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with missing values: non consistency and solutions

A General remarks and proof of Proposition 3.1

A.1 Notation: letter cases

One letter refers to one quantity, with di↵erent cases: U is a random variable, while u is a constant. Un is a
(random) sample, and un is a realisation of that sample. uj is the j-th coordinate of u, and if J is a set, uJ
denotes the subvector with indices in J .

A.2 Gaussian vectors

In assumption 4.1, conditionnally to M , X is Gaussian. It is useful to remind that in that case, for two subsets
of indices I and J , conditional distributions can be written as

XI |(XJ ,M) ⇠ N (µM
I|J ,⌃M

I|J ) (6)

with
(

µM
I|J = µM

I + ⌃M
IJ (⌃M

JJ )�1(XJ � µM
J )

⌃M
I|J = ⌃M

II � ⌃M
IJ (⌃M

JJ )�1(⌃M
IJ )T.

In particular, for all pattern m, for all k 2 mis(m),

E
⇥
Xk

�� M = m,Xobs(m)

⇤
= µm

k + ⌃m
k,obs(m)

⇣
⌃m

obs(m)

⌘�1 ⇣
Xobs(m) � µm

obs(m)

⌘
.

A.3 Proof of Proposition 3.1

Solving a linear regression problem with optimal imputation constants c? = (c?j )j2J1,dK can be written as
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where the terms Xj1Mj=0 is equal to the variable Xj , imputed by zero if Xj is missing and �jcj is the linear
coe�cient associated to the variable 1Mj=1. Therefore, the linear regression coe�cient �? = (�?

j )j2J1,dK and
the optimal imputation constants c? = (c?j )j2J1,dK can be solved via the linear regression problem with inputs
(Xj)j2J1,dK, (1Mj=1)j2J1,dK where the first set of d coe�cients are the (�?

j )j2J1,dK and the second set of coe�cients
are equal to (�?

j c
?
j )j2J1,dK.
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B Bayes estimate and Bayes risk

Proof of Proposition 4.1.

E[Y |Z] = E[�0 + �TX | Z]

= E[�0 + �TX | M,Xobs(M)]

= �0 + �T
obs(M)Xobs(M) + �T

mis(M) E[Xmis(M) | M,Xobs(M)]

where, by Equation 6,

E[Xmis(M) | M,Xobs(M)] = µM
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mis(M),obs(M)

⇣
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⌘
.

Hence,
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Therefore, E[Y |Z] takes the form,

E[Y |Z] =
X

m2{0,1}d


�mobs(m),0 +

⇣
�mobs(m)

⌘T
Xobs(m)

�
1M=m

= hW, �i.
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Proof of Proposition 4.2. The polynomial expression is given by

E[Y |Z] =
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Finally, the expression of noise(Z) results from

Xmis(M)|Xobs(M),M = m ⇠ N (µM , TM )

where the conditional expectation µM has been given above and

TM = ⌃mis(M) � ⌃mis(M),obs(M)

�
⌃obs(M)

��1
⌃obs(M),mis(M).

C Bayes Risk

Proposition C.1. The Bayes risk associated to the Bayes estimator of proposition 4.1 is given by

E
h
(Y � f?(Z))2

i
= �2 +

X

m2{0,1}d

P(M = m)⇤m,
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with

⇤m =
⇣
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⌘T
⌃m

obs(m)�
m
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mis(m)⌃
m
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⇣
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⇣
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⇣
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⇣
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where �m
obs(m) is a function of the regression coe�cients on the missing variables and the means and covariances

given M .

Proof of Proposition C.1.

E
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⇣
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one has
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D Proof of Theorem 5.1 and Theorem 5.2

Theorem 11.3 in Györfi et al. (2006) allows us to bound the risk of the linear estimator, even in the misspecified
case. We recall it here for the sake of completeness.

