
Permutation Invariant Graph Generation via
Score-Based Generative Modeling

Chenhao Niu1, Yang Song2, Jiaming Song2, Shengjia Zhao2, Aditya Grover2, Stefano Ermon2

1Tsinghua University 2Stanford University

Abstract

Learning generative models for graph-
structured data is challenging because graphs
are discrete, combinatorial, and the underly-
ing data distribution is invariant to the order-
ing of nodes. However, most of the existing
generative models for graphs are not invariant
to the chosen ordering, which might lead to
an undesirable bias in the learned distribution.
To address this difficulty, we propose a permu-
tation invariant approach to modeling graphs,
using the recent framework of score-based gen-
erative modeling. In particular, we design a
permutation equivariant, multi-channel graph
neural network to model the gradient of the
data distribution at the input graph (a.k.a.,
the score function). This permutation equiv-
ariant model of gradients implicitly defines a
permutation invariant distribution for graphs.
We train this graph neural network with score
matching and sample from it with annealed
Langevin dynamics. In our experiments, we
first demonstrate the capacity of this new
architecture in learning discrete graph algo-
rithms. For graph generation, we find that our
learning approach achieves better or compara-
ble results to existing models on benchmark
datasets.

1 INTRODUCTION

Graphs are used to capture relational structure in many
domains, including knowledge bases (Hamaguchi et al.,
2017), social networks (Hamilton et al., 2017; Kipf and
Welling, 2016), protein interaction networks (Fout et al.,
2017), and physical systems (Batagelj and Zaversnik,

Proceedings of the 23rdInternational Conference on Artificial
Intelligence and Statistics (AISTATS) 2020, Palermo, Italy.
PMLR: Volume 108. Copyright 2020 by the author(s).

2003). Generating graphs using suitable probabilistic
models has many applications, such as drug design (Du-
venaud et al., 2015; Gómez-Bombarelli et al., 2018; Li
et al., 2018a), creating computation graphs for archi-
tecture search (Xie et al., 2019), as well as research in
network science (Watts and Strogatz, 1998; Albert and
Barabási, 2002; Leskovec et al., 2010).

While many stochastic models of graphs have been
proposed, the idea of learning statistical generative
models of graphs from data has recently gained sig-
nificant attention. One approach is to use latent vari-
able generative models similar to variational autoen-
coders (Kingma and Welling, 2013). Examples in-
clude GraphVAE (Simonovsky and Komodakis, 2018),
Graphite (Grover et al., 2018), and junction tree varia-
tional autoencoders (Jin et al., 2018). These models
typically use a graph neural network (GNN) (Gori et al.,
2005; Scarselli et al., 2008) to encode graph data to a
latent space, and generate samples by decoding latent
variables sampled from a prior distribution. The second
paradigm is autoregressive graph generative models (Li
et al., 2018a; You et al., 2018a; Liao et al., 2019), where
graphs are generated sequentially, one node (or one
subgraph) at a time.

Although these models have achieved great success,
they are not satisfying in terms of capturing the per-
mutation invariance properties of graphs. Permutation
invariance is a fundamental inductive bias of graph-
structured data. For a graph with N nodes, there
are up to N ! different adjacency matrices that are
equivalent representations of the same graph. There-
fore, a graph generative model should ideally assign
the same probability to each of these equivalent adja-
cency matrices. It is challenging, however, to enforce
permutation invariance in variational autoencoders or
autoregressive models. Some previous approaches only
approximately induce permutation invariance: Graph-
VAE (Simonovsky and Komodakis, 2018) uses inex-
act graph matching techniques requiring up to O(N4)
operations, whereas the model in Li et al. (2018a)
augments the training data by randomly permuting
the nodes of existing data. Other approaches instead

Permutation Invariant Graph Generation via Score-Based Generative Modeling

focus on selecting a specific node ordering based on
heuristics: GraphRNN (You et al., 2018b) uses random
breadth-first search (BFS) to determine an ordering,
and GRAN (Liao et al., 2019) adaptively chooses an
ordering depending on the input graph from a family
of pre-defined node orderings.

To better capture the permutation invariance of graphs,
we propose a new graph generative model using the
framework of score-based generative modeling (Song
and Ermon, 2019). Intuitively, this approach trains
a model to capture the vector field of gradients of
the log data density of graphs (a.k.a., scores). Con-
trary to likelihood-based models such as variational
auto-encoders and autoregressive models, score-based
generative modeling imposes fewer constraints on the
model architectures (e.g., a score does not have to be
normalized). This enables the use of function families
with desirable inductive biases, such as permutation
invariance. In particular, we leverage graph neural
networks (Scarselli et al., 2008) to build a permutation
equivariant model for the scores of the distribution over
graphs we wish to learn. As shown later in the paper,
this implicitly defines a permutation invariant distribu-
tion over adjacency matrices representing graphs.

As in other classes of deep generative models, the neural
architecture used in score-based generative modeling
is critical to its success. In this work, we introduce a
new type of graph neural networks, named EDP-GNN,
with learnable multi-channel adjacency matrices. In
our experiments, we first test the effectiveness of EDP-
GNN for the task of learning graph algorithms, where
it significantly outperforms traditional GNNs. Next,
we evaluate the generation quality of our score-based
models using MMD (Gretton et al., 2012) metrics on
several graph datasets, where we achieved compara-
ble performance to GraphRNN (You et al., 2018b), a
competitive method for generative modeling of graphs.

2 PRELIMINARIES

2.1 Notations

For each weighted undirected graph, we can choose an
ordering of nodes π and represent it with an adjacency
matrix Aπ. Here we use the superscript π to indicate
that the rows/columns of Aπ are arranged in accor-
dance with a specific node ordering π. When the graph
is undirected, the corresponding adjacency matrix Aπ

is symmetric. We denote the set of adjacency matrices
as A = {A ∈ RN×N | A = AT, N ∈ N+}.

