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Abstract

Overlap between treatment groups is required
for non-parametric estimation of causal effects.
If a subgroup of subjects always receives the
same intervention, we cannot estimate the ef-
fect of intervention changes on that subgroup
without further assumptions. When overlap
does not hold globally, characterizing local
regions of overlap can inform the relevance
of causal conclusions for new subjects, and
can help guide additional data collection. To
have impact, these descriptions must be inter-
pretable for downstream users who are not ma-
chine learning experts, such as policy makers.
We formalize overlap estimation as a problem
of finding minimum volume sets subject to
coverage constraints and reduce this problem
to binary classification with Boolean rule clas-
sifiers. We then generalize this method to
estimate overlap in off-policy policy evalua-
tion. In several real-world applications, we
demonstrate that these rules have comparable
accuracy to black-box estimators and provide
intuitive and informative explanations that
can inform policy making.

1 INTRODUCTION

To accurately estimate the causal effect of an inter-
vention, it is essential that intervention alternatives
have been observed in comparable contexts, i.e., that
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there is overlap between the distributions of individu-
als receiving each intervention (Rosenbaum and Rubin,
1983; D’Amour et al., 2017). In randomized experi-
ments, overlap is guaranteed for the study population
by randomizing the intervention. However, this is not
the case in observational studies where interventions
are chosen according to an existing, in some cases de-
terministic, policy. In such settings, overlap may hold
only for an unidentified subset of cases, with the causal
effect being unidentifiable outside of this subset. We
motivate our paper with the following use cases:

Scenario 1: From study to policy. When researchers
publish the findings of a clinical trial, they also share
the eligibility criteria (e.g., Age ≥ 18, Serum M protein
≥ 1g/dl or Urine M protein ≥ 200 mg/24 hrs, Recent
diagnosis (National Cancer Institute, 2012)) and cohort
statistics in order to characterize the cohort of study
subjects. This gives policy makers means to assess the
external validity of the results, i.e., to whom the results
apply. We seek to provide the same for observational
studies, with our algorithms producing an interpretable
description of subjects with treatment group overlap.

Scenario 2: Evaluating guidelines. There are over
471 different guidelines for how to manage hyperten-
sion (Benavidez and Frakt, 2019). We could evaluate
these—and new guidelines—using off-policy evaluation
methods (Precup et al., 2000) on observational data
derived from electronic medical records. Off-policy
evaluation of a guideline is only possible on subsets of
the population where there is some probability that the
guideline was followed (which we will also call overlap).
The estimated policy value should be accompanied by
a description of the validity (overlap) region.

Beyond causal estimation, overlap is of interest in many
other branches of machine learning: In domain adapta-
tion, the overlap between source and target domains
is the set of inputs for which we can expect a trained
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Figure 1: Overlap Oα,ε between treatment groups with
joint support Sα. A point x∗ has group propensity ηt
bounded away from 0 and 1, but is outside of Oα,ε.

model to transfer well (Ben-David et al., 2010; Johans-
son et al., 2019); In classification, overlap between in-
puts with different labels signifies regions that are hard
to classify; In algorithmic fairness (Dwork et al., 2012),
overlap between protected groups may shed light on
disparate treatment of individuals from different groups
who are otherwise comparable in task-relevant charac-
teristics; In reinforcement learning, lack of overlap has
been identified as a failure mode for deep Q-learning
using experience replay (Fujimoto et al., 2019).

Our main contributions are as follows: (i) We propose
desiderata in overlap estimation, and note how existing
methods fail to satisfy them. (ii) We give a method for
interpretable characterization of distributional overlap,
which satisfies these desiderata, by reducing the prob-
lem to two binary classification problems, and using
a linear programming relaxation of learning optimal
Boolean rules. (iii) We give generalization bounds for
rules minimizing empirical loss. (iv) We demonstrate
that small rules often perform comparably to black-box
estimators on a suite of real-world tasks. (v) We evalu-
ate the interpretability of rules for describing treatment
group overlap in post-surgical opioid prescription in a
user study with medical professionals. (vi) We show
how a generalized definition and method applies to
policy evaluation and apply it to describing overlap in
policies for antibiotic prescription.

