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6 SUPPLEMENTARY MATERIAL

6.1 Proof of Theorem 2

Let us set some terms,

gt,i = −η∇αt,iLval(w,α;Tt) (14)

Then we have |gt,i| ≤ η · L and,

αt,i = α0,i − η
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s=0

gs,i (15)

As we initialize α0,i = 0 for all i = 1, . . . , N in 2.
Then we prove claim 1,

Proof: The pruning rule can be put as following,
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Where 21 is by setting θt = νte
−t and 19 is since,
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Finally we have,

αt,i
t
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α∗t
t
− βt, (25)

We wish to bound the probability of pruning the best oper-
ation, i.e. the operation with the highest expected architec-
ture parameter α. Although involving the empirical values
of α, we show that the condition in claim 1 avoids the prun-
ing of the operation with the highest expected α. For this
purpose we bound the probability for the deviation of each
empirical α from its expected value by the specified margin
βt. For this purpose we introduce the following concentra-
tion bound,

Lemma 1 (Hoeffding (Hoeffding, 1963)) Let g1, . . . , gt
be independent bounded random variables with gs ∈
[as, bs], where -∞ < as ≤ bs < ∞ for all s = 1, . . . , t.
Then,
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Our main argument, described in Theorem 3, is that at any
time t and for any operation oi, the empirical value αt,i

t

is within βt of its expected value ᾱt,i
t = 1

t

∑t
s=1 E [gs,i].

For the purpose of proving Theorem 3, we first prove the
following Corollary 4,

Corollary 4 For any time t and operations {oi}Ni=1 ∈ O
we have,
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|αt,i − ᾱt,i| > βt

}
≤ 6δ

π2Nt2
(28)

Proof:

P
{

1

t
|αt,i − ᾱt,i| > βt
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Where, 31 is by the union bound, 33 is by Lemma 1 with
gt,i ∈ [−ηL, ηL] and 34 is by setting,
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We can now prove Theorem 3,
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Proof:
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where (38) is by the union bound, (39) is by Corollary 4.

Requiring Theorem 3 to hold for all of the operations, we
get by the union bound that, the probability of pruning the
best operation is less than δ. Furthermore, since νt ∈ Υ, ρt
goes to 1 as t increases and Tt goes to zero together with βt.
Thus eventually all operations but the best one are pruned.
This completes our proof.

6.2 ASAP search and train details

In order to conduct a fair comparison, we follow (Liu et al.,
2018b) for all the search and train details. This excludes
the new annealing parameters and those related to the train-
ing of additional datasets, which are not mentioned in (Liu
et al., 2018b). Our code will be made available for future
public use.

6.2.1 Search details

Data pre-processing. We apply the following:

• Centrally padding the training images to a size of
40x40.

• Randomly cropping back to the size of 32x32.

• Randomly flipping the training images horizontally.

• Standardizing the train and validation sets to be of a
zero-mean and a unit variance.

Operations and cells. We select from the operations men-
tioned in 4.1, with a stride of 1 for all of the connections
within a cell but for the reduction cells’ connections to the
previous cells, which are with a stride of 2. Convolutional
layers are padded so that the spatial resolution is kept. The
operations are applied in the order of ReLU-Conv-BN. Fol-
lowing (Zoph and Le, 2017),(Real et al., 2018), depthwise
separable convolutions are always applied twice. The cell’s
output is a 1x1 convolutional layer applied on all of the

cells’ four intermediate nodes’ outputs concatenated, such
that the number of channels is preserved. In CIFAR-10, the
search lasts up to 0.2 days on NVIDIA GTX 1080Ti GPU.
The annealing schedule. We use the exponential de-
cay annealing schedule as described in Algorithm 1 when
setting the annealing schedule as in 9 with (T0, β, τ) =
(1.6, 0.95, 1). It was selected for obtaining a final temper-
ature of 0.1 and 5 epochs of grace-cycles.
Alternate optimization. For a fair comparison, we use the
exact training settings from (Liu et al., 2018b). We use
the Adam optimizer (Kingma and Ba, 2014) for the archi-
tecture weights optimization with momentum parameters
of (0.5, 0.999) and a fixed learning rate of 10−3. For the
network weights optimization, we use SGD (Robbins and
Monro, 1951) with a momentum of 0.9 as the learning rate
is following a cosine annealing schedule (Loshchilov and
Hutter, 2016) with an initial value of 0.025.

