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A.1 Proof of Lemma 1

Let Xt be the (t�1) mod K+1th selected context in round dt/Ke, i.e., Xt = xdt/Ke
s
dt/Ke
(t�1) mod K+1

and let Y t be its outcome,

i.e., Y t = r(xdt/Ke
s
dt/Ke
(t�1) mod K+1

). Assume that the sequence of random variables X1, Y 1, X2, Y 2, . . . are defined over some

probability space (⌦,F ,P) consistent with the assumptions made in the paper. Let F0 = {;,⌦} and

Ft = �(X1, . . . , Xt+K , Y 1, . . . , Y t), t > 0.

F = (Ft)1t=0 is a filtration of F . We have that E[Y t|Ft�1] = µ(Xt).

Fix a node xh,i. Let ✓t be the indicator variable that represents the event that Xt is in the cell associated with node xh,i

after xh,i was created (this also counts the times when Xt is in Xh,i after xh,i is expanded into children nodes). When
✓t = 1, we say that xh,i is observed. Let Z0 = 0 and

Zt =
tX

j=1

(µ(Xj)� Y j)✓j .

Note that Zt is Ft-measurable. Moreover, Xt and ✓t are all Ft�1-measurable while Y t is not. Thus, we have

E[Zt|Ft�1] = E

(µ(Xt)� Y t)✓t

����Ft�1

�
+ E

 t�1X

j=1

(µ(Xj)� Y j)✓j
����Ft�1

�

= (µ(Xt)� E[Y t|Ft�1])✓
t +

t�1X

j=1

(µ(Xj)� Y j)✓j

= (µ(Xt)� µ(Xt))✓t + Zt�1

= Zt�1 .

This shows that (Zt)1t=0 is an F-adapted martingale.

Let

C̃t(xh,i) =
tX

j=1

✓j .

We define a sequence of random stopping times when the arms associated with nodes xh,i were observed: Tj = min{l :
C̃l(xh,i) = j}. Note that {Tj = t} is Ft�1-measurable for all t and (Tj) is an increasing sequence of stopping times,
i.e., 1  T1 < T2 < . . ., hence it holds that Tj � j. Our next aim is to apply Doob’s optional skipping theorem ( [Doob,
1953], Theorem 2.3). As its application requires T1 < T2 < . . . < 1, we assume that after T there are infinitely many
rounds in which all contexts in everyone of them arrive in xh,i (this ensures that arms with contexts in xh,i are observed
infinitely often). Note that this technical assumption has no effect on our model as it happens after our horizon of interest.
Let Z̃j = ZTj . Then, by Doob’s optional skipping theorem (Z̃j) is a martingale w.r.t. (FTj ).

Let (Ht, It) represent the level and the index of the leaf node that contains Xt. We denote by X̃j = XTj the jth arm
pulled in the region corresponding to xh,i and Ỹ j = Y Tj . Let n = Ct(xh,i). Note that when xh,i 2 Lt, we have
C̃Kt(xh,i) = Ct(xh,i) and ✓j = I((Hj , Ij) = (h, i)). We have

P
n���

tX

j=1

KX

k=1

(µ(xj

s
j
k

)� r(xj

s
j
k

))I((Hj

k
, Ij

k
) = (h, i))

��� �
p

2n log T , xh,i 2 Lt

o

=
KtX

l=1

P
n���

tX

j=1

KX

k=1

(µ(xj

s
j
k

)� r(xj

s
j
k

))I((Hj

k
, Ij

k
) = (h, i))

��� �
p
2n log T , xh,i 2 Lt, n = l

o
(3)

=
KtX

l=1

P
n���

KtX

j=1

(µ(Xj)� Y j)I((Hj , Ij) = (h, i))
��� �

p
2n log T , xh,i 2 Lt, C̃Kt(xh,i) = l

o
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=
KtX

l=1

P
n���

lX

j=1

(µ(X̃j)� Ỹ j)
��� �

p
2l log T , xh,i 2 Lt, C̃Kt(xh,i) = l

o

=
KtX

l=1

P
n
|Z̃l| �

p
2l log T , xh,i 2 Lt, C̃Kt(xh,i) = l

o


KtX

l=1

P
n���Z̃l

��� �
p
2l log T

o


KtX

l=1

2 exp

✓
�2(

p
2l log T )2

l

◆
(4)


KTX

l=1

2 exp

✓
�2(

p
2l log T )2

l

◆

= 2KT · T�4 = 2KT�3 (5)

where (3) follows from the law of total probability and for (4) we use the Azuma-Hoeffding inequality for martingale
differences noting that the outcomes lie in the unit interval. Therefore, with probability at least 1� 2KT�3 we have

tX

j=1

KX

k=1

(r(xj

s
j
k

)� µ(xj

s
j
k

))I((Hj

k
, Ij

k
) = (h, i)) 

p
2n log T .

