would resemble the search step in
our Qsnap algorithm. The Qsnap algorithm not only
performs this analysis in one holistic framework, but
it is also more computationally efficient and it enables
an automated monitoring system that avoids the need
for human inspection of the difference surface.

3 Methodology

Suppose we are given two spatial datasets obtained
at two different times (i.e. snapshots). We denote
the two datasets as D(1) = {Y (1),X(1),L(1)} and
D(2) = {Y (2),X(2),L(2)}. For the dataset at snap-

shot s, we denote the ith data point as D
(s)
i =

(y
(s)
i ,x

(s)
i , l

(s)
i) where y

(s)
i is the continuous response,

x
(s)
i = (x

(s)
i,1 , . . . , x

(s)
i,p) are the p covariates associated

with the ith data point and l
(s)
i = (l

(s)
i,1 , . . . , l

(s)
i,d) are

the d dimensional coordinates specifying the spatial
location of the data point. If d = 2, the location tuple

(l
(s)
i,1 , l

(s)
i,2) can represent latitude and longitude. Note

that the set of locations L(1) and L(2) are not required
to be from the exact same locations for the two snap-
shots, but they should be from the same general region.
Our goal is to find a region C which is the most dif-
ferent between the two snapshots (with respect to the
τth quantile of the response variable) and to compute
a score that characterizes this region’s unusualness.

The Qsnap algorithm searches over candidate regions
C. As is commonly done in SSS variants, the search
involves looking at regions of expanding size (e.g. cir-
cle with increasing radius), centered at evenly spaced
gridpoints covering the space L = L(1) ∪ L(2). For
each candidate region, Qsnap performs a hypothesis
test to determine when the τth quantile of D(1) is dif-
ferent from the τth quantile of D(2) in region C. For
this paper, we will focus on optimizing the speed and
power of the hypothesis test.

The Quantile Snapshot Scan: Comparing Quantiles of Spatial Data from Two Snapshots in Time

3.1 Snapshot Hypothesis Test

Given a regionC, we denote the response variables and
associated covariates of the datapoints from snapshot

s in region C as Y
(s)
C and X

(s)
C respectively. We want

to compare Q
Y

(1)
C

(τ |X(1)
C) and Q

Y
(2)

C

(τ |X(2)
C), the τth

quantile regression models of C at snapshots 1 and

2. We define X = [X
(1)
C ;X

(2)
C] and Y = [Y

(1)
C ;Y

(2)
C],

where the symbol ”;” indicates matrix concatenation
(as in Matlab). We construct the matrix X̃ such that
X̃i = Xi if point i is from snapshot 2, and 0 (i.e. the
zero vector) otherwise. We can then set up the quantile
regression model QY (τ |X, X̃) = X�1 + X̃�2. This
represents a nested model where �1 are the parameters
for snapshot 1 and (�1 + �2) are the parameters for
snapshot 2. Testing the null hypothesis �2 = 0 vs the
alternative �2 6= 0 will determine if the region C in
snapshot 2 is significantly different from the region in
snapshot 1 at the τth quantile.

We choose to use the rank test for quantile regres-
sion, because it only requires fitting a quantile re-
gression model for �1 under the null hypothesis, and
has the same asymptotic power as a likelihood ra-
tio test. The test statistic T can be formulated as
T = b̂0Z(Z 0Z)�1Z 0b̂/Ψ2 where Z = X̃ −HX̃.

Alternatively, we can write this as T = b̂0QZQ
0
Z b̂/Ψ

2

if QZ is an orthonormal basis for Z. In either form,
re-calculating T from scratch each time C changes can
be very time consuming. Moore and Wong (2018)
proposed a speedup for a quantile spatial scan algo-
rithm leveraging this formulation, under the assump-
tions that X, H, b̂, and �1 are all constant between
iterations. These assumptions are violated in the snap-
shot scan setting. Specifically, when C grows by one
point, both X̃ and X grow by an additional row, re-
quiring H, b̂, and �1 to be recalculated. In the fol-
lowing section we will outline a novel speedup for the
snapshot scan setting.