Theorem D.1 (Theorem 11.3 in Györfi et al. (2006)). Assume that

Y = f?(X) + ",
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where kf?
k1 < L and V["|X] < �2

almost surely. Let F be the space of linear function f : [�1, 1]d ! R. Then,

letting TLfn be the linear regression fn estimated via OLS, clipped at ±L, we have

E[(TLfn(X)� f?(X))2]  cmax{�2, L2
}
d(1 + log n)

n
+ 8 inf

f2F
E[(f(X)� f?(X))2],

for some universal constant c.

Proof of Theorem 5.1. Since Assumptions of Theorem 11.3 in Györfi et al. (2006) are satisfied, we have

E[(TLf�̂expanded
(Z)� f?(Z))2]  cmax{�2, L2

}
p(1 + log n)

n
+ 8 inf

f2F
E[(f(Z)� f?(Z))2],

Since the model is well-specified, the second term is null. Besides,

E[(Y � TLf�̂expanded
(Z))2]  E[(Y � f?(Z))2] + E[(TLf�̂expanded

(Z)� f?(Z))2]

 �2 + cmax{�2, L2
}
p(1 + log n)

n
,

which concludes the proof since the full linear model has p = 2d�1(d+ 2) parameters.

To address the second statement of Theorem 5.1, recall that in our setting, the dimension d is fixed and does
not grow to infinity with n. Let M = {m 2 {0, 1}d,P[M = m] > 0} and, for all m 2 M, Nm = |{i : Mi = m}|.
Note that, the estimator in Theorem 5.1 is nothing but |M| linear estimators, each one being fitted on data
corresponding to a specific missing pattern m 2 M. Thus, according to Tsybakov (2003), we know that, there
exists constants c1, c2 > 0, such that, for each missing pattern m 2 M, we have the lower bound,

E[(Y � TLf�̂expanded
(Z))2|M = m,Nm] � �2 + c1

d+ 1� kmk0

Nm
1Nm�1 + c21Nm=0.

Taking the expectation with respect to Nm ⇠ B(n,P[M = m]) and according to Lemma 4.1 in Györfi et al.
(2006), we have, for all m 2 M,

E[(Y � TLf�̂expanded
(Z))2|M = m] � �2 + c1

2(d+ 1� kmk0)

(n+ 1)P[M = m]
+ c2(1� P[M = m])n.

Consequently,

R(TLf�̂expanded
) =

X

m2M
E[(Y � TLf�̂expanded

(Z))2|M = m]P[M = m]

� �2 +
2c1
n+ 1

X

m2M
(d+ 1� kmk0) + c2

X

m2M
(1� P[M = m])nP[M = m]

� �2 +
2c1|M|

n+ 1
+ c2(1� min

m2M
P[M = m])n.

By assumption, there exists a constant c, such that, for all n large enough, we have

R(TLf�̂expanded
) � �2 +

2dc

n+ 1
.

Proof of Theorem 5.2. As above,

R(TLf�̂approx
)  �2 + E[(f?(Z)� TLf�̂approx

(Z))2]

 �2 + cmax{�2, L2
}
2d(1 + log n)

n
+ 8E[(f?(Z)� f�?

approx
(Z))2].



Marine Le Morvan, Nicolas Prost, Julie Josse, Erwan Scornet, Gaël Varoquaux

To upper bound the last term, note that, for any �approx we have

E[(f?(Z)� f�approx(Z))2]

= E

"
�0,0,approx +

dX

j=1

�0,j,approx1Mj=1 �

X

m2{0,1}d

�?
0,m,expanded1M=m

+
⇣
�1,approx �

X

m2{0,1}d

�?
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⌘
X1

+ . . .+
⇣
�d,approx �

X

m2{0,1}d

�?
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⌘
Xd

#2

.

