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Abstract

Bayesian quadrature optimization (BQO)
maximizes the expectation of an expensive
black-box integrand taken over a known
probability distribution. In this work, we
study BQO under distributional uncertainty
in which the underlying probability distribu-
tion is unknown except for a limited set of
its i.i.d. samples. A standard BQO approach
maximizes the Monte Carlo estimate of the
true expected objective given the fixed sample
set. Though Monte Carlo estimate is unbi-
ased, it has high variance given a small set of
samples; thus can result in a spurious objec-
tive function. We adopt the distributionally
robust optimization perspective to this prob-
lem by maximizing the expected objective
under the most adversarial distribution. In
particular, we propose a novel posterior sam-
pling based algorithm, namely distribution-
ally robust BQO (DRBQO) for this purpose.
We demonstrate the empirical effectiveness
of our proposed framework in synthetic and
real-world problems, and characterize its the-
oretical convergence via Bayesian regret.

1 INTRODUCTION

Making robust decisions in the face of parameter uncer-
tainty is critical to many real-world decision problems
in machine learning, engineering and economics. Be-
sides the uncertainty that is inherent in data, a further
difficulty arises due to the uncertainty over contexts.
A common example is hyperparameter selection of
machine learning algorithms where cross-validation is
performed using a small to medium sized validation set.
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Due to limited size of validation set, the variance across
different folds might be high. Ignoring this uncertainty
results in sub-optimal and non-robust decisions. This
problem in practice can be further exacerbated as the
outcome measurements may be noisy and the black-box
function itself is expensive to evaluate.

One way to capture the uncertainty in the contexts is
through a probability distribution. In this work, we
consider stochastic black-box optimization that is dis-
tributionally robust to misspecification in the context
distribution. We formulate the problem as

max
x∈X⊂Rd

g(x) := max
x∈X

EP0(w)[f(x,w)], (1)

where f is an expensive black-box function and P0(w) is
a distribution over context w. We assume distributional
uncertainty in which the context distribution P0 is
known only through a limited set of its i.i.d samples
Sn = {w1, ..., wn}. This is equivalent to the scenario in
which we are able to evaluate f only on X ×Sn during
optimization.

In the case that P0 is known (e.g., P0 is either available
in an analytical form or easy to evaluate), a standard
solution to the problem in Equation (1) is based on
Bayesian quadrature [O’Hagan, 1991; Rasmussen and
Ghahramani, 2002; Oates et al., 2016; Oates and Sulli-
van, 2019]. The main idea in this approach is that we
can build a Gaussian Process (GP) model of f and use
the known relationship in the integral to imply a second
GP model of g. This is possible because integration is
a linear operator.

Given the distributional uncertainty in which P0 is only
known through a limited set of its samples, a naive
approach to the problem in Equation (1) is to maximize
its Monte Carlo estimate:

gmc(x) := EP̂n(w)[f(x,w)], (2)

where P̂n(w) = 1
n

∑n
i=1 δ(w−wi) and δ(.) is the Dirac

distribution. When n is sufficiently large, gmc(x) ap-
proximates g(x) reasonably well as guaranteed by the
weak law of large numbers; thus, the optimal solution
of gmc(x) represents that of g(x). In contrast, when n
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Figure 1: (a) The expected logistic function g(x) =
EN (w;0,I)[− log(1 + ex

Tw)] and (b) its Monte Carlo
estimate using 10 samples of w, and the averaged tra-
jectories of our proposed algorithm DRBQO (detailed
in Section 4) and a standard Bayesian Quadrature Op-
timization (BQO) baseline. Though being unbiased,
Monte Carlo estimates can suffer from high variance
given limited samples, resulting in spurious function es-
timates. Our proposed algorithm DRBQO approaches
this mismatch problem by finding the distributionally
robust solution under the most adversarial distribution
over a χ2 distributional ball.

is small, the optimal solution of gmc(x) might be sub-
optimal to g(x). Since we are considering distributional
perturbation, we cannot guarantee the Monte Carlo
estimate gmc(x) to be a good surrogate objective.

A more conservative approach from statistical learning
is to maximize the variance-regularized objective:

gbv(x) := EP̂n [f(x,w)]− C1

√
V arP̂n [f(x,w)]/n, (3)

where V arP̂n denotes the empirical variance and C1 is
a constant determining the trade-off between bias and
variance. Thus, given the context of limited samples,
it is logical to use gbv(x) instead of gmc(x) as a surro-
gate objective for maximizing g(x). However, unlike
gmc(x), the variance term in gbv(x) breaks the linear
relationship with f . As a result, though f is a Gaussian
Process, gbv(x) need not be [O’Hagan, 1991].