2 RELATED WORK

Treatment group overlap is a central assumption in the
estimation of causal effects from observational data.
Comparing group-specific covariate bounds and lower-
order moments is a common first step in assessing
overlap (Rosenbaum, 2010; Zubizarreta, 2012; Fogarty
et al., 2016) but fails to identify local regions of overlap
when they exist (see the example of Oα,ε in Figure 1).
An alternative is to estimate the treatment propensity—
the probability that a subject was prescribed treatment.

Treatment propensities bounded away from 0 and 1 at
a point X indicates that treatment groups overlap at
X (Rosenbaum and Rubin, 1983; Li et al., 2018).

In studies with partial overlap, it is common to restrict
the study cohort by thresholding treatment propen-
sity or discarding unmatched subjects after applying
matching methods (Rosenbaum, 1989; Iacus et al.,
2012; Kallus, 2016; Visconti and Zubizarreta, 2018).
For example, Crump et al. (2009) proposed an optimal
propensity threshold that minimizes the variance of the
estimated average treatment effect on a sub-population.
However, neither propensity thresholding nor matching
are sufficient for guiding policy in new cases: they do
not provide a self-contained, interpretable description
of where treatment groups overlap within the study,
nor do they provide insight into external validity by
describing the limits of the study cohort.

Fogarty et al. (2016) address the first concern above
by learning “interpretable study populations” through
identifying the largest axis-aligned box that contains
only subjects with bounded propensity. However, this
approach is very limited in capacity and does not ad-
dress external validity. For this reason, we strive to
provide interpretable descriptions of overlap, both in
terms of treatment propensity and the study support.

Rule-based models have been considered in classifica-
tion tasks (Rivest, 1987; Angelino et al., 2017; Yang
et al., 2017; Lakkaraju et al., 2016; Wang et al., 2017;
Dash et al., 2018; Freitas, 2014; Wang and Rudin, 2015),
subgroup discovery (Herrera et al., 2011) and density
estimation (Ram and Gray, 2011; Goh and Rudin, 2015)
but have to the best of our knowledge not been applied
or tailored to support or overlap estimation.

3 DEFINING OVERLAP

We address interpretable description of population over-
lap. Our primary motivation is to aid policy making
based on observational studies, the success of which
relies on understanding and communicating the stud-
ies’ validity region—the set of cases for which there is
evidence that a particular policy decision is preferable.
We identify the following desiderata for descriptions of
overlap: (D.1) They cover regions where all populations
(treatment groups) are well-represented; (D.2) They
exclude all other regions, including those outside the
support of the study (see Figure 1); (D.3) They can
be expressed using a small set of simple rules. Next,
we define overlap according to (D.1) and (D.2). We
address (D.3) in Section 4.

Let subjects i = 1, ...,m be observed through samples
(xi, ti) of covariates X ∈ X ⊆ Rd and a group indicator
T ∈ T . In our running example, X represents patient
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attributes and T their treatment. We assume that
subjects are independently and identically distributed
according to a density p(X,T ), and that X is bounded.
Let pt(X) := p(X | T = t) denote the covariate density
of group t ∈ T and ηt(x) := p(T = t | X = x) the
propensity of membership in group t ∈ T for subjects
with covariates x ∈ X . We denote the probability mass
of a set S ⊆ X under p by P (S) :=

∫
x∈S dp and the

support of p by supp(p) := {x ∈ X : p(x) > 0}.