Denoting by Xapprox the design matrix X where each element na has been replaced by zero, and using a triangle
inequality, we have

E[(W�?
full �Xapprox�approx)

2]

 (d+ 1)E

"
�0,0,approx +

dX

j=1

�0,j,approx1Mj=1 �
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0,m,expanded1M=m
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j=1

E

"⇣
�j,approx �
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j,m,expanded1M=m

⌘
Xj

#2

Now, set for all j, �0,j,approx = 0 and for all j = 1, . . . , d,

�j,approx = E

2

4
X

m2{0,1}d

�?
j,m,expanded1M=m

3

5

and also

�0,0,approx = E
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4
X
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�?
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3
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Therefore, for this choice of �approx,

E[(W�?
full �Xapprox�approx)
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 (d+ 1)V

"
X
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�?
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#
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h X
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 8(d+ 1)2kf?
k
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1.

Finally, by definition of �?
approx, we have

E[(f?(Z)� f�?
approx

(Z))2]  E[(f?(Z)� f�approx(Z))2]

 8(d+ 1)2kf?
k
2
1.

Finally,

R(TLf�̂approx
)  �2 + cmax{�2, L2

}
d(1 + log n)

n
+ 64(d+ 1)2L2,

since kf?
k1  L, according to Assumption 5.1.
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E Proof of Theorem 6.1

Let W (1)
2 R2d⇥2d be the weight matrix connecting the input layer to the hidden layer, and W (2)

2 R2d the
matrix connecting the hidden layer to the output unit. Let b(1) 2 R2d be the bias for the hidden layer and
b(2) 2 R the bias for the output unit. With these notations, the activations of the hidden layer read:

8k 2 J1, 2dK, ak = W (1)
k,. (X,M) + b(1)k

Splitting W (1) into two parts W (X),W (M)
2 R2d⇥d, the activations can be rewritten as:

8k 2 J1, 2dK, ak = W (X)
k,. X +W (M)

k,. M + b(1)k

Case 1: Suppose that 8k 2 J1, 2dK, 8j 2 J1, dK, W (X)
k,j 6= 0.

With this assumption, the activations can be reparametrized by posing Gk,j = W (M)
k,j /W (X)

k,j , which gives:

8k 2 J1, 2dK, ak = W (X)
k,. X +W (X)

k,. �Gk,.M + b(1)k

= W (X)
k,obs(M)Xobs(M) +W (X)

k,mis(M)Gk,mis(M) + b(1)k

and the predictor for an input (x,m) 2 Rd
⇥ {0, 1}d is given by:

y(x,m) =
2dX

k=1

W (2)
k ReLU(a(1)k ) + b(2)

=
2dX

k=1

W (2)
k ReLU(W (X)

k,obs(m)xobs(m) +W (X)
k,mis(m)Gk,mis(m) + b(1)k ) + b(2)

We will now show that there exists a configuration of the weights W (X), G, W (2), b(1) and b(2) such that
the predictor y is exactly the Bayes predictor. To do this, we will first show that we can choose G and b(1)

such that the points with a given missing-values pattern all activate one single hidden unit, and conversely, a
hidden unit can only be activated by a single missing-values pattern. This setting amounts to having one linear
regression per missing-values pattern. Then, we will show that W (X) and W (2) can be chosen so that for each
missing-values pattern, the slope and bias match those of the Bayes predictor.

One to one correspondence between missing-values pattern and hidden unit In this part, W (X),
W (2) and b(2) are considered to be fixed to arbitrary values. We denote by mk, k 2 J1, 2dK, the possible values
taken by the mask vector M . There is a one-to-one correspondence between missing-values pattern and hidden
unit if G and b(1) satisfy the following system of 22d inequations:

8x 2 supp(X), 8k 2 J1, 2dK,

8
<

:
W (X)

k,obs(mk)
xobs(mk) +W (X)

k,mis(mk)
Gk,mis(mk) + b(1)k � 0 (7)

W (X)
k,obs(m0)xobs(m0) +W (X)

k,mis(m0)Gk,mis(m0) + b(1)k  0 8m0
6= mk (8)

i.e., missing-values pattern mk activates the kth hidden unit but no other missing-values pattern activates it.