A distribution of graphs can be represented as a distri-
bution of adjacency matrices p(Aπ). Since graphs are
invariant to permutations, Aπ1 and Aπ2 always repre-
sent the same graph for any different node orderings π1

and π2. This permutation invariance also implies that
∀π1 6= π2 : p(Aπ1) = p(Aπ2), i.e., the distribution of
adjacency matrices is invariant to node permutations.
In the sequel, we often omit the superscript π in Aπ

when not emphasizing any specific node ordering.

2.2 Graph Neural Network (GNN)

Graph neural networks are a family of neural net-
works that map graphs to vector representations using
message-passing type operations on node features (Gori
et al., 2005; Scarselli et al., 2008). They are natural
models for graph-structured data; for example, GIN
(Xu et al., 2018a) is one type of GNN that is proved to
be as expressive as the Weisfeiler-Lehman graph isomor-
phism test (WL-test). The message passing mechanism
guarantees that the output representation fGNN(Aπ)
of an input adjacency matrix Aπ is equivariant to per-
mutations of the node ordering π.

2.3 Score-Based Generative Modeling

Score-based generative modeling (Song and Ermon,
2019) is a class of generative models. For a probability
density function p(x), the score function is defined as
∇x log p(x). Instead of directly modeling the density
function of the data distribution pdata(x), score-based
generative modeling estimates the data score function
∇x log pdata(x). The advantage is that the score func-
tion can be easier to model than the density function.

For better score estimation, following (Song and Er-
mon, 2019) we perturb the data with Gaussian noise
of different intensities, and estimate the scores jointly
for all noise levels. We train a noise conditional model
sθ(x;σ) (e.g., a neural network parameterized by θ)
to approximate the score function corresponding to
noise level σ. Given a data distribution pdata(x), a
noise distribution qσ(x̃ | x) (e.g ., N (x̃ | x, σ2I)), and
a sequence of noise levels {σi}Li=1, the training loss
L(θ; {σi}Li=1) is defined as:

L∑
i=1

σ2
i

2L
E
[
‖sθ(x̃, σi)−∇x̃ log qσi(x̃ | x)‖22

]
. (1)

where the expectation is taken with respect to the sam-
pling process: x ∼ pdata(x), x̃ ∼ qσi(x̃ | x). We note
that all expectations in L(θ; {σi}Li=1) can be estimated
with i.i.d. samples from pdata(x) and qσ(·|x), which are
easy to obtain. The objective is min

θ
L(θ; {σi}Li=1).

After the conditional score model sθ(x;σ) has been
trained, we use annealed Langevin dynamics (Song and
Ermon, 2019) for sample generation (see Algorithm 1).

Chenhao Niu, Yang Song, ... , Stefano Ermon

Algorithm 1 Annealed Langevin dynamics sampling.
Require: {σi}Li=1, ε, T . ε is smallest step size; T is

the number of iteration for each noise level.
1: Initialize x̃0

2: for i← 1 to L do
3: αi ← ε · σ2

i /σ
2
L . αi is the step size.

4: for t← 1 to T do
5: Draw zt ∼ N (0, I)

6: x̃t ← x̃t−1 +
αi
2
sθ(x̃t−1, σi) +

√
αi zt

7: end for
8: x̃0 ← x̃T
9: end for

return x̃T

3 SCORE-BASED GENERATIVE
MODELING FOR GRAPHS

Contrary to the weighted graphs we used to define the
probability density function in Section 2.1, in real-world
problems unweighted graphs are much more common,
which means entries in the adjacency matrixA can only
be either 0 or 1. While the score-based method (Song
and Ermon, 2019) was initially proposed for handling
continuous data, it can be adopted to generate discrete
ones as well. Below, we first show our modifications of
score-based generative modeling for graph generation,
and then introduce our specialized neural network ar-
chitecture EDP-GNN for the noise conditional model
sθ(A;σ), where sθ(·;σ) : A → A.

3.1 Noise Distribution

We add Gaussian perturbations to adjacency matrices
and define the noise distribution qσ(Ã | A) as follows

∏
i<j

1√
2πσ

exp

{
− (Ã[i,j]−A[i,j])

2

2σ2

}
, if Ã = ÃT

0, otherwise.
(2)

Intuitively, we only add Gaussian noise to the upper
triangular part of the adjacency matrix, because we
focus on undirected graphs whose adjacency matrices
are symmetric.

Since ∇Ã log qσ(Ã|A) = −(Ã − A)/σ2, the training
loss of sθ(A, σ) is

L(θ; {σi}Li=1) ,
1

2L

L∑
i=1

σ2
i E
[∥∥∥∥sθ(Ã, σ) +

Ã−A

σ2

∥∥∥∥2
2

]
. (3)

where the expectation is over the sampling process
defined via A ∼ pdata (A) and Ã ∼ qσ(Ã|A). The
objective is min

θ
L(θ; {σi}Li=1).

Note that the supports of the noise distributions
{qσi}Li=1 span RN×N , where N is the number of nodes

of the input graph. Therefore, the scores of perturbed
distributions corresponding to all noise levels are well-
defined, regardless of whether the training samples are
discrete or not.

3.2 Sampling

To generate Ã, we first sample N , which is the number
of nodes to be generated, and then sample Ã ∈ RN×N
with annealed Langevin dynamics. This amounts to
factorizing p(A) =

∑∞
N=1 p(A | A ∈ RN×N)p(N).