3.2 An Efficient Incremental Update

We now derive a novel incremental update for Qsnap
which drastically reduces the time needed to calculate
T when C grows. In each iteration of Qsnap, the size
of the region C grows by one point, which increases
the size of X and X̃ by one row and requires a re-
calculation of the test statistic T for the new region.
Changes to X and X̃ means QZ , Z, H, and b̂ must
be updated to re-calculate T . While T only depends
on QZ and b̂, QZ will change in relation to Z, since it
is a basis for Z, and Z depends on H. In the following
sections, we describe efficient incremental updates for
these values. For many values, we save time by updat-
ing the QR decomposition of the data matrix, instead

of the matrix itself. We use the superscript t to indi-
cate the current iteration, and t+ 1 the iteration after
adding a new data point. Proofs of the theorems used
can be found in the supplemental material.

Updating H: We start by addressing how to
quickly update Ht as Xt grows in size. First, let
Xt = Qt

XR
t
X be the QR factorization of Xt. Note

that Ht = Xt(Xt0Xt)�1Xt0 is a projection matrix,
and can be re-written as Ht = Qt

XQ
t0
X since Qt

X is an
orthonormal basis for Xt. An initial QX comes from
the Q matrix of the QR factorization of Xt at t = 1.

Theorem 1 (supplemental) shows that when a new row
is appended to Xt, then

Ht+1 = Qt+1
X

�
1 0
0 Ht

�
− vv0 (3)

Where v is the last column of Qt+1
X . Qt+1

X can be
efficiently found using the algorithm in Section 12.5.3
of Golub and Van Loan (2012), which uses O(p) Givens
rotation to update the existing QR factorization.

Updating Z: If Zt and Qt+1
X are known, then using

Theorem 2 (supplemental) we have

Zt+1 =

�
0
Zt

�
+ vg0 where g = [x̃t+1, X̃t]v (4)

The incremental update to Zt has two simple steps:
append a zero row, and add the rank one matrix vg0.
Explicitly calculating Ht+1 to find Zt+1 is not needed
as computingQt+1

X and then reading off its last column
to produce v is sufficient.

Updating QZ : Theorem 3 (supplemental) shows
that, given an initial QR decomposition Zt = Qt

ZR
t
Z ,

the factorization at iteration t+ 1 is

Qt+1
Z = QtG0RG

0
B (5)

Rt+1
Z = GBGR

� � 0
Rt
Z

�
+ cg0

�
(6)

where GR and GB are both computed by multiplying
O(p) Givens rotation matrices. The proof uses the
algorithm in section 12.5.1 of Golub and Van Loan
(2012) for rank one updates of QR decompositions.

Updating b̂: b̂ is based on the dual solution to the
quantile regression, and can be directly computed if
the primal solution �1 is known. �1 can be calculated
more efficiently by warmstarting the optimization al-
gorithm (i.e starting the optimization at the previous

Travis Moore, Weng-Keen Wong

solution point). Since the changes to Y and X are
small, we can expect the previous solution to be rela-
tively close to the new solution. We use the simplex
method as the optimization algorithm, because pivot
operations are fast, and the algorithm is very efficient
when started near the optimal solution.

Algorithm 1 shows the entire update process when
point j is added to C. The functions rowUpdate()
and rankOneUpdate() correspond to the QR update
algorithms from Golub and Van Loan (2012). sim-
plexSolve() uses the simplex algorithm to compute a
quantile regression solution, warmstarted at a given so-
lution value. dualSolution() returns the dual solution
to the quantile regression given the primal solution.

