Linear predictor on linearly-generated data with missing values: non consistency and solutions

Supplementary materials — Linear predictor on linearly-generated data
with missing values: non consistency and solutions

A General remarks and proof of Proposition E

A.1 Notation: letter cases

One letter refers to one quantity, with different cases: U is a random variable, while w is a constant. U, is a
(random) sample, and u,, is a realisation of that sample. w; is the j-th coordinate of u, and if J is a set, uy
denotes the subvector with indices in 7.

A.2 (Gaussian vectors

In assumption conditionnally to M, X is Gaussian. It is useful to remind that in that case, for two subsets
of indices Z and J, conditional distributions can be written as

Xz|(Xg, M) ~ N(p7]7,21(7) (6)
with
wyly; =ny + 525N )N (X — k)
E%y =3y -2 )T (BT

In particular, for all pattern m, for all k& € mis(m),
—1
E [Xk ‘ M = maXobs(m)} = ,U/ZL + Zmobs(m) ( lejs(m)) (Xobs(m) - MZ[Lys(m)) .

A.3 Proof of Proposition
Solving a linear regression problem with optimal imputation constants c¢* = (c;) je[1,d] can be written as

2
d

(ﬁ*, C*) S argminﬁ,cE]RdE Y — ﬂo + Zﬁj (Xj]l]wj:O + Cj]lezl)

Jj=1
2

d d
:)(5*’0*) = argmin,@)ceRdE Y — ﬂo—‘rZﬁij]l]wj:o—f—ZﬁjCj]l]Wj:l s

=1 j=1

where the terms X;17,—0 is equal to the variable X;, imputed by zero if X; is missing and 3;c; is the linear
coefficient associated to the variable 157,=1. Therefore, the linear regression coefficient 8* = (87);cq1,4) and
the optimal imputation constants c¢* = (c;) je[1,4] can be solved via the linear regression problem with inputs
(X;)je.ap> (Lar;=1)je1,q4) where the first set of d coefficients are the (57);c[1,q) and the second set of coefficients
are equal to ( ;Cy)je[[l,d]}-
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B Bayes estimate and Bayes risk

Proof of Proposition[{.1.

E[Y|Z] =E[Bo+ 87X | Z]
= E[ﬁo + ﬁTX | M7 Xobs(M)]
= ﬁO + B;rbs(M)Xobs(M) + ﬂ;lr—”b(M) E[szs(M) | M7 Xobs(M)]

where, by Equation [6}

—1
E[Xomis(ar) | M, Xobs(an)] = Hmis(ar) + Zmis(M),0bs(M) (E%S(M)> (Xobs(M) - N%S(M)) .

Hence,
E[Y|Z] = Bo + Bris(an) <#%S<M) — X s(M) obs (M) (E%S(M)> H%S(M))
-1
+ <B(—)rbs(M) + 5;1*5(1\/1) E%is(M),obs(M) (E%S(M)) )Xobs(M)
M M T
= 5obs(M),0 + ((;obs(M)) XObs(M)a
by setting

5%5(1\4),0 = Bo + B;I;u's(M) (N%is(M) - En]\fis(M),obs(M) (2%5(1\4)) M%(M))

—1
5%9(1\4) = Bobs(n1) + 57Tm's(M) Er]\r/zjis(M),obs(M) (Z%S(M)) .

Therefore, E[Y|Z] takes the form,

E[Y|Z]

T
Z {5211)5(771),0 + (5(7)%3("1)) Xobs(m):l ]lM:m
me{0,1}4

— (W,9).
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Proof of Proposition[{.2. The polynomial expression is given by

E[Y|Z]

me{0,1}4

d

>

Jj=1

Z H (1 — (M —my,)?) x

me{0,1}d k=1

>, (1

me{0,1}4 8, US, USs
US, = ﬂl,d]]

(where &1 U S2 U S35 LSy is a partition of [1,d])

>

S1 US; USs
USy = ﬂl,d]]

)y

S US; USs
USy = IIl,d]]

>

S U8 US;3
LSy = |I1,d]]