Implementation-wise, we sample N from the empirical
distribution of number of nodes in the training dataset,
as done in (Li et al., 2018b). When doing annealed
Langevin dynamics, we first initialize Ã0 using folded
normal distributions, i.e.,

(Ã0)[i,j] =

{
|ε[i,j]|, i < j

(Ã0)[j,i], otherwise,

where all ε[i,j] ∼ N (0, 1). Then, we update Ã by
iteratively sampling from a series of trained conditional
score models {sθ(A;σi)}Li=1 using Langevin dynamics.
For each of the conditional score model sθ(A;σi), we
run Langevin dynamics for T steps, where the series
{σi}Li=1 is annealed down over the process such that σ1
is large but σL is small enough that it can be ignored.
As a minor modification, we change the noise term zt
in Algorithm 1 to a symmetric one z̃t, given by

(z̃t)[i,j] =

{
(z̃t)[i,j], i < j

(z̃t)[j,i], i ≥ j,

which accouts for the symmetry of adjacency matrices.

Score-based generative modeling provides samples in
the continuous space, whereas graph data are often dis-
crete. In order to obtain discrete samples, we quantize
the generated continuous adjacency matrix (denoted
as Ã) to a binary one (denoted as A(sample)) at the
end of annealed Langevin dynamics. Formally, this
quantization operation is defined as

A
(sample)
[i,j] = 1Ã[i,j]>0.5 (4)

where 1 is an indicator function that evalutes to 1 when
the condition holds and 0 otherwise.

3.3 Permutation Equivariance and Invariance

Permutation invariance is a desirable property of graph
generative models, since the true distribution pdata(A)
is inherently permutation invariant. We show that
by using a permutation equivariant score function
sθ(A;σ), the corresponding distribution is permutation
invarant.

Permutation Invariant Graph Generation via Score-Based Generative Modeling

Theorem 1. If s : RN×N → RN×N is a permutation
equivariant function, then the scalar function fs =∫
γ[0,A]

〈s(X),dX〉F+C is permutation invariant, where
〈A,B〉F = tr(AᵀB) is the Frobenius inner product,
γ[0,A] is any curve from 0 = {0}N×N to A, and
C ∈ R is a constant.

Proof. See Appendix B.

Since the gradient of log-likelihood estimation sθ(A) =
∇A log pθ(A) is permutation equivariant, the implicitly
defined log-likelihood function log pθ(A) is permutation
invariant, according to Theorem 1, given below by the
line integral of sθ(X).

log pθ(A) =

∫
γ[0,A]

〈sθ(X),dX〉F + log pθ(0)

3.4 Edgewise Dense Prediction Graph
Neural Network (EDP-GNN)

Below, we introduce a GNN-based score network
sθ(A;σ) that can effectively model the scores of graph
distributions while being permutation equivariant.

3.4.1 Multi-Channel GNN Layer

We introduce the multi-Channel GNN layer , an ex-
tended version of the GIN (Xu et al., 2018a) layer,
which serves as a basic component of our EDP-GNN
model. The intuition is to run message-passing simul-
taneously on many different graphs, and collect the
node features from all the channels via concatenation.
For a C-channel GNN layer with M message-passing
steps, the m-th message-passing step can be expressed
as follows,

Z̃
(m+1)
[c,·] = A

(k)
[c,·,·]Z

(m)
[·] , for c = 0, 1, . . . , C − 1,

Z
(m+1)
i = MLP

(m)
Node

(
CONCAT

(
Z̃

(m+1)
[c,i] + (1 + ε)Z

(m)
i |c = 0, . . . , C − 1

))
,

where i is the index of nodes, C is the number of chan-
nels, A(k) ∈ RC×N×N is the multi-channel adjacency
matrix, and Z(m) ∈ RN×F (m)

is the vector of node
features. Here ε is a learnable parameter, the same as
in the original GIN, CONCAT stands for the concate-
nation operation, and MLP

(m)
Node transforms each node

feature using a multilayer perceptron.

After M steps of message-passing, we use the same
concatenation operation as GIN to obtain node features.
Specifically, for each node vi, the output feature is given
by

(Zout)i = CONCAT(Z
(m)
i |m = 0, 1, . . . ,M − 1).

Henceforth, we denote our Multi-Channel GNN layer
as

Zout = MultiChannelGNN(A,Zin).

3.4.2 EDP-GNN Layer

The EDP-GNN layer is the key component of our model.
It transforms the input adjacency matrix to another
one, allowing us to adaptively change the process of
message passing. The intuition is similar to neural
networks for image dense prediction tasks (e.g ., seman-
tic parsing), where convolutional layers transform the
input image to a feature map in a pixelwise manner,
leveraging local information around each pixel location.
Similarly, we want our GNN layer to extract edgewise
features and map them to a new adjacency matrix,
using local information (which is defined in terms of
connectivity) of each node in the graph.

One EDP-GNN layer has two steps:

1. Node feature inference: Using MultiChannel-
GNN to encode the local structure of different
channels of the graph into node features, given by

Z(k+1) = MultiChannelGNN(k)(A(k),Z(k)); (5)

2. Edge feature inference: Updating the feature
vector of each edge based on the current features of
the edge and the updated feature vector of the two
endpoints. For each edge {vi, vj}, this operation
is given by

Ã
(k+1)
[·,i,j] = MLP

(k)
Edge

(
CONCAT(A

(k)
[·,i,j],Z

(k+1)
i ,Z

(k+1)
j)

)
,

where MLP
(k)
Edge denotes a multilayer perceptron

applied to edge features. To ensure symmetry, the
new adjacency matrix is given by

A(k+1) = Ã(k+1) + (Ã(k+1))T. (6)

3.4.3 Input and Output Layers

Input layer: Input graphs need to be preprocessed
before they can be fed into our EDP-GNN model. In
particular, we take adjacency matrices of two channels
as the input, where the first channel is the original
adjacency matrix of an input graph, and the other
channel is the negated version of the same adjacency
matrix, where each entry is flipped. The node features
are initialized using the weighted degrees. Formally,

Z
(0)
i =

∑
j

Adj[i,j],∀vi ∈ V

A
(0)
[0,·,·] = Adj

A
(0)
[1,·,·] = 1−Adj

Chenhao Niu, Yang Song, ... , Stefano Ermon

!(#):
ℝ'(×*×*

+(,): ℝ*×-.