Both rowUpdate() and rankOneUpdate() can be run
in O(np) time, as their main bottleneck is the multipli-
cation of O(p) Givens rotations; the rotation matrices
are sparse, so each can be done in O(n) time. The
quantile regression dual solution can be calculated in
O(np) time when the primal solution is known. For
the simplex solver, each pivot operation takes O(np)
time. Convergence is guaranteed by the convex solu-
tion space, but in general we cannot say how many
pivots will be required. Provided the data is reason-
ably well behaved, warmstarting should significantly
reduce the number of pivots required, especially when
adding a single new data point. In practice, we have
observed that the warmstarted simplex algorithm of-
ten converges in a sublinear number of pivots.

3.3 Multiple Hypothesis Test Correction

With multiple hypothesis tests being performed, we
cannot use the rank test p-value to determine the sig-
nificance of the most extreme region. Instead, we ap-
ply a Gumbel correction (Abrams et al., 2010), which
uses the most significant test values from randomized
data permutations to parameterize an extreme value
distribution and identify significant values. This ap-
proach requires less data permutations than the tra-
ditional randomization test. If multiple significant re-
gions need to be returned, methods like the false dis-
covery rate (Benjamini and Hochberg, 1995) or Bon-
ferroni correction (Bonferroni, 1936), can be used.

4 Results

Evaluating Qsnap on real-world data is challenging
due to the lack of datasets with ground-truth identi-
fication of which region(s) change (or did not change)
from one time period to another. Consequently, we
create simulated data where the ground truth is known
and we perform an extensive set of experiments under
different simulator settings. We also compare Qsnap

Algorithm 1 Incremental Rank Test

Inputs: Y ,X, X̃,xt+1, x̃t+1,QX ,RX ,QZ ,RZ , β1, τ
[QX ,RX] = rowUpdate(QX ,RX ,x

t+1)
v = QX .lastColumn
QX = removeLastColum(QX)

X̃ =

�
x̃t+1

X̃

�
g = X̃ 0v
[QZ ,RZ] = rowUpdate(QZ ,RZ ,0)
[QZ ,RZ] = rankOneUpdate(QZ ,RZ ,v, g

0)
β1 = simplexSolve(X,Y , τ, β1)
a = dualSolution(X,Y , τ, β1)

b̂ = a− (1− τ)

T = b̂0QZQ
0
Z b̂/(τ(1− τ))

Return(T, X̃,QX ,RX ,QZ ,RZ , β1)

against other algorithm on two real-world problems
and we corroborate the results against findings by in-
dependent sources.

4.1 Runtime Analysis

We compare our rank test speedup against two base-
lines. The first baseline is a naive implementation that
calculates the test statistic T from scratch every iter-
ation; the second is a naive implementation that uses
warmstarting to re-learn �1 quickly each iteration.

Table 1 shows the average update time of each algo-
rithm as the size of the dataset increases, with the
number of features constant at p = 3. Our incremen-
tal algorithm is by far the fastest for larger n, demon-
strating a linear increase in runtime while the oth-
ers increase quadratically. The difference between the
naive and warmstarted algorithms is relatively small,
showing that the primary computational bottleneck is
in calculating Z(Z 0Z)�1Z 0.

4.2 Simulation Experiments

We evaluate the accuracy of Qsnap on simulated data
where the changed regions are known. We compare
Qsnap against two other quantile spatial scan algo-
rithms, with the first being a variant of the Treatment-
Effect Spatial Scan (TESS) (McFowland et al., 2018).
We adapt TESS to the snapshot scan setting by us-
ing the first and second snapshots as the “control”
and “treatment” groups, respectively. In the origi-
nal paper, p-values for each data point are calculated
non-parametrically as the ratio of points with a higher
response value. For our multi-variate data, we com-
pute a quantile regression on the control set at the de-
sired quantile, compute the residuals for this regression
on the treatment set, then find the non-parametric p-

The Quantile Snapshot Scan: Comparing Quantiles of Spatial Data from Two Snapshots in Time

n 1000 2000 4000 6000 8000
Naive 1.8 6.1 20.9 48.6 81.4

Warmstart 1.1 4.4 17.6 43.0 74.9
Incremental 0:3 0:4 0:8 1:1 1:4

Table 1: Average test statistic update time in ms, av-
eraged over 1000 updates for randomly generated data.

values of those residuals. We found this approach pro-
duces far better results than assuming a parametric
distribution form. Like Qsnap, TESS can find subsets
of the second snapshot that most differ from their ex-
pected distribution with respect to a specific quantile.
We replace the discrete subset search from the original
TESS paper with the same search used by Qsnap, for
a more direct comparison of the hypothesis tests.