Next, by Definition 1 and Assumption 1, when I((Hj

k
, Ij

k
) = (h, i)) = 1, we have that µ(xj

s
j
k

)� µ(xh,i)  v1⇢h since the
context lives in Xh,i. Consequently, by using the triangle inequality, it follows that

���
tX

j=1

KX

k=1

(r(xj

s
j
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)� µ(xh,i))I((Hj
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)� µ(xh,i))I((Hj

k
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) = (h, i))

���


p
2n log T + nv1⇢

h .

Dividing both sides by n, we obtain

|µ̂t(xh,i)� µ(xh,i)|  ct(xh,i) + v1⇢
h .

Note that until round T , the maximal number of possible new node activations is KT and therefore for the above event to
hold simultaneously for all nodes at all times, we take the union bound over all nodes and over all times. From this, we
obtain

P
�
8t  T, 8xh,i 2 Lt : |µ̂t(xh,i)� µ(xh,i)|  ct(xh,i) + v1⇢

h
 
� 1� 2K2T�1 .

A.2 Proof of Lemma 2

The following inequalities hold:

gt(xh,i) = bt(xh,i) + v1⇢
h (6)

 µ̂t�1(p(xh,i)) + ct�1(p(xh,i)) + v1⇢
(h�1) + v1⇢

h (7)

 µ(p(xh,i)) + 2ct�1(p(xh,i)) + 2v1⇢
(h�1) + v1⇢

h (8)

 (µ(p(xh,i))� v1⇢
(h�1)) + 5v1⇢

(h�1) + v1⇢
h (9)

 µ(xh,i) + 5v1⇢
(h�1) + v1⇢

h (10)

 µ(xh,i) + (5Nv1/v2 + 1)v1⇢
h (11)
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where the inequality in (7) follows from the definition of bt(xh,i), while (8) follows from Lemma 1. The inequality in (9)
follows from the fact that p(xh,i) must have been expanded, thus we must have had ct�1(p(xh,i))  v1⇢(h�1). For the
inequality in (10) we use Assumption 1 for the means of nodes and the fact that xh,i and p(xh,i) lie in the cell associated
with p(xh,i). Lastly, the inequality in (11) follows from the triangle inequality. By Definition 1, the cell Xh�1,i is expanded
into N disjoint cells of diameter less than v1⇢h, for any 1  i  Nh�1, therefore v2⇢h�1  Nv1⇢h.

Finally, solving cT (xh,i) = v1⇢h gives CT (xh,i) = 2 log T/(v1⇢h)2. Thus, we must have

CT (xh,i) 
⇠
2 log T

(v1⇢h)2

⇡
 2 log T

(v1⇢h)2
+ 1  2 log T + v21

(v1⇢h)2
=

2 log T + 2 log(
p
ev

2
1 )

(v1⇢h)2
=

2 log(Tv3)

(v1⇢h)2

where v3 =
p
ev

2
1 . ⌅

A.3 Proof of Lemma 3

First, note that we have N(v1/v2) � 1 (since N � 2 and v2  1  v1). Now, for a context xt

m
2 Xh,i, the index of its

base arm is

gt(xt

m
) = gt(xh,i) +N(v1/v2)v1⇢

h .

We now have on event F

gt(xt

m
) = gt(xh,i) +N(v1/v2)v1⇢

h

= bt(xh,i) + v1⇢
h +N(v1/v2)v1⇢

h

= min{µ̂t�1(xh,i) + ct�1(xh,i), µ̂
t�1(p(xh,i)) + ct�1(p(xh,i)) + v1⇢

(h�1)}+ v1⇢
h +N(v1/v2)v1⇢

h .