/01(#)2345

/6789
:ℎ<==>7
?@@(#)

+(#): ℝ*×-(

!AB:
ℝ*×*

!(,):
ℝ'.×*×*

+(C): ℝ*×-D

/01(,)2345

/6789
:ℎ<==>7
?@@(,)

EFGH>:
ℝ*×*

!(C):
ℝ'D×*×*

+(I): ℝ*×-J

/01-KLMN

/6789
:ℎ<==>7
?@@(C)

Figure 1: This figure shows an EDP-GNN with three layers. The input is an adjacency matrix of a graph with N
nodes given a fixed node ordering, and the outputs are edge representations. The dashed lines are preprocessing
steps, and solid lines represent network computations.

where Adj is the adjacency matrix of an input graph.
If we have node features X ∈ RN×F0 from data, then
we use the following initialization for each node vi

Z
(0)
i = CONCAT

(
Xi,

∑
j

Adji,j

)
.

Output layer: To get the output, we employ a similar
approach to Xu et al. (2018b), where we aggregate the
information from all previous layers to produce a set
of permutation equivariant edge features. This can
effectively collect information extracted in shallower
layers. Formally, for each edge {vi, vj}, the output
features are given by

sθ(A)[i,j] = MLPfinal

(
CONCAT

(
A

(k)
[·,i,j]|k = 0, . . . ,K − 1

))
.

3.4.4 Noise Level Conditioning

The framework of score-based generative modeling pro-
posed in (Song and Ermon, 2019) requires a score
network conditioned on a series of noise levels. We
hope to provide the conditioning on noise levels with
as few extra parameters as possible. To this end, we
add gains and bias terms conditioned on the index i of
the noise level σi in all MLP layers, and share all the
parameters across different noise levels. A conditional
MLP layer for sθ(A, σi) is denoted as

fi(A) = activate((WA + b)αi + βi)

where αi,βi are learnable parameters for each noise
level σi and activate(·) denotes the activation function.
We empirically found that this implementation of noise
conditioning achieves similar performance to separately
training a score network for each noise level.

3.4.5 Permutation Equivariance of
EDP-GNN

The message passing operations in a graph neural net-
work are guaranteed to be permutation equivariant

(Keriven and Peyré, 2019), as well as edgewise and
nodewise operations for graphs. Since operations in
EDP-GNN are either message passing or edgewise/n-
odewise transformations, the edge features produced
by EDP-GNN are guaranteed to be permutation equiv-
ariant. In the last EDP-GNN layer, each edge feature
is one component of the estimated score. Hence Theo-
rem 1 applies to this score network.

4 RELATED WORK

Flow-Based Graph Generative Models In addi-
tion to models mentioned in Section 1, there is also
an emerging class of graph generative models based on
invertible mappings, such as GNF (Liu et al., 2019)
and GraphNVP (Madhawa et al., 2019). These mod-
els modify the architecture of a graph neural network
(GNN) using coupling layers (Dinh et al., 2016) to en-
able maximum likelihood learning via the change of
variables formula. Since GNNs are permutation invari-
ant, both GNF and GraphNVP could be permutation
invariant in principle. However, GraphNVP opts not to
be permutation invariant because making their model
fully permutation invariant hurts the empirical perfor-
mance. In contrast, GNF is a permutation invariant
model. It achieves permutation invariance by first us-
ing a permutation equivariant auto-encoder to encode
the graph structure into a set of node features, and
then model the distribution of the node features using
reversible graph neural networks.

GNNs that Learn Edge Features Although the
majority of GNNs focus on node feature learning, (e.g .,
node classification tasks), there are GNNs, prior to our
EDP-GNN, that have intermediate edge features as well.
For example, Graph Attention Networks (Veličković
et al., 2017) compute an attention coefficient for each
edge during message passing (MP) steps. Gong and
Cheng (2019) further explored methods to utilize edge

Permutation Invariant Graph Generation via Score-Based Generative Modeling

features during the MP steps, such as using normal-
ized attention coefficients to construct a new adjacency
matrix for the next MP step, and passing the mes-
sage simultaneously on multi-input adjacency matrices.
However, the model in Gong and Cheng (2019) is not
designed for predicting edge features, and the capa-
bility to make edgewise prediction is limited by the
normalizing operation and the restrictive form of atten-
tions. Kipf et al. (2018) proposed a GNN-based VAE
model for relational inference for interacting systems.
Contrary to their model which predicts edge informa-
tion based on only node features, our model takes a
weighted graph without node features.

5 EXPERIMENTS

5.1 Learning Graph Algorithms

In this section, we empirically demonstrate the power of
the proposed EDP-GNN model on edgewise prediction
tasks. In particular, we reduce several classic graph
algorithms to the task of predicting whether each edge
is in the solution set or not. The training data include
a graph and the corresponding solution set, and we
train our models to fit the solution set by minimizing
the cross-entropy loss.