To our knowledge, TESS is the only existing algorithm
that can be directly applied to our task. We create a
second baseline using the SSS framework. First, we
modify the SSS to search for the most significant re-
gion between two snapshots in time. Second, we re-
place the likelihood ratio test of the SSS with Mood’s
hypothesis test (Mood, 1950) so that we can compare
the τth quantiles of the regions under consideration.
For a given region C, this test fits the quantile regres-

sion Q
Y

(1)
C

(τ |X(1)
C), then performs a 2× 2 chi-squared

test on the number of points above and below the re-
gression line in snapshot one and snapshot two. We
refer to this algorithm as SSS-Moods.

4.2.1 Simulator

Our simulator generates data points as a tuple
{yi,xi, li}. The location (li) and parameter values
(xi) are created uniformly at random between a set of
maximum and minimum values. Each dataset is par-
titioned into K spatially contiguous sections. For each
section k, the response, yi, is calculated from a linear
relationship yi = �kxi + ε, where �k is a randomly
generated parameter vector that is different for each
section, and ε is a random noise term. In our experi-
ments, we compare normal, exponential, and uniform
distributions for the random noise term ε. Our simu-
lator models data that is globally heterogeneous, but
homogeneous for specific local spatial areas.

Two data snapshots of n points each are generated
using the same partition boundaries and values of
�1, . . . ,�K . In the second snapshot, a partition j is
designated as the target area. In the target area, a sub-
set of the response values are generated from a shifted
distribution as yi = (�j+�)xi+ε, where � is a random
vector with ||�|| = p. When generating data, we can
identify which quantile qi of the error distribution each
data point falls into. Any point in the target area with

a quantile value qi such that |τ −qi| ≤ 0.1 is generated
from this shifted distribution with parameters �j + �,
while the rest are generated with �j . This effectively
creates a change in 20% of the distribution in the tar-
get area, centered around the τth quantile; detecting
this change in the simulated datasets is in general a
very challenging problem. A successful algorithm will
find the area j by performing tests at the τth quantile.

4.2.2 Simulation Results

We performed a suite of experiments to compare the
performances of Qsnap, TESS, and SSS-Moods. In
each experiment, each algorithm is tasked with find-
ing the target area in snapshot two where 20% of
the points are generated from the shifted distribution.
Each algorithm performs its search on the τth quantile,
the center of the distribution shift. Each algorithm
uses the same spatial search routine, allowing a direct
comparison of their hypothesis tests. We evaluate each
algorithm’s performance by the most significant area
reported by each algorithm on each dataset.

We tested each algorithm on simulated data with
normal, exponential, and uniform noise distributions,
with distribution changes centered at quantiles τ =
0.1, 0.5, 0.9 in the target area. We also varied the num-
ber of partitions K between 1 and 3. For K = 1, the
snapshots have the same base distribution at all loca-
tions, and the target region is a random circle in L.

We evaluate the algorithms’ true positive rate (TPR)
versus false positive rate (FPR) curve, calculated on
a per-point basis. Only points generated from the
shifted distribution are counted as true positives. Typ-
ically, a good summary of this curve can be captured
with the area under the curve (AUC). In a real-world
setting, we would never realistically operate the algo-
rithm under a high false positive rate and the AUC for
high FPR values is not meaningful. As a result, we use
the partial AUC to measure performance; specifically,
we report the AUC from FPR = [0, 0.2] to emphasize
lower FPR values. We compute the partial AUC for
each algorithm on each dataset, and report the aver-
age value across 30 randomly generated datasets. See
the supplemental for calculation details.