We have two cases. If the minimum is µ̂t�1(xh,i) + ct�1(xh,i), then we have

gt(xt

m
) = µ̂t�1(xh,i) + ct�1(xh,i) + v1⇢

h +N(v1/v2)v1⇢
h

� µ̂t�1(xh,i) + ct�1(xh,i) + 2v1⇢
h

� µ(xh,i) + v1⇢
h

� µ(xt

m
)

since event F holds, N(v1/v2) � 1, and also by Assumption 1 and Definition 1.

If the minimum is µ̂t�1(p(xh,i)) + ct�1(p(xh,i)) + v1⇢(h�1), then we have

gt(xt

m
) = µ̂t�1(p(xh,i)) + ct�1(p(xh,i)) + v1⇢

(h�1) +N(v1/v2)v1⇢
h + v1⇢

h

� µ(p(xh,i)) +N(v1/v2)v1⇢
h + v1⇢

h

� µ(p(xh,i)) + v1⇢
h�1 + v1⇢

h

� µ(xh,i) + v1⇢
h

� µ(xt

m
)

since N(v1/v2)v1⇢h � v1⇢h�1 and |µ(p(xh,i))� µ(xh,i)|  v1⇢h�1. ⌅

A.4 Proof of Lemma 4

Let g(xt

St) = [gt(xt

m
)]m2St be the vector of indices of base arms in St. Then we have:

u(g(xt

St)) � ↵ · u(g(xt

Gt)) � ↵ · u(g(xt

S⇤t)) � ↵ · u(µ(xt

S⇤t))

where Gt := argmax
S2Stu(g(xt

S
)). The first inequality holds because we choose St by the ↵-approximation oracle; the

second inequality follows from the definition of Gt; the third inequality follows from Lemma 3 and Assumption 3, since
g(xt

m
) � µ(xt

m
), for all m 2 S⇤t. Letting �(St) be the approximate optimality gap of St, we now have
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�(St) = ↵ · opt(µt)� u(µ(xt

St))

 u(g(xt

St))� u(µ(xt

St)) (12)

 B ·
X

m2St

|gt(xt

m
)� µ(xt

m
)| (13)

 B ·
X

m2St

|gt(x
h̃t
m ,̃itm

) +N(v1/v2)v1⇢
h̃
t
m � µ(x

h̃t
m ,̃itm

)|+ |µ(x
h̃t
m ,̃itm

)� µ(xt

m
)| (14)

 B ·
X

m2St

|gt(x
h̃t
m ,̃itm

)� µ(x
h̃t
m ,̃itm

)|+ v1⇢
h̃
t
m +N(v1/v2)v1⇢

h̃
t
m (15)

 B ·
X

m2S
t

(6Nv1/v2 + 2)v1⇢
h̃
t
m (16)

 BK(6Nv1/v2 + 2)v1⇢
h(t) (17)

where (12) follows from the above argument; (13) follows from the Lipschitz continuity of the expected reward function;
in (14) we have added and subtracted the true mean of the context x

h̃t
m ,̃itm

(which represents a node), and than used the
triangle inequality; in (15) we have used the Lipschitz continuity for the expected outcomes and Definition 1, in the sense
that any two contexts in the same cell are at most a diameter away from each other; (16) follows from Lemma 2 and (17)
follows from the way we have defined h(t). ⌅

A.5 Proof of Lemma 5

By Definition 2 we have that

lim sup
r!0

log(M(X 

cr
, k·k2 , r))

log(r�1)
 D̄

therefore, since D1 > D̄, there exists r(D1) such that for all r  r(D1) we have

log(M(X 

cr
, k·k2 , r))

log(r�1)
 D1

and thus, for all r  r(D1), we have

M(X 

cr
, k·k2 , r)  r�D1 .