6.2.2 Training details

CIFAR-10. The training architecture consists of 20 cells
stacking up: 18 normal cells and 2 reduction cells, located
at the 1/3 and 2/3 of the total network depth respectively.
We double the number of channels after each reduction cell.
We train the network for 1500 epochs with a batch size
of 128. We use the SGD nesterov-momentum optimizer
(Robbins and Monro, 1951) with a momentum of 0.9, fol-
lowing a cycles cosine annealing learning rate (Loshchilov
and Hutter, 2016) with an initial value of 0.025. We apply
a weight decay of 3 · 10−4 and a norm gradient clipping at
5. We add an auxiliary loss (Szegedy et al., 2015) after the
last reduction cell with a weight of 0.4. In addition to data
pre-processing, we use cutout augmentations (DeVries and
Taylor, 2017) with a length of 16 and a drop-path regular-
ization (Larsson et al., 2016) with a probability of 0.2. WE
also use the AutoAugment augmentation scheme.
ImageNet. Our training architecture starts with stem cells
that reduce the input image resolution from 224 to 56 (3 re-
ductions), similar to MobileNet-V1 (Howard et al., 2017).
We then stack 14 cells: 12 normal cells and 2 reduction
cells. The reduction cells are placed after the fourth and
eighth normal cells. The normal cells start with 50 chan-
nels, as the number of channels is doubled after each re-
duction cell. We also added SE layer(Hu et al., 2018) at
the end of each cell. In total, the network contains 5.7 mil-
lion parameters. We train the network on 2 GPUs for 250
epochs with a batch size of 256. We use the SGD nesterov-
momentum optimizer (Robbins and Monro, 1951) with a
momentum of 0.9, following a cosine learning rate with an
initial learning rate value of 0.2. We apply a weight decay
of 1 · 10−4 and a norm gradient clipping at 5. We add an
auxiliary loss after the last reduction cell with the weight of
0.4 and a label smoothing (Reed et al., 2014) of 0.1. Dur-
ing training, we normalize the input image and crop it with
a random cropping factor in the range of 0.08 to 1. In addi-
tion, autoaugment augmentations and randomly horizontal
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flipping are applied. During testing, we resize the input im-
age to the size of 256x256 and applying a fixed central crop
to the size of 224x224.
Additional datasets. Our additional classification datasets
consist of the Following:

CINIC-10: (Darlow et al., 2018) is an extension of
CIFAR-10 by ImageNet images, down-sampled to match
the image size of CIFAR-10. It has 270, 000 images of 10
classes, i.e. it has larger train and test sets than those of
CIFAR-10.

CIFAR-100: (Torralba et al., 2008) A natural image clas-
sification dataset, containing 100 classes with 600 images
per class. The image size is 32x32 and the train-test split is
50, 000:10, 000 images respectively.

FREIBURG: (Jund et al., 2016) A groceries classification
dataset consisting of 5000 images of size 256x256, divided
into 25 categories. It has imbalanced class sizes ranging
from 97 to 370 images per class. Images were taken in
various aspect ratios and padded to squares.

SVHN: (Netzer et al., 2011) A dataset containing real-
world images of digits and numbers in natural scenes. It
consists of 600, 000 images of size 32x32, divided into 10
classes. The dataset can be thought of as a real-world alter-
native to MNIST, with an order of magnitude more images
and significantly harder real-world scenarios.

FMNIST: (Xiao et al., 2017) A clothes classification
dataset with a 60, 000:10, 000 train-test split. Each exam-
ple is a grayscale image of size 28x28, associated with a
label from 10 classes of clothes. It is intended to serve as a
direct drop-in replacement for the original MNIST dataset
as a benchmark for machine learning algorithms.

The training scheme use for those was similar to the one
used for CIFAR-10, with some minor adjustments and
modifications - mainly the use of standard color augmen-
tations instead of autoaugment regimes, and default train-
ing length of 600 epochs instead of 1500 epochs. For the
FREIBURG dataset, we resized the original images from
256x256 to 64x64. For CINIC-10, we were training for
400 epochs instead of 600, since this dataset is quite large.
Note that for each of those datasets, all of the cells were
trained with exactly the same network architecture and
hyper-parameters, unlike our ImageNet comparison at 4.3,
where each cell was embedded into a different architecture
and trained with a completely different scheme.