Hereafter, we suppose that the support of the data is finite, so that there exist M 2 R+ such that for any
j 2 J1, dK, |xj | < M . As a result, we have:

���W (X)
k,obs(mk)

xobs(mk)

���  M
X

j2obs(mk)

���W (X)
k,j

���

 M | obs(mk) | max
j2obs(mk)

���W (X)
k,j

���

= Kk | obs(mk) |
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where we define Kk = M max
j2obs(mk)

���W (X)
k,j

���. We also define I(1)k 2 R such that:

8j 2 mis(mk), W
(X)
k,j Gk,j = I(1)k (9)

Then satisfying inequation (7) implies satisfying the following inequation:

8k 2 J1, 2dK, � | obs(mk) |Kk + |mis(mk) | I
(1)
k + b(1)k � 0 (10)

Similarly, we define a quantity I(2)k 2 R which satisfies:

8j 2 obs(mk), W
(X)
k,j Gk,j = I(2)k (11)

A missing-values pattern m0
6= mk di↵ers from mk by a set of entries J ✓ mis(mk) which are missing in mk but

observed in m0, and a set of entries L ✓ obs(mk) which are observed in mk but missing in m0. We will call a pair
J ✓ mis(mk), L ✓ obs(mk) such that | J [ L | 6= 0 a feasible pair. With these quantities, satisfying inequation
8 implies satisfying the following inequation:

8k 2 J1, 2dK, 8(J ,L) feasible, (| obs(mk) |+ | J |� | L |)Kk + (|mis(mk) |� | J |) I(1)k + | L | I(2)k + b(1)k  0 (12)

Thus, by (10) and (12), a one to one correspondence between missing-values pattern and hidden unit is possible

if there exists I(1)k , I(2)k , b(1)k such that:

8k 2 J1, 2dK,
(
|mis(mk) | I

(1)
k + b(1)k � | obs(mk) |Kk

|mis(mk) | I
(1)
k + b(1)k  � | obs(mk) |Kk � (| J |� | L |)Kk + | J | I(1)k � | L | I(2)k 8(J ,L) feasible

(13)

Because b(1)k can be any value, this set of inequations admits a solution if for any feasible (J ,L):

| obs(mk) |Kk < � | obs(mk) |Kk � (| J |� | L |)Kk + | J | I(1)k � | L | I(2)k

() 2 | obs(mk) |Kk + (| J |� | L |)Kk < | J | I(1)k � | L | I(2)k

()

8
>><

>>:

�2| obs(mk |Kk

| L | +Kk > I(2)k if | J | = 0
2| obs(mk |Kk

| J | +Kk < I(1)k if | L | = 0

I(1)k > Kk + | obs(mk) |Kk

| J | and I(2)k < Kk �
| obs(mk) |Kk

| L | otherwise

Satisfying these inequalities for any feasible (J ,L) can be achieved by choosing:

I(1)k > (1 + 2 | obs(mk |)Kk (14)

I(2)k < (1� 2 | obs(mk |)Kk (15)

To conclude, it is possible to achieve a one to one correspondence between missing-values pattern and hidden
unit by choosing G and b(1) such that for the kth hidden unit:

8
><

>:

I(1)k > (1 + 2 | obs(mk |)Kk by 9 and 14

I(2)k < (1� 2 | obs(mk |)Kk by 11 and 15

b(1)k satisfies 13

(16)

Equating slopes and biases with that of the Bayes predictor We just showed that it is possible to
choose G and b(1) such that the points with a given missing-values pattern all activate one single hidden unit,
and conversely, a hidden unit can only be activated by a single missing-values pattern. As a consequence, the
predictor for an input (x,mk) 2 Rd

⇥ {0, 1}d is given by:

y(x,mk) =
2dX

h=1

W (2)
h ReLU(W (X)

h,obs(mk)
xobs(mk) +W (X)

h,mis(mk)
Gh,mis(mk) + b(1)h ) + b(2)