Figure 1 shows the average partial AUCs for each al-
gorithm at different values of τ , K, and different forms
of the noise distribution. These experiments were run
for n = 5000 and p = 5. The size of the target area
in snapshot two was set at 1000 points, meaning ap-
proximately 200 points generated from the shifted dis-
tribution. We do not show experiments with changing
values of n, p, or target area size, as these parameters
affected each algorithm in similar, intuitive ways. Ex-
periments with τ = 0.3, 0.7 and K = 5 illustrated the

Travis Moore, Weng-Keen Wong

(a) Normal Noise Distribution. (b) Exponential Noise Distribution. (c) Uniform Noise Distribution.

Figure 1: Partial AUC of TESS, SSS-Moods, and Qsnap on simulated data. The best performing algorithms are
bolded, * indicates the best algorithm is statistically significant (Wilcoxon signed-rank test, α = 0.05).

(a) TESS (b) SSS-Moods (c) Qsnap (d) Change in SPEI

Figure 2: (a)-(c) Significant areas found on climate data. (d) Change in SPEI between 2001 and 2007.

same trends, and can be found in the supplemental.

SSS-Moods performs very poorly in these experiments,
barely detecting any changes. The low-power Mood’s
quantile test is ill-suited to the difficulty of this prob-
lem. TESS does well for K = 1, but poorly on larger
K. The speed of TESS is dependent on fitting a global
model instead of many local models, making it ill-
suited for data with local variation.

Qsnap performs significantly better than the other
algorithms in 16/18 of the experiments. Like SSS-
Moods, it fits a model to each local region, allowing it
to account for spatially varying distributions. It also
uses a more powerful test statistic, giving it signifi-
cantly greater accuracy than the other algorithms.

The runtimes of the algorithms, averaged over 10
datasets (n = 5000, p = 5, and τ = 0.7) are: 87
seconds (Qsnap), 25 seconds (SSS-Moods) and 0.2 sec-
onds (TESS). SSS-Moods and TESS perform simpler
hypothesis tests and are faster than Qsnap. However,
the simpler tests cause them to be unable to detect
many changed regions and they lack robustness. In
the next section, we show that both TESS and SSS-
Moods also perform poorly on real-world data.

4.3 Drought Detection

We use Qsnap, TESS, and SSS-Moods to detect
changes in drought conditions in the continental US
using climate data collected from climateengine.org

(Huntington et al., 2017). Our model uses precip-
itation as the response, with humidity, evaporation,

mean temperature, max temperature, and soil mois-
ture (5cm level) as covariates. We use 2001, a rela-
tively mild drought year for most of the country, and
2007, which had extensive droughts in California and
the South, as our two time snapshots to compare.

Each algorithm is tasked with finding areas of signifi-
cant change between the two years at the 10th per-
centile. Tuning the algorithms to a low percentile
of precipitation makes them better suited to finding
changes in drought conditions. Since our dataset con-
tains many areas of significant drought change, each
algorithm reports all significant regions instead of the
most significant, using the Holm–Bonferroni correction
with α = 0.01 (Holm, 1979). Though the observations
in this data are in a consistent grid structure, our al-
gorithm does not require such conditions to be used.

To evaluate the regions returned by each al-
gorithm we use the Standardised Precipitation-
Evapotranspiration Index (SPEI). SPEI is a numerical
measure of drought severity, calculated based on the
difference of precipitation and potential evaporation.
These SPEI values are independent from our climate
data, and we use the difference in SPEI between 2007
and 2001 as a proxy for the (unknown) ground truth.

In Table 2 we report three evaluation metrics. First
is ∆(C), the average change in SPEI for observations
in each detected region C, using absolute difference of
each observation. An algorithm that more accurately
detects regions of high change will have a higher value.
The second metric is the average absolute change in
all regions not detected by the algorithm, C, which