If r(D1) � v2, then we let Q = 1 and we are done. If r(D1) < v2, then we have to show that the result holds for all
r(D1)  r  v2. First, by the definition of the r-packing number, we have that

M(X 

cr
, k·k2 , r)  M(X , k·k2 , r(D1))

since |X 

cr
|  |X | and r � r(D1). Thus, for all r 2 [r(D1), v2], we can say that

M(X 

cr
, k·k2 , r) 

vD1
2

rD1
M(X , k·k2 , r(D1))  Qr�D1

for Q = max{1,M(X , k·k2 , r(D1)) · vD1
2 }. ⌅

A.6 Proof of Theorem 1

By Lemma 4, at any given round t, the algorithm only selects contexts from (BK(6Nv1/v2+2)v1⇢h(t), u,↵u⇤
min)-optimal

sets. Note that for all h, we have |Xh| = Nh by Definition 1. Furthermore, we select only contexts from sets of the form
X↵u

⇤
min

BK(6Nv1/v2+2)v1⇢h(t) , for all t � 1. From Lemma 4, we have that

R↵(T ) 
X

tT

KX

k=1

B(6Nv1/v2 + 2)v1⇢
H

t
k 

X

tT

BK(6Nv1/v2 + 2)v1⇢
h(t) .
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Note that in each round, we consider the contribution that comes from the highest leaf node in the tree (i.e., the leaf node
with the smallest h) associated with the selected super arm. In order to obtain sublinear regret, we express the summation
in terms of the levels of the tree. In order to do that, we observe that we may have h(t) = h(t0) for t 6= t0. That is for
several reasons. First, we have up to Nh(t) nodes in a certain level, but the learner does not select contexts associated to all
those nodes, only the BK(6Nv1/v2+2)v1⇢h(t)-optimal ones. But since we want to define a notion of regret that captures
volatility of the base arms and structure of the expected reward function, we may think that the learner selects contexts
from the set X↵u

⇤
min

BK(6Nv1/v2+2)v1⇢h(t) , as given in Definition 2. Second, the learner may select a node several times, up to qh
times by Lemma 2, until it is expanded. Using this approach, we will consider splitting the regret into two sums.

We fix a positive integer H . We will first bound the regret coming from rounds t such that h(t) < H , which we will denote
by R1

↵
(T ), and the rounds t such that h(t) � H by R2

↵
(T ). We have

R↵(T )  R1
↵
(T ) +R2

↵
(T ) .

We bound R1
↵
(T ) first. Letting D̄ = Du(f,↵u⇤

min) be the (f, u,↵u⇤
min)-optimality dimension, where f(r) =

BK(6Nv1/v2 + 2)(v1/v2)r, then for any D1 > D̄, there exists Q > 0 (by Lemma 5), for which we have

R1
↵
(T ) :=

X

tT :
h(t)<H

BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h(t)

=
H�1X

h=0

X

tT

I(h(t) = h)BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h (18)


H�1X

h=0

|Xh \ X↵u
⇤
min

BK(6Nv1/v2+2)(v1/v2)v2⇢h | ·BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h · qh (19)


H�1X

h=0

M(X↵u
⇤
min

BK(6Nv1/v2+2)(v1/v2)v2⇢h , k·k2 , v2⇢
h) ·BK(6Nv1/v2 + 2)(v1/v2)v2⇢

h · qh (20)


H�1X

h=0

Q · (v2⇢h)�D1BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h · 2 log (Tv3)

(v1⇢h)2
(21)

=
H�1X

h=0

QBK(6Nv1/v2 + 2)
(v2)�D1

v1
· 2 log (Tv3)

⇢h(D1+1)

= 2QBK(6Nv1/v2 + 2)
v2�D1

v1
log (Tv3)

H�1X

h=0

1

⇢h(D1+1)

 2QBK(6Nv1/v2 + 2)
v2�D1

v1

1� (⇢�1)H(D1+1)

(1� ⇢�1)
· log (Tv3)

 2QBK(6Nv1/v2 + 2)
v2�D1

v1(⇢�1 � 1)
⇢�H(D1+1) log(Tv3) . (22)

For (19) we argue as follows. We have expressed the summation in terms of levels of the tree. For a certain level h, in
T rounds, the learner may have selected up to |Xh \ X↵u

⇤
min

BK(6Nv1/v2+2)(v1/v2)v2⇢h | nodes (following an argument similar
to the proof of Lemma 4, it can be verified that the active leaf nodes associated with the cells that contain the selected
contexts, i.e., �t

m
, m 2 St are also in (BK(6Nv1/v2 + 2)v1⇢h(t), u,↵u⇤

min)-optimal sets), and any of them up to qh
times. Any of these nodes contributes to the regret with a maximum amount of BK(6Nv1/v2+2)(v1/v2)v2⇢h. Summing
over all levels, we are sure that the expected cumulative regret cannot exceed this number. (20) follows from the definition
of v2⇢h-packing number and the fact that any two nodes in Xh are at least v2⇢h apart; in (21) we use Lemma 5, since
v2⇢h  v2, for any h � 0, and the fact that qh  2 log(Tv3)/(v1⇢h)2 in ACC-UCB.