Setup To verify the ability of EDP-GNN of making
edgewise dense predictions, we tested EDP-GNN on
learning classic graph algorithms, by labeling all the
edges in a graph to indicate whether an edge is in
the solution set or not. We choose two simple tasks,
1) Shortest Path (SP) between a given pair of nodes,
and 2) Maximum Spanning Tree (MST) of a given
graph. The solution set of SP corresponds to a path
connecting the pair of nodes with the shortest length,
while the solution set of MST is the collection of all
edges inside the maximum spanning tree. For both
tasks, all the graphs are randomly sampled from the
Erdős and Rényi model (E-R) (Erdos and Rényi, 1960)
with n = 12 and p = 0.3. For weighted graphs, all
the edge weights are uniformly sampled from [0, 1].
A prediction is considered correct if and only if all
the labels of the graph are correct. We calculate the
accuracy over a fixed test set as the metric. For the
baseline model, we use vanilla GIN (Xu et al., 2018a).

Training During training, we generate the training
data dynamically on the fly and use the cross-entropy
loss as the training objective for both tasks.

Results All results are provided in Tab. 1. We ob-
serve that EDP-GNN performs similarly to GIN for
unweighted graphs, but achieves much better perfor-
mance when graphs are weighted. This confirms that

Model SP (UW) SP (W) MST (W)

GIN 0.57 0.12 0.20
EDP-GNN 0.60 0.92 0.84

Table 1: The test set accuracy of EDP-GNN vs. GIN on
learning the shortest path (SP) and maximum spanning
tree (MST) algorithms. "UW" and "W" stand for
"unweighted" and "weighted" respectively. Since the
training set is dynamically generated, the performance
on (newly generated) training set and test set has no
difference. Note that for unweighted graphs, there
can be more than one shortest path for a given pair
of nodes, and the accuracy is underestimated as we
randomly picked one as the ground truth, in which case
an accuracy of 0.6 is pretty non-trivial.

EDP-GNN is more effective for edgewise predictions.

5.2 Graph Generation Task

In this section, we demonstrate that our EDP-GNN
is capable of producing high-quality graph samples
via score-based generative modeling. To better under-
stand learnable multi-channel adjacency matrices in
our model, we visualize the intermediate channels in
Figure 2, and perform extensive ablation studies.

Datasets and Baselines We tested our model on
two datasets, Community-small (12 ≤ N ≤ 20) and
Ego-small (4 ≤ N ≤ 18), which are also used by You
et al. (2018b), and Liu et al. (2019). See Appendix A for
more details. Our baselines include GraphRNN (You
et al., 2018b), Graph Normalizing Flow(GNF) (Liu
et al., 2019), GraphVAE (Simonovsky and Komodakis,
2018), and DeepGMG (Li et al., 2018a).

Metrics To evaluate generation quality, we used max-
imum mean discrepancy (MMD) over some graph statis-
tics, as proposed by You et al. (2018b). We calculated
MMD for three graph statistics: 1) degree distribution,
2) cluster coefficient distribution, and 3) the number
of orbits with 4 nodes.

Results We compare EDP-GNN against baselines
and summarize results in Tab. 2. Our model performs
comparably to GraphRNN and GNF with respect to
most MMD metrics, and outperforms all other methods
when considering the overall average of MMDs on two
datasets.

5.2.1 Understanding Intermediate Channels

Intuitively, the intermediate channels of EDP-GNN
should be analogous to those in convolutional neural

Chenhao Niu, Yang Song, ... , Stefano Ermon

Layer 0,
#Channel = 2

Layer 2,
#Channel = 4

Layer 1,
#Channel = 2

Layer 3,
#Channel = 4

Layer 4,
#Channel = 2

Input
perturbed
graph

Input Layer Intermediate Layers

Score,
#Channel = 1

Output Layer

C
0

2

-2

Figure 2: Visualization of channels for a pre-trained EDP-GNN model on the Community-small dataset. The
model is trained with a single noise level σ = 0.6. The input is a community graph, but perturbed with Gaussian
noise with σ = 0.6. The edge weights of each adjacency matrix are standardized to zero mean and unit variance.
Since our model is agnostic to different permutations of nodes, we chose a specific ordering so that the adjacency
matrices of community graphs possess a block diagonal form. We visualize one adjacency matrix for each layer.
Sometimes a graph is less visually interpretable, and we instead visualize its complementary graph and mark
it with "C". By comparing the graph visualizations for the 3rd, 4th, and the input layers, we observe that the
model maps the perturbed graph with no visible structures to a graph with clear "community" structures.

networks (CNN) feature maps. Since channels of fea-
ture maps can be visualized as images in CNNs, we
propose to visualize each channel of multi-channel ad-
jacency matrices as a graph. The EDP-GNN layers
should be able to map an input graph to intermediate
graphs that possess interpretable semantics.

In Figure 2, we visualize the channels of intermediate
adjacency matrices for a EDP-GNN model trained on
the Community-small dataset. We observe that the
model processes a perturbed community graph with no
clearly visible structures to a graph with a structure of
two equal-sized communities.

As implied by the training objective (3), the score
network sθ(Ã, σ) can perfectly predict the ground truth
score, i.e., Ã−A

σ2 , if it can map the noise-perturbed
graph Ã to the true (noise-free) graph A in some of
the intermediate channels. Therefore, an ideal score
network should be able to 1) understand the structure
of a given graph, before 2) mapping a perturbed graph
to the corresponding denoised graph. While previous
GNNs are designed for the former task, EDP-GNN is

especially capable of solving the latter one.

5.2.2 Ablation Studies

To verify the importance of intermediate adjacency
matrices in EDP-GNN to be 1) learnable and 2) multi-
channel, we conducted ablative studies on Community-
small and Ego-small datasets. We switched on/off the
two properties respectively, and provide the perfor-
mance comparison in Tab. 3. Note that EDP-GNN
is equivalent to vanilla GIN when intermediate adja-
cency matrices are single-channel and non-learnable.
As shown in Tab. 3, both properties can improve the
expressivity for score modeling, in the sense of reduc-
ing the training and test score matching losses. As
expected, the performance is optimal when both prop-
erties are combined.