Alternatively, we approach the distributional uncer-
tainty problem above by formulating the distribution-
ally robust Bayesian quadrature optimization. In the
face of the uncertainty about P0, we seek to find a
distributionally robust solution under the most adver-
sarial distribution. Our approach is based on solving a
surrogate distributionally robust optimization problem
generated by posterior sampling at each time step. The
surrogate optimization is solved efficiently via bisec-
tion search through any optimization. We demonstrate
the efficiency of our algorithm in both synthetic and
real-world problems. Our contributions are:

• Demonstrating the limitations of standard

Bayesian quadrature optimization algorithms un-
der distributional uncertainty (Section 3), and in-
troducing a new algorithm, namely DRBQO, that
overcomes these limitations (Section 4);

• Introducing the concept of ρ-regret for measur-
ing algorithmic performance in this formulation
(Section 3), and characterizing the theoretical con-
vergence of our proposed algorithm in sublinear
Bayesian regret (Section 5);

• Demonstrating the efficiency of DRBQO in finding
distributionally robust solutions in both synthetic
and real-world problems (Section 6).

2 RELATED WORK

Our work falls in the area of Bayesian quadrature opti-
mization whose goal is to perform black-box global
optimization of an expected objective of the form∫
f(x,w)P (w)dw. This type of problems is known with

various names such as optimization of integrated re-
sponse functions [Williams, 2000], multi-task Bayesian
optimization [Swersky et al., 2013], and optimization
with expensive integrands [Toscano-Palmerin and Fra-
zier, 2018]. This direction approaches the problem by
evaluating f(x,w) at one or several values of w given
x. This ameliorates the need of evaluating f(x,w) at
all the values of w and can outperform methods that
evaluate the full objective via numerical quadrature
[Frazier, 2018; Toscano-Palmerin and Frazier, 2018].
While the previous approaches assume the knowledge
of the context distribution, we are interested in the
distributional uncertainty scenario in which the under-
lying distribution is unknown except for its empirical
estimate.

Our work shares similarity with the distributionally
robust optimization (DRO) literature [Rahimian and
Mehrotra, 2019]. This problem setup considers the
parameter uncertainty in real-world decision making
problems. The uncertainty may be due to limited data
and noisy measurements. DRO takes into account this
uncertainty and approaches the problem by taking the
worst-case of the underlying distribution within an
uncertainty set of distributions. DRO variants distin-
guish each other in design choices of the distributional
uncertainty set and in problem contexts. Regarding
the design of uncertainty sets, common designs specify
the set of distributions with respect to the nominal
distribution via distributional discrepancy such as χ2

divergence [Namkoong and Duchi, 2016], Wasserstein
distance [Kuhn et al., 2019], and maximum mean dis-
crepancy [Staib and Jegelka, 2019]. Regarding problem
contexts, DRO has been studied in various problem
settings such as robust optimization [Ben-Tal et al.,
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2013], robust risk minimization [Namkoong and Duchi,
2016], sub-modular maximization [Staib et al., 2019],
boosting algorithms [Blanchet et al., 2019], graphical
models [Fathony et al., 2018], games [Sun and Boyd,
2018; Zhu et al., 2019], fairness in machine learning
[Hashimoto et al., 2018], Markov decision process [Xu
and Mannor, 2010], reinforcement learning [Smirnova
et al., 2019], neural networks [Sagawa* et al., 2020],
meta-learning [Collins et al., 2020], and Bayesian op-
timization [Kirschner et al., 2020]. The distinction of
our work is in terms of the problem context where we
study DRO in Bayesian quadrature optimization.

3 PROBLEM SETUP

Model . Let f : X � 
 ! R be an element of a
reproducing kernel Hilbert space (RKHS) H k where k:
X � 
 � X � 
 ! R is a positive-de�nite kernel, and
X and 
 are, unless explicitly mentioned otherwise,
compact domains inRd and Rm for some dimensions
d and m, respectively. We further assume that k is
continuous and bounded from above by 1, and that
kf kk =

p
hf; f i k � B for someB > 0. Two commonly

used kernels are Squared Exponential (SE) and Mat�ern
[Rasmussen and Williams, 2006] which are similarly
de�ned on X � 
 as follows:

kSE (:; :; :; :) = exp( � d2
�; (:; :; :; :)) ;

k� (:; :; :; :) =
21� �

�( � )

p
2�d �; (:; :; :; :)J � (

p
2�d �; (:; :; :; :)) ;

where � and  are the length scales,� > 0 de�nes
the smoothness in the Mat�ern kernel, J (� ) and �( � )
de�ne the Bessel function and the gamma function, re-
spectively, andd2

�; (x; w; x0; w0) =
P d

i =1 (x i � x0
i )

2=� 2
i +

P m
j =1 (wj � w0

j )2= 2
j .