In the common case of two groups, T = {0, 1}, over-
lap is typically defined as either a) the intersection
of supports, supp(p0) ∩ supp(p1), or b) the set of co-
variate values for which all group propensities ηt are
bounded away from zero (D’Amour et al., 2017; Li
et al., 2018). We let Bε denote this latter set of val-
ues with ε-bounded propensity for a fixed parameter
ε ∈ (0, 1) and an arbitrary set of groups T ,

Bε := {x ∈ X ;∀t ∈ T : ηt(x) > ε} . (1)

Neither Bε nor the support intersection fully capture
our desired notion of overlap: The former does not sat-
isfy (D.2) since a point may have bounded propensity
(true or estimated) but lie outside the population sup-
port supp(p) (see Figure 1). Note that interpretable
description alone does not address this. The latter
is non-informative for variables with infinite support
(e.g., a normal random variable), and even with finite
support, we may wish to exclude distant outliers.

Our preferred definition of overlap combines the re-
quirement of bounded propensity with a generalization
of support called α-minimum-volume sets (Schölkopf
et al., 2001). Let C be a set of measurable subsets of
X , let V (C) denote the volume of a set C ∈ C. An
α-minimum-volume set Sα of p is then

Sα := arg min
C
{V (C) ;P (C) ≥ α,C ∈ C} , (2)

with S1 = supp(p). For α < 1, Sα is not always
unique, but the intersection S of two α-MV sets has
mass P (S) ≥ 2α − 1. In this work, we let α < 1 in
order to handle distributions with infinite support and
unwanted outliers, and refer to Sα as the support of p.
We define the α, ε-overlap set, for α, ε ∈ (0, 1), to be

Oα,ε := Sα ∩ Bε . (3)

We define the problem of overlap estimation under defi-
nition (3) as characterizing the set Oα,ε given thresholds
α and ε. In line with (D.3), these characterizations
should be useful in policy making, and interpretable
by domain experts, at small cost in accuracy. For nota-
tional convenience, we sometimes leave out superscripts
from Sα,Bε and Oα,ε, assuming that α, ε are fixed.

Remark. Defining overlap instead as the intersection
of group-specific α-MV sets is feasible, but scales poorly

with |T |; it does not facilitate the generalization to
policy evaluation described below; and the intersection
of many descriptions may be hard to interpret.

3.1 Generalization to Policy Evaluation

The definition of Bε in (1) is motivated by causal ef-
fect estimation—comparison of outcomes under two or
more alternative interventions. We may instead be in-
terested in policy evaluation, which involves estimating
the expected outcome under a conditional intervention
π, which assigns a treatment t to each x following a
conditional distribution π(T |X) (Precup et al., 2000).
To perform this evaluation, we only require that the
propensity p(T |X) of observed treatments be bounded
away from zero for treatments which have non-zero
probability under π. To describe the inputs for which
this is satisfied, we generalize Bε to be a function of
the target policy π,

Bε(π) := {x ∈ X ;∀t : π(t | x) > 0 : ηt(x) > ε} . (4)

More details are given in the supplement regarding the
use of OverRule in this setting.

4 OVERRULE: BOOLEAN RULES
FOR OVERLAP

We propose OverRule1, an algorithm for identifying the
overlap region O in (3) by first estimating the α-MV
support set S (2) and then the bounded-propensity
set B (1) restricted to S, thereby satisfying desider-
ata (D.1)–(D.2). We aim to fulfill desideratum (D.3) by
using Boolean rules—logical formulae in either disjunc-
tive (DNF) or conjunctive (CNF) normal form—which
have received renewed attention because of their in-
terpretability (Dash et al., 2018; Su et al., 2016). See
Figures 3–4 for examples of learned rules. OverRule
proceeds in the following steps:

(i) Fit α-MV set Ŝα of p(X) using Boolean rules

(ii) Fit model of group propensity η̂(·) over Ŝα and let
b̃(x) =

∏
t∈T 1[η̂t(x) > ε] define membership in B̃ε

(iii) Approximate B̃ε using Boolean rules to yield B̂ε
and estimate overlap region by Ôα,ε = B̂ε ∩ Ŝα.