>

(reindexing S =

(,1)\32|+|33\2|S4|

Z H 1—Mk—mk+2Mkmk
me{0,1}4 k=1

)\32|+|33\2\S4|

>

m € {0,1}¢

d
Z ]]-M:m X (56” + Z]]-jeobs(m)é;an

d
+) (1 - M) X;
j=1

d
3=,
H My M, H Mk2Mk4 X 5m+z 5mX
k3 € S3, k2 € Sa,
kg € S4 kqa € Sy
d
1x I MM < |65+ 00— M)srx
j=1

k2 €S2,k €S,

obs(m) C 8§ NS§

H Mklem X

ko €S2,k €Sy

Il MM, x

k2€S2,k1 €Sy

Il MM, x
So USy C[1,d] k2€S2,ka€Ss

Sy U 84)

S cC[1,d] k€S

> I (@ Su-w

Finally, the expression of noise(Z) results from

d
(—1)!821+155[9154] > 5+ (1= M;)8X;
m € {0,1}¢ Jj=1
obs(m) C 8§ NS§
32,53,34 + Z 82’SS’S4X
Z 52,33,34 + Z 1— 52’83’S4X

S US3 = (82 [N} S4)C

M;)(FX;

Xmis(M)|Xobs(M)a M=m~ N(,U/MaTM)

where the conditional expectation pps has been given above and

C Bayes Risk

z:Tmis(JVI),obs(M) (Eobs(M))

—1
Y obs(M),mis(M)-

Proposition C.1. The Bayes risk associated to the Bayes estimator of proposition|[{.1 is given by

E[(Y f()}*aJr Sop

m)Am,

me{0,1}4
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with
m T m m T m m T m
Ap = (ryobs(m)) 2obs(ﬂ%)’yobs(m) + Bmzs(m) Zmzs(m)BT”HS(m) -2 (ryobs(m)) Zobs(rn),mis(m)6777/&3(771)
m 2 m T m ? T m 2 m m T m
+ <Wobs(m),0) + (’yobs(m)) p’obs(m) + (Bmzs(m)lu’mzs(m)> + 2’yobs(m),0 (Fyobs(m)) Mobs(m)

T
- 27£S(m)70ﬁ71r—ns(m)luzzs(m) -2 (fyggs(m)) M%s(m)ﬁlzs(m)uzzs(m)’

where Vobs(m) S @ function of the regression coefficients on the missing variables and the means and covariances
given M.

Proof of Proposition|[C.1.

E [(ElY|Z] - V)]

T 2
—E (6255(M),0 + (any) Xabs(an = o — 87X = a) ]
T 2
M M T

=K (50175(]\/[),0 - Bo+ (50175(]\/[) - Bobs(M)) Xobs(M) - /Bmis(M)XmiS(M) o E) ‘| :

By posing
—1
’Yé\gs(M),O = 5%3(1\4),0 — bBo = 57Tm's(M) <'u%[is(M) - 2n]\fz‘s(M),obs(M) (E%S(M)> F‘%(M))
-1
V%S(M) = 5%S(M) — Bobs(rr) = ﬁ;is(M) E%is(M),obs(M) (E%S(M)) )

one has

E [(E[Y|Z] - Y)2]

E

T 2
(W%S(M),o + (V%S(M)) Xovs(a) = Bonis(ary Xmis(ar) — 8) ]

: 2
_ Z P(M =m)-E l(%’gs(m)’o + (vZZs(m)) Xobs(m) — ﬁr-rnis(m)Xmis(m) - 5) M = m}
mG:{O,l}d
2 T T
_ Z ]P)(M = m) - |o® + Var <(’yggs(m)) Xobs(m) - ﬁmis(m)qug(M) ‘ M = m)
mG:{O,l}d

T 2
+ (’733s<m>,o + (ffis(m)) E [Xobs(m) |M = m] = B 5(m)E [Xomis(m) |M = m]) ]

=o’+ Y P(M=m)A,
me:{0,1}4

D Proof of Theorem E and Theorem @

Theorem 11.3 in |Gyorfi et al. (2006]) allows us to bound the risk of the linear estimator, even in the misspecified
case. We recall it here for the sake of completeness.

Theorem D.1 (Theorem 11.3 in (Gyorfi et al.| (2006)). Assume that

Y = f1(X) +e,
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where || f*|loo < L and V[e|X] < 02 almost surely. Let F be the space of linear function f : [—1,1]* — R. Then,
letting Ty, fn, be the linear regression f, estimated via OLS, clipped at +L, we have

E[(Tpfn(X) = f*(X))?] < cmax{o?, LZ}@

+ 8 inf B[(f(X) — f*(X))?
for some universal constant c.