Let P0 be a distribution on 
, and Sn = f w1; :::; wn g
be a �xed set of samples drawn fromP0. Though f
is de�ned on X � 
, we are interested in the distribu-
tional uncertainty scenario in which we can query f
only on X � Sn during optimization. At time t, we
query f at (x t ; wt ) 2 X � Sn and observe a noisy re-
ward yt = f (x t ; wt ) + � t , where � t � N (0; � 2). Our
goal is to �nd a robust solution point x 2 X such
that EP (w) [f (x; w)] remains high even under the most
adversarial realization of the unknown distribution P0.

Given a sequence of noisy observations (x i ; wi ; yi )t
i =1 ,

the posterior distribution under a GP(0, k(:; :; ; :; :))
prior is also also a GP with the following posterior
mean and covariance:

� t (x; w) = kt (x; w)T (K t + � 2I ) � 1y1:t ;

Ct (x; w; x0; w0) = k(x; w; x0; w0)

� kt (x; w)T (K t + � 2I ) � 1kt (x0; w0);

where y1:t = ( y1; :::; yt ), kt (x; w) = [ k(x i ; wi ; x; w)]t
i =1 ,

and K t = [ k(x i ; wi ; x j ; wj )]1� i;j � t is the kernel matrix.

We de�ne the quadrature functional as

g(f; x; P ) :=
Z

P(wjx)f (x; w)dw; (4)

for any conditional distribution P(:jx) on 
 for all
x 2 X , i.e., P 2 P n;� � X . As an extended result of
Bayesian quadrature [O'Hagan, 1991], for any condi-
tional distribution P 2 P n;� �X , g(f; x; P ) also follows
a GP with the following mean and variance:

� t (x; P ) := Et [g(f; x; P )] =
Z

P(wjx)� t (x; w)dw (5)

� 2
t (x; P ) := V art [g(f; x; P )]

=
Z Z

P(wjx)P(w0jx)Ct (x; w; x; w0)dwdw0: (6)

Optimization goal . We seek to optimize the ex-
pected function under the most adversarial distribu-
tion over some distributional uncertainty set Pn;� :=
f P jD (P; P̂n ) � � g :

max
x 2X

min
P 2P n;�

EP (w) [f (x; w)]; (7)

where P̂n (w) = 1
n

P n
i =1 � (w � wi ) is the empirical dis-

tribution, � � 0 is the con�dence radius around the
empirical distribution with respect to a distribution
divergenceD(:; :) such as Wasserstein distance, max-
imum mean discrepancy, and� -divergence. We can
interpret Pn;� as the set of perturbed distributions
with respect to the empirical distribution P̂n within a
con�dence radius � . We then seek a robust solution
in the face of adversarial distributional perturbation
within Pn;� .

For any distribution divergence choiceD, we de�ne a
� -robust point to be any x �

� such that

x �
� 2 arg max

x 2X
min

P 2P n;�

EP (w) [f (x; w)]: (8)

Our goal is to report after time t a distributionally
robust point x t in the sense that it has small� -regret ,
which is de�ned as

r � (x) = g(f; x �
� ; P � ) � g(f; x; P � ); (9)

where P � (:jx) = arg min P 2P n;�

P
w P(wjx)f (x; w); 8x.

While our framework can be adopted to various distri-
bution divergences, we focus on the speci�c case when
D is � 2-divergence:D (P; Q) = 1

2

R

 ( dP

dQ � 1)2dQ; 8P; Q.
From here on, we referPn;� as the� 2 ball with D being
� 2-divergence. In particular, the distributionally ro-
bust optimization problem in Equation (7) is equivalent
to the variance-regularized optimization in Equation
(3) when the variance is su�ciently high, as justi�ed
by the following theorem:
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Figure 2: The � 2 balls with various radii � on the
n-dimensional simplex (n = 3 in this example). The
simplex, the � 2 balls and the empirical distribution
are represented in dim gray, dark gray and light gray
color, respectively. The� 2 ball with � = 0 reduces to
a singleton containing only the empirical distribution
while the ball becomes the entire simplex for� � n � 1

2 .