Next, we bound R2
↵
(T ).

R2
↵
(T ) :=

X

tT :
h(t)�H

BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h(t)
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 TKB(6Nv1/v2 + 2)v1⇢
H . (23)

From (22) and (23), we define

C1 := 2QBK(6Nv1/v2 + 2)
v2�D1

v1(⇢�1 � 1)

and

C2 := KB(6Nv1/v2 + 2)v1 .

We have that

R↵(T )  C1⇢
�H(D1+1) log(Tv3) + C2⇢

HT .

If we let

H =
log T � log(log(Tv3))
(D1 + 2)log(1/⇢)

so that (equivalently) we have

H =
log T � log(log(Tv3))
(D1 + 2)log(1/⇢)

=
log ( T

log (Tv3)
)

(D1 + 2)log (1/⇢)
=

1

(D1 + 2)
log1/⇢

✓
T

log (Tv3)

◆

= �log
⇢

✓
T

log (Tv3)

◆ 1
D1+2

,

then we would obtain

⇢�H =

✓
T

log (Tv3)

◆ 1
D1+2

and ⇢H =

✓
log (Tv3)

T

◆ 1
D1+2

.

And thus, substituting in the bounds we get:

R↵(T )  C1⇢
�H(D1+1) log(Tv3) + C2⇢

HT

= C1 ·
✓

T

log(Tv3)

◆D1+1
D1+2

· log(Tv3) + C2 ·
✓
log(Tv3)

T

◆ 1
D1+2

· T

= C1 · T 1� 1
D1+2 · (log(Tv3))1�

D1+1
D1+2 + C2 · T 1� 1

D1+2 · (log(Tv3))
1

D1+2

= C1 · T 1� 1
D1+2 · (log(Tv3))

1
D1+2 + C2 · T 1� 1

D1+2 · (log(Tv3))
1

D1+2 .

⌅

A.7 Proof of Theorem 2

Let |X | = ⇧. The r-packing number of any subset X of X cannot exceed ⇧. Let f(r) = BK(6Nv1/v2+2)(v1/v2)r and
 = ↵u⇤

min. Let

P (f, u,) := lim sup
r!0

M(X 

f(r), k·k2 , r)

be the largest possible r-packing number depending on on f , u and . Note that the r-packing number of a set cannot
exceed its cardinality, and thus, we have that P (f, u,)  ⇧. Therefore,

Du(f,) = lim sup
r!0

log(M(X 

f(r), k·k2 , r))
log(r�1)
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 lim sup
r!0

log⇧

log(r�1)

= 0 .

For this case, Lemma 5 implies that for any ✏ > 0, there exists some positive constant Q(✏) > 0 such that we have

M(X 

f(r), k·k2 , r)  Qr�✏ .

Since M(X 

f(r), k·k2 , r)  P (f, u,), we can let Q = P (f, u,). Now, using the same approach as in Theorem 1, we fix
an H , the value of which we will determine later, and first consider the contribution to the regret of levels h < H . We have

R1
↵
(T ) :=

X

tT :
h(t)<H

BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h(t)


H�1X

h=0

M(X↵u
⇤
min

BK(6Nv1/v2+2)(v1/v2)v2⇢h , k·k2 , v2⇢
h) ·BK(6Nv1/v2 + 2)(v1/v2)v2⇢

h · qh


H�1X

h=0

P (f, u,) · (v2⇢h)�✏BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h · 2 log (Tv3)

(v1⇢h)2

 2P (f, u,)BK(6Nv1/v2 + 2)
v2�✏

v1(⇢�1 � 1)
⇢�H(✏+1) log(Tv3)

= C3(✏)⇢
�H(✏+1) log(Tv3) .