6 CONCLUSION

We propose a permutation invariant generative model
for graphs based on the framework of score-based gener-
ative modeling. In particular, we implicitly define a per-

Permutation Invariant Graph Generation via Score-Based Generative Modeling

(a) Training data (b) EDP-GNN samples (c) GraphRNN samples

(d) Training data (e) EDP-GNN samples (f) GraphRNN samples

Figure 3: Samples from the training data, EDP-GNN, and GraphRNN, on Community-small (top row) and
Ego-small (bottom row).

Model Community-small Ego-small Avg.
Deg. Clus. Orbit Avg. Deg. Clus. Orbit Avg.

GraphVAE 0.350 0.980 0.540 0.623 0.130 0.170 0.050 0.117 0.370
DeepGMG 0.220 0.950 0.400 0.523 0.040 0.100 0.020 0.053 0.288
GraphRNN 0.080 0.120 0.040 0.080 0.090 0.220 0.003 0.104 0.092
GNF 0.200 0.200 0.110 0.170 0.030 0.100 0.001 0.044 0.107
EDP-GNN 0.053 0.144 0.026 0.074 0.052 0.093 0.007 0.050 0.062

GraphRNN (1024) 0.030 0.010 0.010 0.017 0.040 0.050 0.060 0.050 0.033
GNF (1024) 0.120 0.150 0.020 0.097 0.010 0.030 0.001 0.014 0.055
EDP-GNN (1024) 0.006 0.127 0.018 0.050 0.010 0.025 0.003 0.013 0.031

Table 2: MMD results of various graph generative models. Rows marked with (1024) mean the corresponding
number of samples is 1024; otherwise, the number of samples equals the size of the test set. Apart from three
MMD statistics, we also provide their average values, noted as "Avg.". The rightmost column is the overall
average of all MMDs on two datasets. For baselines, we directly ported the results from You et al. (2018b) and
Liu et al. (2019). For a fair comparison, we followed the settings of evaluation in Liu et al. (2019).

A* C* Community-small Ego-small

Train
loss

Test
loss

Train
loss

Test
loss

N N 140 140 14 17
Y N 120 120 12 15
N Y 110 120 13 15
Y Y 98 96 10 12

Table 3: Ablation experiments on Community-small
and Ego-small datasets. The training and test losses
are defined by (3). A* indicates whether the adjacency
matrix is learnable, and C* indicates whether the in-
termediate adjacency matrices have multi-channels.

mutation invariant distribution over graph adjacency
matrices by modeling the corresponding permutation

equivariant score function and sampling with Langevin
dynamics. For effective score modeling of graph dis-
tributions, we propose a new permutation equivariant
GNN architecture, named EDP-GNN, leveraging train-
able, multi-channel adjacency matrices as intermediate
layers. Empirically, we demonstrate that EDP-GNNs
are more expressive than vanilla GNNs on predicting
edgewise features, as evidenced by better performance
on the task of learning classic graph algorithms such
as shortest paths. Moreover, we show our model can
produce samples with quality comparable to existing
state-of-the-art models. As one future direction, we
hope to improve the scalability of our model by re-
ducing the computational complexity, using techniques
such as graph pooling (Ying et al., 2018).

Chenhao Niu, Yang Song, ... , Stefano Ermon

Acknowledgements

This research was supported by Intel Corporation, Ama-
zon AWS, TRI, NSF (#1651565, #1522054, #1733686),
ONR (N00014-19-1-2145), AFOSR (FA9550-19-1-
0024).

References

Albert, R. and Barabási, A.-L. (2002). Statistical me-
chanics of complex networks. Reviews of modern
physics, 74(1):47.

Batagelj, V. and Zaversnik, M. (2003). An o(m) algo-
rithm for cores decomposition of networks. arXiv
preprint cs/0310049.

Dinh, L., Sohl-Dickstein, J., and Bengio, S. (2016).
Density estimation using real nvp. arXiv preprint
arXiv:1605.08803.

Dobson, P. D. and Doig, A. J. (2003). Distinguishing
enzyme structures from non-enzymes without align-
ments. Journal of molecular biology, 330(4):771–783.

Duvenaud, D. K., Maclaurin, D., Iparraguirre, J., Bom-
barell, R., Hirzel, T., Aspuru-Guzik, A., and Adams,
R. P. (2015). Convolutional networks on graphs for
learning molecular fingerprints. In Advances in neu-
ral information processing systems, pages 2224–2232.

Erdos, P. and Rényi, A. (1960). On the evolution of
random graphs. Publ. Math. Inst. Hung. Acad. Sci,
5(1):17–60.

Fout, A., Byrd, J., Shariat, B., and Ben-Hur, A. (2017).
Protein interface prediction using graph convolu-
tional networks. In Advances in neural information
processing systems, pages 6530–6539.

Golomb, S. W. (1996). Polyominoes: puzzles, patterns,
problems, and packings, volume 16. Princeton Uni-
versity Press.

Gómez-Bombarelli, R., Wei, J. N., Duvenaud, D.,
Hernández-Lobato, J. M., Sánchez-Lengeling, B.,
Sheberla, D., Aguilera-Iparraguirre, J., Hirzel, T. D.,
Adams, R. P., and Aspuru-Guzik, A. (2018). Auto-
matic chemical design using a data-driven continu-
ous representation of molecules. ACS central science,
4(2):268–276.