Proof of Theorem[5.1. Since Assumptions of Theorem 11.3 in [Gyorfi et al.| (2006) are satisfied, we have

(1+logn)
n

El(TLf5, ,.(Z) ~ I'(2))] < emax{o®, L2} 2 +8 inf E[(f(2) - f*(2))?),

fer

Since the model is well-specified, the second term is null. Besides,

E(Y ~ 108, punaea (2D S EIY = 2]+ BTS00 (D) = £1(2))7)

141
< 0% + emax{o?, 2P 1087)
n

which concludes the proof since the full linear model has p = 2¢71(d + 2) parameters.

To address the second statement of Theorem recall that in our setting, the dimension d is fixed and does
not grow to infinity with n. Let M = {m € {0,1}¢,P[M = m] > 0} and, for all m € M, N,, = |{i : M; = m}|.
Note that, the estimator in Theorem is nothing but |[M]| linear estimators, each one being fitted on data
corresponding to a specific missing pattern m € M. Thus, according to [T'sybakov| (2003), we know that, there
exists constants c1,co > 0, such that, for each missing pattern m € M, we have the lower bound,

d+1—[[mllo

2 _ 2
E[(Y - TL'fBeXpanded (Z)) |M - m7 Nm] Z 9 + C1 Nm

1IN, >1 + 21N, =o-

Taking the expectation with respect to N, ~ B(n,P[M = m]) and according to Lemma 4.1 in |Gyorfi et al.
(2006)), we have, for all m € M,

B(Y ~Tufs (DM =m]>0%+a (i(ﬁ)}{M”i”%] +ea(1— P[M = m])".

Consequently,

R(TLchxpandcd) = Z E[(Y - TLf/éCXpandod (Z))2|M = m]IP[M = m]

meM
2c
>0t + = Y (@1 mllo) +e2 Y (1= P[M =m])"P[M =m]
meM meM
201|M| .
> g2 1- P[M = m])".
2o+ + o min [ m])

By assumption, there exists a constant ¢, such that, for all n large enough, we have

24¢
n+1’

R(TLf3,,ad) 200 F

Proof of Theorem[5.2. As above,
R(TLf;, ) <o B (2) - Tufs (Z)

< 02+cmax{027L2}M+8E[(f*(Z) — fax (Z))Q]

approx
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To upper bound the last term, note that, for any Sapprox We have
E[(f*(Z) = fpupprox (£))%]

d
*
/BO,O,approx + § :Bo,j,approx]lezl - E : ﬂO,m,expanded]lM:m
j=1 me{0,1}4

*
+ (Bl,approx - Z Bl,m,expandedﬂM:m)Xl
me{0,1}4

=k

2
+...+ (Bd,approx - Z ﬂg,m,cxpandcdlM—m>Xd] .
me{0,1}4

Denoting by X, pprox the design matrix X where each element na has been replaced by zero, and using a triangle
inequality, we have

E[(Wﬁf*ull - Xapproxﬁapprox)Q]

d 2
S (d + 1)E BO,O@PPYOX + Z ﬁO,j,approx]lezl - Z ﬁa,m,expandedﬂMm]
Jj=1 me{0,1}¢
d 2
+ (d + 1) Z E (/Bj,approx - ;,m,expandedﬂM—m)Xj]
Jj=1 me{0,1}4

Now, set for all j, 8o japprox = 0 and for all j =1,...,4d,

_ 2 : *
ﬁj,approx =K ﬂj,m,expanded]lM:m
me{0,1}4

and also
. *
B0,0,approx = E /BO,m,expandedn1V[=m
me{0,1}4

Therefore, for this choice of Bapprox;

E[(Wﬂ?u]l - Xapproxﬂapprox)Q]

d
S (d + 1)V Z ﬁa,m,expanded]lM:m + (d + 1) ||X||c2>o Z V|: Z B;,m,expanded]lM:m]
me{0,1}4 j=1 me{0,1}4

< 8(d +1)%[1/*)1%

Finally, by definition of 3 we have

*
approx’

E[(f*(2) = f82ypr0 (Z2)?] S BUF(Z) = fpaporer (2))7]

<
< 8(d+ 1?1 13-
Finally,

R(TLfBappmx) < 0?4 cmax{c?, L?}

141
d1 + logn) +n°g”) +64(d + 1)2L2,

since || f*|lco < L, according to Assumption O
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E Proof of Theorem E