For R2
↵
(T ), we have

R2
↵
(T ) :=

X

tT :
h(t)�H

BK(6Nv1/v2 + 2)(v1/v2)v2⇢
h(t)

 TKB(6Nv1/v2 + 2)v1⇢
H

= C4⇢
HT .

Again, we define H as,

H =
log T � log(log(Tv3))

(✏+ 2)log(1/⇢)

and obtain the following bound by summing up R1
↵
(T ) and R2

↵
(T ):

R↵(T )  C3(✏) · T 1� 1
✏+2 · (log(Tv3))

1
✏+2 + C4 · T 1� 1

✏+2 · (log(Tv3))
1

✏+2 .

⌅

A.8 Proof of Theorem 3

Fix an ordered partition � 2 P(⇡([T ])). Note that

R↵(T ) =

|�|X

�=1

0

@↵
X

t2T �
�

opt(µt)�
X

t2T �
�

u(µ(xt

St))

1

A =

|�|X

�=1

R↵,�(T �
�
)

where R↵,�(T �
�
) denotes the total regret incurred in rounds in T �

�
.

For any �  |�|, we can define a permutation ⇣�
�
: T �

�
! [T�

�
], such that ⇣�(t�i

�
) = i, for any i 2 [T�

�
], where t�i

�
is an

element of the ordered set T �
�

= {t�1
�
, . . . , t��

�
}. Thus, abusing the terminology, we can solve the bandit subproblems with

T�
�

rounds, for each natural �  |�|.
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From Lemma 4 we have:

R↵,�(T �
�
) 

X

t2T �
�

KX

k=1

B(6Nv1/v2 + 2)v1⇢
H

t
k


X

t2T �
�

BK(6Nv1/v2 + 2)v1⇢
h(t) .

We use an approach that is similar to the proof of Theorem 1. Fix a positive integer H�
�

whose value will be determined
later. Let

R1
↵,�

(T �
�
) :=

X

t2T �
� :h(t)<H

�
�

BK(6Nv1/v2 + 2)v1⇢
h(t)

and

R2
↵,�

(T �
�
) :=

X

t2T �
� :h(t)�H

�
�

BK(6Nv1/v2 + 2)v1⇢
h(t) .

We first bound R1
↵,�

(T�
�
). Following steps analogous to (19)-(22) in the proof of Theorem 1, it can be shown that there

exists some Q�
�
> 0 (that depends only on X , u, µ, ↵u⇤

min(�,�) and c but not explicitly on T ) such that for D�
�
> D̄�

�
we

have

R1
↵,�

(T �
�
)  C5(�,�) · ⇢�H

�
� (D�

�+1) · log(Tv3)

where

C5(�,�) := 2Q�
�
KB(6Nv1/v2 + 2)

v2�D
�
�

v1(1/⇢� 1)
.

For R2
↵,�

(T�
�
), we have

R2
↵,�

(T �
�
)  C6 · ⇢H

�
� · T�

�

where

C6 := KB(6Nv1/v2 + 2)v1 .

Now let us define H�
�

analogously with Theorem 1, in order to obtain sublinear regret:

H�
�
=

log T�
�
� log(log(Tv3))

(D�
�
+ 2)log(1/⇢)

.

Substituting H�
�

, we obtain the following.

R↵,�(T �
�
)  C5(�,�)⇢

�H
�
� (D�

�+1) log(Tv3) + C6⇢
H

�
�T�

�

 C5(�,�) · (T�
�
)
1� 1

D�
�
+2 · (log(Tv3))

1
D�

�
+2 + C6 · (T�

�
)
1� 1

D�
�
+2 · (log(Tv3))

1
D�

�
+2

Finally, by summing over all �  |�|, we obtain

R↵(T ) =

|�|X

�=1

R↵,�(T
�
�
)


|�|X

�=1

✓
C5(�,�) · (T�

�
)
1� 1

D�
�
+2 · (log(Tv3))

1
D�

�
+2 + C6 · (T�

�
)
1� 1

D�
�
+2 · (log(Tv3))

1
D�

�
+2

◆


|�|X

�=1

O

 
(T�

�
)
1� 1

D
�
�+2 · (log(Tv3))

1
D

�
�+2

!
.