Gong, L. and Cheng, Q. (2019). Exploiting edge fea-
tures for graph neural networks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition, pages 9211–9219.

Gori, M., Monfardini, G., and Scarselli, F. (2005). A
new model for learning in graph domains. In Pro-
ceedings. 2005 IEEE International Joint Conference
on Neural Networks, 2005., volume 2, pages 729–734.
IEEE.

Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf,
B., and Smola, A. (2012). A kernel two-sample test.
Journal of Machine Learning Research, 13(Mar):723–
773.

Grover, A., Zweig, A., and Ermon, S. (2018). Graphite:
Iterative generative modeling of graphs. arXiv
preprint arXiv:1803.10459.

Hamaguchi, T., Oiwa, H., Shimbo, M., and Matsumoto,
Y. (2017). Knowledge transfer for out-of-knowledge-
base entities: A graph neural network approach.
arXiv preprint arXiv:1706.05674.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). In-
ductive representation learning on large graphs. In
Advances in neural information processing systems,
pages 1024–1034.

Jin, W., Barzilay, R., and Jaakkola, T. (2018). Junc-
tion tree variational autoencoder for molecular graph
generation. In International Conference on Machine
Learning, pages 2328–2337.

Keriven, N. and Peyré, G. (2019). Universal invariant
and equivariant graph neural networks. In Advances
in Neural Information Processing Systems, pages
7090–7099.

Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding
variational bayes. arXiv preprint arXiv:1312.6114.

Kipf, T., Fetaya, E., Wang, K.-C., Welling, M., and
Zemel, R. (2018). Neural relational inference for
interacting systems. In International Conference on
Machine Learning, pages 2693–2702.

Kipf, T. N. and Welling, M. (2016). Semi-supervised
classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos,
C., and Ghahramani, Z. (2010). Kronecker graphs:
An approach to modeling networks. Journal of Ma-
chine Learning Research, 11(Feb):985–1042.

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and
Battaglia, P. (2018a). Learning deep generative mod-
els of graphs. arXiv preprint arXiv:1803.03324.

Li, Y., Zhang, L., and Liu, Z. (2018b). Multi-objective
de novo drug design with conditional graph genera-
tive model. Journal of cheminformatics, 10(1):33.

Liao, R., Zhao, Z., Urtasun, R., and Zemel, R. S. (2019).
Lanczosnet: Multi-scale deep graph convolutional
networks. arXiv preprint arXiv:1901.01484.

Liu, J., Kumar, A., Ba, J., Kiros, J., and Swersky, K.
(2019). Graph normalizing flows.

Permutation Invariant Graph Generation via Score-Based Generative Modeling

Madhawa, K., Ishiguro, K., Nakago, K., and Abe,
M. (2019). Graphnvp: An invertible flow model
for generating molecular graphs. arXiv preprint
arXiv:1905.11600.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury,
J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N.,
Antiga, L., et al. (2019). Pytorch: An imperative
style, high-performance deep learning library. In
Advances in Neural Information Processing Systems,
pages 8024–8035.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M.,
and Monfardini, G. (2008). The graph neural net-
work model. IEEE Transactions on Neural Networks,
20(1):61–80.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher,
B., and Eliassi-Rad, T. (2008). Collective classifica-
tion in network data. AI magazine, 29(3):93–93.

Simonovsky, M. and Komodakis, N. (2018). Graphvae:
Towards generation of small graphs using variational
autoencoders. arXiv preprint arXiv:1802.03480.

Song, Y. and Ermon, S. (2019). Generative modeling by
estimating gradients of the data distribution. arXiv
preprint arXiv:1907.05600.

Veličković, P., Cucurull, G., Casanova, A., Romero,
A., Lio, P., and Bengio, Y. (2017). Graph attention
networks. arXiv preprint arXiv:1710.10903.

Watts, D. J. and Strogatz, S. H. (1998). Collec-
tive dynamics of ‘small-world’networks. nature,
393(6684):440.

Xie, S., Kirillov, A., Girshick, R., and He, K. (2019).
Exploring randomly wired neural networks for image
recognition. arXiv preprint arXiv:1904.01569.

Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2018a).
How powerful are graph neural networks? arXiv
preprint arXiv:1810.00826.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi,
K.-i., and Jegelka, S. (2018b). Representation learn-
ing on graphs with jumping knowledge networks.
In International Conference on Machine Learning,
pages 5449–5458.

Ying, Z., You, J., Morris, C., Ren, X., Hamilton, W.,
and Leskovec, J. (2018). Hierarchical graph repre-
sentation learning with differentiable pooling. In
Advances in neural information processing systems,
pages 4800–4810.

You, J., Liu, B., Ying, Z., Pande, V., and Leskovec, J.
(2018a). Graph convolutional policy network for goal-
directed molecular graph generation. In Advances in
neural information processing systems, pages 6410–
6421.

You, J., Ying, R., Ren, X., Hamilton, W., and Leskovec,
J. (2018b). Graphrnn: Generating realistic graphs

with deep auto-regressive models. In ICML, pages
5694–5703.

Chenhao Niu, Yang Song, ... , Stefano Ermon

A EXPERIMENTAL DETAILS

We implement our model using PyTorch (Paszke et al., 2019). The optimization algorithm is Adam (Kingma and
Ba, 2014). Our code is available at https://github.com/ermongroup/GraphScoreMatching.

A.1 Hyperparameters

For the noise levels {σi}Li=1, we chose L = 6 and {σi}Li=1 = [1.6, 0.8, 0.6, 0.4, 0.2, 0.1]. Empirically, we found those
settings work well for all the generation experiments. Note that since all the edge weights in training data (i.e.,
Ai,j in (2)) are either 0 or 1, σL = 0.1 is small enough for the quantizing operation (4) to prefectly recover the
perturbed graph with high probability.