= W (2)
k

⇣
W (X)

k,obs(mk)
xobs(mk) +W (X)

k,mis(mk)
Gk,mis(mk) + b(1)k

⌘
+ b(2)
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For each missing-values pattern, it is now easy to choose W (X)
k,obs(mk)

and W (2) so that the slopes and biases

of this linear function match those of the Bayes predictor defined in proposition 4.1. Let �k 2 R| obs(mk) | and
↵k 2 R be the slope and bias of the Bayes predictor for missing-values pattern mk. Then setting

8
<

:
W (2)

k

⇣
W (X)

k,mis(mk)
Gk,mis(mk) + b(1)k

⌘
+ b(2) = ↵k

W (2)
k W (X)

k,obs(mk)
= �k

(17)

equates the slope and bias of the MLP to those of the bias predictor.

Construction of weights for which the MLP is the Bayes predictor We have shown that achieving a
one to one correspondence between missing data pattern and hidden units involves satisfying a set of inequations
on the weights (16), while equating the slopes and biases to those of the Bayes predictor involves another set
of equations (17). To terminate the proof, it remains to be shown that the whole system of equations and
inequations admits a solution.

We start by working on the one-to-one correspondence system of inequations (16). Let ✏ > 0 be a parameter.
Inequations (14) and (15) are satisfied by choosing:

I(1)k = (1 + 2 | obs(mk |)Kk + ✏ (18)

I(2)k = (1� 2 | obs(mk |)Kk � ✏ (19)

According to the second inequation in (13), b(1)k is upper bounded as:

b(1)k  � | obs(mk) |Kk � |mis(mk) | I
(1)
k � (| J |� | L |)Kk + | J | I(1)k � | L | I(2)k

This inequation can be simplified:

b(1)k  � | obs(mk) |Kk � |mis(mk) | I
(1)
k + | J | (I(1)k �Kk) + | L | (Kk � I(2)k )

= � | obs(mk) |Kk � |mis(mk) |+ | J | (2 | obs(mk) |Kk + ✏) + | L | (2 | obs(mk) |Kk + ✏)

The smallest upper bound is obtained for | J [ L | = 1 which gives:

b(1)k  | obs(mk) |Kk � |mis(mk) |+ ✏

According to the first inequation in (13), b(1)k is also lower bounded as:

b(1)k � | obs(mk) |Kk � |mis(mk) | I
(1)
k

A valid choice for b(1)k is the mean of its upper and lower bounds. We therefore choose to set:

b(1)k = | obs(mk) |Kk � |mis(mk) | I
(1)
k +

✏

2
(20)

To summarise, we can restate the conditions for one to one correspondence as:

✏ > 0 (21)

I(1)k = (1 + 2 | obs(mk |)Kk + ✏ (22)

I(2)k = (1� 2 | obs(mk |)Kk � ✏ (23)

b(1)k = | obs(mk) |Kk � |mis(mk) | I
(1)
k +

✏

2
(24)
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We now turn to the slopes and biases equations (17). Replacing b(1)k in the bias equation by its value in (24) we
get:

W (2)
k

⇣
W (X)

k,mis(mk)
Gk,mis(mk) + b(1)k

⌘
+ b(2) = ↵k

() W (2)
k

⇣
|mis(mk) | I

(1)
k + b(1)k

⌘
+ b(2) = ↵k

() W (2)
k

⇣
| obs(mk) |Kk +

✏

2

⌘
+ b(2) = ↵k

Putting together the one to one correspondence conditions, the slope and biases equations as well as the variable
definitions, we get a set of 8 equations and 1 inequation:

✏ > 0 (25)

I(1)k = (1 + 2 | obs(mk |)Kk + ✏ (26)

I(2)k = (1� 2 | obs(mk |)Kk � ✏ (27)

b(1)k = | obs(mk) |Kk � |mis(mk) | I
(1)
k +

✏

2
(28)