Theorem 1 (Modi�ed from Namkoong and Duchi
[2017]). Let Z 2 [M 0; M 1] be a random vari-
able (e.g., Z = f (x; w) for any �xed x), � �
0, M = M 1 � M 0, s2

n = V arP̂n
[Z ], s2 =

V ar[Z ], and OPT = inf P f EP [Z ] : P 2 P n;� g. Then

max
np

2�s 2
n � 2M�; 0

o
� EP̂n

[Z ] � OPT �
p

2�s 2
n :

Especially if s2 � maxf 24�; 16
n ; 1

ns 2 gM 2, then OPT =
EP̂n

[Z ] �
p

2�s 2
n with probability at least 1 �

exp(� ns 2

36M 2 ).

The intuition for this equivalence is that the � 2 ball
and the variance penalty term in Equation (3) are both
quadratic [Staib et al., 2019]. Figure 2 illustrates � 2

balls with various radii on the 3-dimensional simplex.

Failure of standard methods . Various methods
have been developed for achieving small regret in max-
imizing g(f; x; P 0) = EP0 (w ) [f (x; w)] for some distribu-
tion P0(wjx) = P0(w) [Williams, 2000; Swersky et al.,
2013; Toscano-Palmerin and Frazier, 2018]. These
methods leverage the relationships in Equation (5)
and (6) to infer the posterior mean and variance of
the expected function g(f; x; P 0) from those of f . The
inferred posterior mean and variance forg(f; x; P 0) are
then used in certain ways to acquire new points. While
this is useful in the standard setting when we know
P0, it is not useful when we only have the empirical
distribution P̂n . Speci�cally, an optimal solution found
by these methods in the problem associated with the
empirical distribution may be sub-optimal to that as-
sociated with the true distribution P0.

An illustrative example is depicted in Figure 1 where
the averaged trajectories of our proposed DRBQO (de-
tailed in Section 4) and a standard BQO baseline (de-
tailed in Section 6) are also shown. Due to a limited
number of samples ofP0, the Monte Carlo estimate
EP̂n (w ) [f (x; w)] results in a spurious expected objective
in this case. By resorting to the empirical distribution
P̂n constructed from the limited set of samples, the

standard BQO baseline ignores the distributional un-
certainty and converges to the optimum of the spurious
expected objective. The same limitation applies to the
standard BQO optimization methods, e.g., Williams
[2000]; Swersky et al. [2013]; Toscano-Palmerin and
Frazier [2018]; Pearce and Branke [2017] whose goal is
to �nd a global non-robust maximum.

4 ALGORITHMIC APPROACH

Our main proposed algorithm is presented in Algorithm
1. In the standard Bayesian quadrature problem in
Equation (2), we can easily adopt standard Bayesian
optimization algorithms such as expected improvement
(EI) [Mockus et al., 1978] and an upper con�dence
bound (UCB) (e.g., GP-UCB [Srinivas et al., 2010])
using quadrature relationships in Equation (5) and (6)
[Swersky et al., 2013]. However, likegbv(x) in Equation
(3), minP 2P n;� EP (w) [f (x; w)] does not follow a GP if
f follows a GP. This di�culty hinders the adoption of
EI-like and UCB-like algorithms to our setting. We
overcome this problem using posterior sampling [Russo
and Roy, 2014].

Algorithm 1: DRBQO: Distributionally Robust
Bayesian quadrature optimization
Input: Prior GP(� 0, k), horizon T, �xed sample

set Sn , con�dence radius � � 0; C0 = k.
1 for t = 1 to T do

/* Posterior sampling */
2 Sample ~f t � GP(� t � 1; Ct � 1).

/* A surrogate DR optimization */
3 Choosex t 2 arg max

x 2X
min

P 2P n;�

EP [ ~f t (x; w)].

/* Highest posterior variance */
4 Choosewt = arg max

w2 Sn

Ct � 1(x t ; w; x t ; w).

5 Observe rewardŷt  f (x t ; wt ) + � t .
6 Perform update GPto get � t and Ct .
7 end

Output: arg max
x 2f x 1 ;:::;x T g

min
P 2P n;�

EP [� T (x; w)].

The main idea of our algorithm is to sample and solve a
surrogate distributionally robust optimization problem
at each step guided by posterior sampling (lines 2 and
3 in Algorithm 1). In practice, we follow Hern�andez-
Lobato et al. [2014] to perform posterior sampling
(line 2 in Algorithm 1). Similar to the way posterior
sampling is applied to standard Bayesian optimization
problem [Hern�andez-Lobato et al., 2014], a new point
is selected according to the probability it is optimal
in the sense of distributional robustness. One of the
advantages of posterior sampling is that it avoids the
need for con�dence bound such as UCB. This is useful
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