In the sampling process, we set the number of sampling steps for each noise level to be T = 1000. Apart from the
coefficient ε in step size αi = ε · σ2

i /σ
2
L in Langevin dynamics, we added another scaling coefficient εs, since it is

a common practice of applying Langevin dynamics. We chose the value of the hyper-parameters based on the
MMD metrics on the validation set, which contains 32 samples from the training set.

x̃t ← x̃t−1 +
αi
2
sθ(x̃t−1, σi) + εs

√
αi zt

For the network architecture, we used 4 message-passing steps for each GIN, and stacked 5 EDP-GNN layers.
The maximum number of channels of all EDP-GNN layer is 4. The maximum size of node features is 16.

A.2 Dataset

• Community-small: The graphs are constructed by two equal-sized communities, each of which is generated
by E-R model (Erdos and Rényi, 1960), with p = 0.7. For each graph with N nodes, we randomly add 0.05N
edges between the two communities. The range of total number of nodes per graph is 12 ≤ N ≤ 20.

• Ego-small: One-hop ego graphs extracted from the Citeseer network (Sen et al., 2008). The range of node
numbers per graph is 4 ≤ N ≤ 18.

B PROPERTIES OF PERMUTATION INVARIANT FUNCTIONS

B.1 Permutation

Definition 1. (Permutation Operation on Matrix) Let [N]
def.
= {1, . . . , N}. Denote the set of permutations

π : [N]→ [N] as ΠN . The node permutation operation on a matrix A ∈ RN×N is defined by A
[π]
i,j = Aπ(i),π(j).

B.2 Permutation Invariant

Definition 2. (Permutation Invariant Function) A function f with RN×N as its domain is permutation invariant
i.f.f. ∀A ∈ RN×N ,∀π ∈ ΠN , f(A[π]) = f(A).

B.3 Permutation Equivariant

Definition 3. (Permutation Equivariant Function) A function s : RN×N → RN×N is permutation equivariant
i.i.f. ∀A ∈ RN×N ,∀π ∈ ΠN , s(A[π]) = (s(A))

[π].

B.4 Relationship between Permutation Invariance and Permutation Equivariance

Definition 4. (Implicitly Defined Scalar Function) A function s : RN×N → RN×N defines a gradient vector
field on RN×N . Veiw s as the gradient of a scalar value function fs(A) : RN×N → R. Define fs(A) =∫
γ[0,A]

〈s(X),dX〉F + C, where 0 = {0}N×N , γ[0,A] is any curve from 0 to A and C ∈ R is a constant.

Under this definition, a vector function s defines a scalar function fs implicitly.

https://github.com/ermongroup/GraphScoreMatching

Permutation Invariant Graph Generation via Score-Based Generative Modeling

Lemma 1. (Permutation Invariance of Frobenius Inner Product) For any A,B ∈ RN×N , the Frobenius inner
product of A,B is 〈A,B〉F =

∑
i,j AijBij = tr(ATB). Frobenius inner product operation is permutation invariant,

i.e., ∀π ∈ ΠN , 〈A[π],B[π]〉F = 〈A,B〉F.

B.5 Proof of Theorem 1

Proof.

∀A ∈ RN×N ,∀π ∈ ΠN ,

f(A[π])− f(0[π])

=

∫
γ[0[π],A[π]]

〈s(X),dX〉F

=

∫
γ[0,A]

〈s(X[π]),d
(
X[π]

)
〉F

=

∫
γ[0,A]

〈(s(X))
[π]
, (dX)

[π]〉F

=

∫
γ[0,A]

〈s(X),dX〉F

=f(A)− f(0)

i.e. f(A[π]) = f(A)

Chenhao Niu, Yang Song, ... , Stefano Ermon

C EXTRA SAMPLES

(a) Training data (b) EDP-GNN samples (c) GraphRNN samples

Figure 4: Extra samples from the training data, EDP-GNN, and GraphRNN, on Ego-small.

(a) Training data (b) EDP-GNN samples (c) GraphRNN samples

Figure 5: Extra samples from the training data, EDP-GNN, and GraphRNN, on Community-small.

Permutation Invariant Graph Generation via Score-Based Generative Modeling

(a) Training data (b) EDP-GNN samples

Figure 6: Extra samples from the training data and EDP-GNN, on the Protein dataset (Dobson and Doig, 2003),
with the number of node 20 ≤ N ≤ 30.

(a) Training data (b) EDP-GNN samples

Figure 7: Extra samples from the training data and EDP-GNN, on the Lobster graph dataset (Golomb, 1996),
with the number of node N = 10.

	INTRODUCTION
	PRELIMINARIES
	Notations
	Graph Neural Network (GNN)
	Score-Based Generative Modeling

	SCORE-BASED GENERATIVE MODELING FOR GRAPHS
	Noise Distribution
	Sampling
	Permutation Equivariance and Invariance
	Edgewise Dense Prediction Graph Neural Network (EDP-GNN)
	Multi-Channel GNN Layer
	EDP-GNN Layer
	Input and Output Layers
	Noise Level Conditioning
	Permutation Equivariance of EDP-GNN

	RELATED WORK
	EXPERIMENTS
	Learning Graph Algorithms
	Graph Generation Task
	Understanding Intermediate Channels
	Ablation Studies

	CONCLUSION
	EXPERIMENTAL DETAILS
	Hyperparameters
	Dataset

	PROPERTIES OF PERMUTATION INVARIANT FUNCTIONS
	Permutation
	Permutation Invariant
	Permutation Equivariant
	Relationship between Permutation Invariance and Permutation Equivariance
	Proof of Theorem 1

	EXTRA SAMPLES