⌅
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A.9 Proof of Corollary 1

Fix ⇠ 2 (0, 1). Let T ⇠ = {⇡(1), . . . ,⇡(T �
⌅
T ⇠
⇧
)}, where ⇡ is the permutation defined in Section 4.4. The idea is to

bound separately the regret coming from the rounds in T ⇠ and those in [T ] � T ⇠. First we consider T ⇠. From Lemma 4
we have:

R↵(T ⇠) := ↵
X

t2T ⇠

opt(µt)�
X

t2T ⇠

u(µ(xt

St)) 
X

t2T ⇠

BK(6Nv1/v2 + 2)v2⇢
h(t) .

Using the result of Theorem 3 the above argument can be bounded as

R↵(T ⇠)  C5(⇠) · T 1� 1
D(⇠)+2 · (log(Tv3))

1
D(⇠)+2 + C6 · T 1� 1

D(⇠)+2 · (log(Tv3))
1

D(⇠)+2

where

C5(⇠) := 2Q(⇠)KB(6Nv1/v2 + 2)
v2�D(⇠)

v1(1/⇢� 1)
.

Here, Q(⇠) > 0 is a constant that depends on X , u, µ, ↵u⇤
min(⇠) and c but not explicitly on T . On the other hand, the regret

incurred in round in [T ] � T ⇠ is upper bounded by ↵u⇤
maxT

⇠. The final result follows from summing these two bounds
and taking the infimum. ⌅

A.10 Proof of Example 1

We have

X 

c✏
= {x 2 X : � u(µ(x))  c✏}
= {x 2 X : (1� kx⇤ka2)� (1� kxka2)  c✏}
= {x 2 X : kxka2  c✏}
= {x 2 X : k0� xka2  ((c✏)1/a)a}
= {x 2 X : k0� xk2  (c✏)1/a} .

This set is an k·k2-ball with center at 0 and radius (c✏)1/a. What we want to know is, for a fixed ✏, how many disjoint
k·k2-balls of radius ✏ can fit inside of it (so that we can estimate its ✏-packing number). Thus, we have

M(X 

c✏
, k·k2 , r) 

✓
(c✏)1/a

✏1

◆D

= cD/a(✏�1)(1�1/a)D .

This together with Lemma 5 implies that D̄  (1� 1/a)D for a > 1. ⌅
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A.11 Table of Notation

Table 2: Notation.
Symbol Meaning

(X , k·k2) The metric space of contexts (D-dimensional)

Mt The set of available base arms in round t

S t {S ⇢ Mt : |S| = K}, the set of available super arms in round t

x
t

m
Context of base arm m 2 Mt in round t

X t {xt
m
}m2Mt

r(xt
m
) (Random) outcome of base arm m 2 Mt in round t

µ(x) Expected outcome of a base arm with context x

µ
t [µ(xt

m
)]m2Mt

xt

S
[xt

s1
, . . . , x

t

sK
], K-tuple of contexts of base arms that are in super arm S 2 S t

u(·) Reward function

opt(µt) maxS2Stu(µ(xt

S
))

S
t Super arm selected by the learner in round t

S
⇤t argmax

S2Stu(µ(xt

S
)), the optimal super arm in round t

xh,i The ith node in the hth level of the tree of partitions

Xh,i The cell associated to node xh,i

Xh {xh,i, 1  i  N
h}

M(X , k·k2 , r) The r-packing number of (X , k·k2)

X 

f(r) The (f (r), u,)-optimal set

D
u(f,) The (f, u,)-optimality dimension

g
t(xh,i) The index of node xh,i at time t

g
t(xt

m
) The index of base arm m 2 Mt in round t

µ̂
t(xh,i) The sample mean of the outcomes of the selected base arms in cell Xh,i by round t

C
t(xh,i) The number of times a base arm with context in Xh,i was selected by round t

c
t(xh,i) The confidence radius of cell Xh,i in round t

(Ht

k
, I

t

k
) (h, i) index of the active leaf node associated with the kth selected base arm (st

k
) in round t

(h̃t

m
, ĩ

t

m
) (h, i) index of the active leaf node associated with base arm m 2 Mt in round t

Lt The set of active leaf nodes in round t

N t The set of available active leaf nodes in round t

P t The set of active leaf nodes selected by the algorithm in round t