Let W) € R2“%2d he the weight matrix connecting the input layer to the hidden layer, and W®) ¢ R2* the
matrix connecting the hidden layer to the output unit. Let b(!) € R2" be the bias for the hidden layer and
b() € R the bias for the output unit. With these notations, the activations of the hidden layer read:

Vk € [1,27), ar = W (X, M) + by

Splitting W) into two parts W) W (M) ¢ RQdXd, the activations can be rewritten as:

Vk € [1,27), ar, = WO X + WM+ oY

Case 1: Suppose that Vk € [1,29], Vj € [1,d], W,g);) # 0.

With this assumption, the activations can be reparametrized by posing G}, ; = W,gjy) / W,E?, which gives:

vk € [1,2), ap = WOX + W 0 G M+ b
(X) (1)
=W, obs(]V[)XObS(M) + Wk ,mis(M) Gk mis(M) + by,

and the predictor for an input (z,m) € R? x {0, 1} is given by:

2d

y(x,m) = Z W,gz)ReLU(a,(cl)) + @
k=1
2d

= Z W/iQ)ReLU(WIS ,obs(m) xobs(m) + Wli m)zs (m) Gk,mis('m) + bl(cl)) + b(2)
k=1

We will now show that there exists a configuration of the weights W), G, W@ p(1) and b3 such that
the predictor y is exactly the Bayes predictor. To do this, we will first show that we can choose G and b(!)
such that the points with a given missing-values pattern all activate one single hidden unit, and conversely, a
hidden unit can only be activated by a single missing-values pattern. This setting amounts to having one linear
regression per missing-values pattern. Then, we will show that W) and W(? can be chosen so that for each
missing-values pattern, the slope and bias match those of the Bayes predictor.

One to one correspondence between missing-values pattern and hidden unit In this part, W)
W® and b are considered to be fixed to arbitrary values. We denote by my, k € [1,27], the possible values
taken by the mask vector M. There is a one-to-one correspondence between missing-values pattern and hidden
unit if G and b(!) satisfy the following system of 22¢ inequations:

W()i)s my)Lobs(mr) + W();)zs (m Gk is(m) + b(l) >0 (7)
v € Supp(X)7 vk € [[1, 2d]]7 ]ZXI; (my,) 7 obs(m (k‘ k) mis{(mpg o /
Wk,obs(m/)xobs(m') + Wk mis(m/ )Gk mis(m’) —|— b <0 Vm 7& me (8)

i.e., missing-values pattern my, activates the k** hidden unit but no other missing-values pattern activates it.

Hereafter, we suppose that the support of the data is finite, so that there exist M € RT such that for any
je[l,d], |z;| < M. As a result, we have:

(X)

k,obs(my,) Lobs(mp)

cu Y [

jEobs(my,)

< M |obs(my)| max
jEobs(my,)

= Ky | obs(my) |

X
W
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where we define K, = M max
j€E€obs(my,)

W,g);) ‘ We also define I,gl) € R such that:

. . X 1
Vi € mis(my), W;g,j)Gk,j = I,g ) (9)
Then satisfying inequation implies satisfying the following inequation:

Vk € [1,29], — | obs(mi) | Ky + | mis(my) | IV + b >0 (10)

Similarly, we define a quantity I ,22) € R which satisfies:
Vj € obs(my), W,Efj)Gka = 1122) (11)

A missing-values pattern m’ # my, differs from my, by a set of entries J C mis(my) which are missing in my, but
observed in m’, and a set of entries £ C obs(my) which are observed in mj, but missing in m/. We will call a pair
J C mis(myg), L C obs(my) such that | J U L] # 0 a feasible pair. With these quantities, satisfying inequation
implies satisfying the following inequation:

Vk € [1,2%, (T, L) feasible, (| obs(my) |+ | T | = | £]) Ki + (|mis(mi) | — [T NIV + £ 12 + b0 <0 (12)

Thus, by and , a one to one correspondence between missing-values pattern and hidden unit is possible
if there exists I,gl), I,f), bg) such that:

|mis(my) [ I + b0 > | obs(my) | Ky

VEk € [1,29],
[[ ]]{|mis(mk)|1,§”+b,§”gobs(mk)Kk(j||£|)Kk+|j|1,§“£1,<f> V(J, L) feasible