In this section, we demonstrate how steps (i) & (iii) can
be reduced to binary classification. This enables us to
exploit the many existing methods for rule-based classi-
fication (Freitas, 2014) to improve the interpretability
of Ô. Finally, we give results bounding the generaliza-
tion error of estimates of both S and S ∩ B.

1Code available at https://github.com/clinicalml/
overlap-code

https://github.com/clinicalml/overlap-code
https://github.com/clinicalml/overlap-code


Characterization of Overlap in Observational Studies

Remark. It was observed in evaluations with a medi-
cal practitioner that fitting rules for S and B separately
improved interpretability as it makes clear which rules
apply to which task and prevents the bulk of the rules
from being consumed by one of the two tasks.

4.1 Estimation of Sα as Binary Classification

In the first step of OverRule, we learn a Boolean rule
to approximate the α-MV set Sα of the marginal dis-
tribution p(X) by reducing the problem to binary clas-
sification between observed samples D := {xi}mi=1 and
uniform background samples. For clarity, we focus only
on DNF rules—disjunctions of conjunctive clauses such
as (Age < 30 ∧ Female) ∨ (Married). As pointed out
by Su et al. (2016), a CNF rule can be learned by
swapping class labels and fitting a DNF rule.

We adapt previous notation and let C be a class of
candidate α-MV sets C corresponding to Boolean rules,
i.e., each C consists of the points in X that satisfy a rule.
We will often not distinguish between a rule and its
corresponding set C and thus will speak of the “volume”
of a rule or clause. We aim to solve a normalized and
regularized version of the α-MV problem in (2),

arg min
C∈C

Q(C) := V̄ (C)
Volume

+ R(C) s.t.
Regularization

P (C) ≥ α
Coverage

(5)

where the volume V̄ (C) = V (C)/V (X ) ∈ [0, 1] is nor-
malized to that of X . We assume that the regulariza-
tion term R(C) controls complexity by placing penalties
λ0 on each clause in the rule and λ1 on each condi-
tion in a clause. Thus, for a Boolean rule with clauses
k = 1, . . . ,K, each with pk conditions, we have2

R(C) = Kλ0 + λ1

K∑
k=1

pk. (6)

It is also assumed that the trivial “all-true” and “all-
false” rules have complexity R(C) = 0.

The volume V̄ (C) may be difficult to compute repeat-
edly during optimization and C is often too large to
allow pre-computation of V̄ (C) for all C. In particular,
for DNF rules, each C is a union of potentially several
overlapping clauses (see Figures 3–4 or the illustration
in the supplement); even if the volume spanned by
each clause is quick to compute on the fly, the overall
volume may not be. As an alternative, the normalized
volume V̄ (C) can be estimated by means of uniform
samples {xm+1, . . . , xm+n} over X . Let U be the index
set of these uniform samples. Then, 1

n

∑
i∈U 1[xi ∈ C]

is distributed as a scaled binomial random variable

2It is possible to generalize (6) to place different penalties
on different conditions but we adopt (6) for simplicity.

with mean V̄ (C) and variance V̄ (C)(1− V̄ (C))/n. Theo-
rem 1 below provides guidance in selecting the number
of uniform samples n to ensure a good estimate.

Given the above empirical estimator of volume, we
reduce problem (5) to a classification problem between
the marginal density p(X) and a uniform distribution
over X . This reduction was also mentioned in the
conclusion of Scott and Nowak (2006). We also re-
place the probability mass constraint with its empirical
version over D with I = {1, . . . ,m}. The result is a
Neyman-Pearson-like classification problem with a false
negative rate constraint of 1− α (instead of the usual
false positive constraint), as given below.