W (2)
k

⇣
| obs(mk) |Kk +

✏

2

⌘
+ b(2) = ↵k (29)

W (2)
k W (X)

k,obs(mk)
= �k (30)

Kk = M max
j2obs(mk)

���W (X)
k,j

��� (31)

8j 2 mis(mk), W
(X)
k,j Gk,j = I(1)k (32)

8j 2 obs(mk), W
(X)
k,j Gk,j = I(2)k (33)

One can verify that this system of inequations has a solution. Indeed, choose W (X)
k,obs(mk)

proportional to �k so

that equation (30) can be verified. This imposes a value for W (2)
k via (30) and a value for Kk via (31). In turn,

it imposes a value for ✏ via (29): ✏ = 2
⇣
↵k � b(2) �W (2)

k | obs(mk) |Kk

⌘
. The value obtained for ✏ is positive

if we choose b(2) su�ciently negative. Note that there is one single value of b(2) for all units so b(2) should be

chosen by considering all units. Then Kk and ✏ impose I(1)k and I(2)k via (26) and (27). Kk, ✏ and I(1)k impose

b(1)k via (28). Finally W (X)
k,. , I(1)k and I(2)k impose G via (32) and (33).

Case 2: Suppose that 9k 2 J1, 2dK, 9j 2 J1, dK : W (X)
k,j = 0.

Recall that the proof which shows that we can achieve a one to one correspondence between missing-values

pattern and hidden unit relies on the assumption that 8k 2 J1, 2dK, 8j 2 J1, dK, W (X)
k,j 6= 0. However, if there is a

slope �k of the Bayes predictor such that its jth coe�cient is 0, then we must choose W (X)
k,j = 0 to achieve Bayes

consistency. In such a case, we need to extend the one to one correspondence proof to the case where an entry

of W (X)
k,j can be zero. It turns out to be easy.

In this case, we cannot pose Gk,j = W (M)
k,j /W (X)

k,j . Let Zk ✓ J1, dK be the set of indices such that 8j 2

Zk, W
(X)
k,j = 0. The whole reasoning exposed in case 1 still holds if we replace obs(m) by obs(m) \ Zk and

mis(m) by mis(m) \ Zk.

F Complementary figures

F.1 Comparison at n = 75 000

Figure 3 gives a box plot view of the behavior at n = 75 000. It is complementary to the learning curves, though
it carries the same information.
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Figure 3: Prediction accuracy R2 score for the 3 data types with n = 75, 000 training samples and in dimension
d = 10. The quantities displayed are the mean and standard deviation over 5 repetitions.
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Figure 4: Performance of the one hidden layer MLP as a function of its number of hidden units

For the mixtures of Gaussians, the performance is given as the di↵erence between the R2 score of the MLP and
that of the Bayes predictor. For each dimension d, multiple MLPs are trained, each with a di↵erent number of
hidden units given by q ⇥ d for mixture 1 and self-masked, q ⇥ 2d for mixture 3. 75,000 training samples were
used for Mixture 1 and Self-masked and 375,000 for Mixture 3.

F.2 Experiments on growing MLP’s width

Figure 4 shows the performance of the MLP in the various simulation scenarios as a function of the number of
hidden units of the networks. In each scenario, the number of hidden units is taken proportional to a function
of the input dimension d:

mixture 1 : nh / d

mixture 3 : nh / 2d

selfmasked : nh / d

These results show that the number of hidden units needed by the MLP to predict well are a function of the
complexity of the underlying data-generating mechanism. Indeed, for the mixture 1, the MLP only needs nh / d
while the missing values are MCAR, and therefore ignorable. For selfmasked, the challenge is to find the right
set of thresholds, after which the prediction is relatively simple: the MLP also needs nh / d. On the opposite,
for mixture 3, the multiple Gaussians create couplings in the prediction function; as the consequence, the MLP
needs nh / 2d.
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