(13)
Because bg) can be any value, this set of inequations admits a solution if for any feasible (7, £):
|obs(my) | Ky < [ obs(my) | Kx = (1T | = |£DEx+| T |17 = £] 17
= 2 obs(mi) | Ky + (|7 | = | £)Ex < | T 1" =] £] 17
“2obolmnl B 4 Ky > 1P i [T ] =0
= 2ol ll g < [V i L] =0
I,il) > K + % and IIEQ) < K, — % otherwise
Satisfying these inequalities for any feasible (J, L) can be achieved by choosing:
I > (14 2| obs(my |) Kx (14)
1Y < (1— 2| obs(my, |) K (15)

To conclude, it is possible to achieve a one to one correspondence between missing-values pattern and hidden
unit by choosing G and b(!) such that for the k" hidden unit:

IV > (1+2]obs(my Ky, by [9]and [14
1,22) < (1 —2]obs(myg |) Kk byand (16)
bg) satisfies

Equating slopes and biases with that of the Bayes predictor We just showed that it is possible to
choose G and b") such that the points with a given missing-values pattern all activate one single hidden unit,
and conversely, a hidden unit can only be activated by a single missing-values pattern. As a consequence, the
predictor for an input (z,my) € R? x {0,1} is given by:

od
2 X X 1
y(i, mk) = Z W}E )ReLU(WiE,on(mk)xObS(mk) + Wf(L,'rrzis(mk)Ghvmis(mk) + bﬁl )) + b(2)
h=1

2 X X 1

k,mis(my)



Linear predictor on linearly-generated data with missing values: non consistency and solutions

For each missing-values pattern, it is now easy to choose W,E);zs(mk) and W) so that the slopes and biases

of this linear function match those of the Bayes predictor defined in proposition Let 8 € RIo¥s(me)l and
ar, € R be the slope and bias of the Bayes predictor for missing-values pattern my. Then setting

Wl£2) (W(X) Gk,mis(mk) + b}(gl)) + b(2) = O

k,mis(my)

(2)y37(X) —
Wk Wk,obs(mk) - Bk’

(17)

equates the slope and bias of the MLP to those of the bias predictor.

Construction of weights for which the MLP is the Bayes predictor We have shown that achieving a
one to one correspondence between missing data pattern and hidden units involves satisfying a set of inequations
on the weights (16)), while equating the slopes and biases to those of the Bayes predictor involves another set
of equations To terminate the proof, it remains to be shown that the whole system of equations and
inequations admits a solution.

We start by working on the one-to-one correspondence system of inequations . Let € > 0 be a parameter.
Inequations and are satisfied by choosing:

I = (14 2| obs(my |) Ky + € (18)
1% = (1 — 2| obs(my ) Ky — € (19)

According to the second inequation in 7 b,(;) is upper bounded as:
b < — |obs(m) | Ki = [mis(mi) | IV = (| T| = | £DKe+| T | I = | £ 17
This inequation can be simplified:

b < — [ obs(my) | Ky — [mis(me) | IV + | T | (1Y = Ki) + | £] (K, = 1)
= —|obs(my) | Kx — | mis(mg) |+ | T | (2] obs(my) | Ki +€) + | L | (2| obs(my) | Kk, + ¢€)

The smallest upper bound is obtained for | 7 U £ | = 1 which gives:
b < | obs(my) | Ky — |mis(my) | + ¢
According to the first inequation in , bg) is also lower bounded as:
b > | obs(my) | Ky — [ mis(my) | I

A valid choice for b,(;) is the mean of its upper and lower bounds. We therefore choose to set:

€

b’(fl) = |obs(my) | Ky — | mis(my) | Ilil) + 2

To summarise, we can restate the conditions for one to one correspondence as:

e>0
I = (142 obs(my |) Ky, + €
1122) =(1—-2|obs(my|) Ky — ¢

b = lobs(mi) | Ky — | mis(mi) | 1, + 2
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We now turn to the slopes and biases equations . Replacing bg) in the bias equation by its value in lj we
get:

W(2) (ng):n)ls(mk Grmis(my,) + b(1)> 1@ = q

= W (| mis(mg) | I, M 4 b(l)) +b2 =,

= W}gz) (| obs(my) | Kj, + 5) +b0? = qy

Putting together the one to one correspondence conditions, the slope and biases equations as well as the variable
definitions, we get a set of 8 equations and 1 inequation:

€>0 (25)
I = (14 2| obs(my |) Ky + € (26)
1% = (1 — 2| obs(my |) Ky — € (27)
b(l) |obs(my) | Ky, — | mis(my) | I,il) + % (28)
W(Q) (\ obs(my) | Ky + %) + 53 = (29)
2 X

ng )ng ogs(mk) ﬂk (30)
Kp=M W) 31

b= i | Wi By
Vj € mis(mi), Wy Gy = 1" (32)
Vj € obs(my), WY G = 1Y (33)

One can verify that this system of inequations has a solution. Indeed, choose W,g Ogs(mk

that equation l) can be verified. This imposes a value for ngz) via and a value for Ky, via . In turn,

it imposes a value for € via : €=2 (ak — b — WIEQ) | obs(my) | K

) proportional to B so

. The value obtained for € is positive

if we choose b(?) sufficiently negative. Note that there is one single value of b(®) for all units so b(®) should be
chosen by considering all units. Then K} and e impose Il) and 12) via and 1} Ky, € and Ilgl) impose

b,(cl) via . Finally W,Ei()7 I,(Cl) and 119) impose G via 1} and 1)

Case 2: Suppose that 3k € [1,29], 3j € [1,d] : W,E)j) =0.

Recall that the proof which shows that we can achieve a one to one correspondence between missing-values
pattern and hidden unit relies on the assumptlon that Vk € [1,24], Vj € [1,d], W,EX) # 0. However, if there is a
slope B of the Bayes predictor such that its j* coefficient is 0, then we must choose W( J) = 0 to achieve Bayes
consistency. In such a case, we need to extend the one to one correspondence proof to the case where an entry
of W,g)j) can be zero. It turns out to be easy.

In this case, we cannot pose Gi; = Wéy)/Wéf) Let Z, C [1,d] be the set of indices such that Vj €

Z, W();) = 0. The whole reasoning exposed in case 1 still holds if we replace obs(m) by obs(m) \ Z; and

mis(m) by mis(m) \ Zj.
F Complementary figures

F.1 Comparison at n = 75000

Figure 3/ gives a box plot view of the behavior at n = 75000. It is complementary to the learning curves, though
it carries the same information.
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Mixture 1 (MCAR) Mixture 3 Self-masked (MN'AR)

&RQVWDQW,Psxffic/s I |
([SDQGHG/5 HH L] ' ’__

(015 & i |

0,&(/5 "'y q_"' ‘
/3 o W0.01 ,l : I:

0/3 =3 wubLQ - wo.1 =3 lrain b . 3 wubLQ ‘
0/3 : mEE WHVW ,.4" . es! { i EE WHVW |
WO0.5 :
04 05 06 07 08
5 52 5

Figure 3: Prediction accuracy R2 score for the 3 data types with n = 75,000 training samples and in dimension
d = 10. The quantities displayed are the mean and standard deviation over 5 repetitions.
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Figure 4: Performance of the one hidden layer MLP as a function of its number of hidden units
For the mixtures of Gaussians, the performance is given as the difference between the R2 score of the MLP and
that of the Bayes predictor. For each dimension d, multiple MLPs are trained, each with a different number of
hidden units given by ¢ x d for mixture 1 and self-masked, ¢ x 2 for mixture 3. 75,000 training samples were
used for Mixture 1 and Self-masked and 375,000 for Mixture 3.

F.2 Experiments on growing MLP’s width

Figure 4|shows the performance of the MLP in the various simulation scenarios as a function of the number of
hidden units of the networks. In each scenario, the number of hidden units is taken proportional to a function
of the input dimension d:

mixture 1 : ny ocd
mixture 3 : n; o« 2¢

selfmasked : nj; oc d

These results show that the number of hidden units needed by the MLP to predict well are a function of the
complexity of the underlying data-generating mechanism. Indeed, for the mizture 1, the MLP only needs nj, o d
while the missing values are MCAR, and therefore ignorable. For selfmasked, the challenge is to find the right
set of thresholds, after which the prediction is relatively simple: the MLP also needs nj, oc d. On the opposite,
for mizture 3, the multiple Gaussians create couplings in the prediction function; as the consequence, the MLP
needs nj, o 2¢.
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