Ŝ := arg min
C

1

|U|
∑
i∈U

1[xi ∈ C] +R(C)

subject to
∑
i∈I

1[xi ∈ C] ≥ αm .
(7)

The following theorem bounds the regret of the min-
imizer of (7) with respect to (5) and is proven in the
supplement. The assumption of binary variables sim-
plifies the analysis and is not a fundamental limitation.
Theorem 1. Let q∗(α) denote the minimum regular-
ized volume attained in (5) over the class of DNF rules
with probability mass α. Assume that a) the regular-
ization R follows (6) with fixed parameters λ0, λ1, b)
all variables Xj are binary-valued, and c) the class C

is restricted to rules satisfying necessary conditions of
optimality for (5) (see Lemmas in the supplement).
Then with probability greater than 1− 2δ, the empirical
estimate Ŝ in (7) satisfies

Q(Ŝ) ≤ q∗(α+ εm) + 2εn and P (Ŝ) ≥ α− εm,

where εm =

√
λ−1
1 log(2d)+b1+log2 λ

−1
1 c log λ−1

1 +log(4/δ)

2m
and εn is defined analogously.

Remark. The error term εm bounds the amount by
which the probability constraint may be violated and
contributes q∗(α+ εm)− q∗(α) to the possible regret.
Given the number of data samples m, penalty λ1 (λ0
does not appear in this simplified bound) could be
chosen to keep εm small, although user preferences
for rule complexity are likely to be more important
in setting λ0, λ1. Given λ1, the number of uniform
samples n could in turn be chosen to reduce εn. Note
that εm, εn are largely controlled by λ1 and depend
only logarithmically on the dimension d.

4.2 Estimation of Bε as Binary Classification

To estimate the set Bε of inputs with bounded group
propensity ηt(X) := p(T = t | X), we follow in the tra-
dition of using black-box (potentially non-parametric)
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estimators of propensity to identify overlapping or bal-
anced cohorts in the study of causal effects (Crump
et al., 2009; Fogarty et al., 2016). This is typically
done by fitting a classifier (e.g., logistic regression) for
predicting T given X, and letting η̂t(x) be the esti-
mated probability of class t for input x. Given such an
estimate, we assign a label b̃i to each data point xi ∈ D
indicating significant propensity for every group,

∀i ∈ [m] : b̃i =
∏
t∈T

1[η̂t(xi) ≥ ε] . (8)

Let B̃ = {xi : b̃i = 1}. Similar to the case of Sα, we
may now reduce estimation of Bε to binary classifi-
cation. Given Ŝ, the minimizer of (7), we again set
up a Neyman-Pearson-like classification problem, now
regarding the intersection Ŝ ∩ B̃ as the positive class:

B̂ := arg min
C

1

|Ŝ \ B̃|

∑
i:xi∈Ŝ\B̃

1[xi ∈ C] +R(C) (9)

subject to
∑

i:xi∈Ŝ∩B̃

1[xi ∈ C] ≥ β|Ŝ ∩ B̃| .

The sets Ŝ \ B̃ and Ŝ ∩ B̃ are defined by the solution
to (7) and the base estimator (8). To accommodate
the policy evaluation setting described in Section 3,
we can modify the pseudo-labels defined in (8) to be
b̃i(π) =

∏
t∈π(xi)

1[p̂(T = t | X = xi) ≥ ε], where
π(xi) := {t : π(t|xi) > 0}, and solve (9) using B̃(π) =
{xi : b̃i(π) = 1} in place of B̃. The resulting full
procedure is given in the supplement.

Generalization of the final estimator. In the sup-
plement, we state and prove a theorem bounding the
generalization error of our final estimator, Ô = Ŝ ∩ B̂.
It shows that for good base estimators Ŝ, B̃, the error
of Ô with respect to the true overlap O is dominated
by its error with respect to the base estimators. Hence,
practitioners may make an informed tradeoff between
accuracy and interpretability based on this metric.

4.3 Optimizing Boolean Rules

Next, we describe a procedure for optimizing (7) over
a class C of Boolean DNF rules. The same procedure
also solves (9).

We assume that base features X have been binarized
to form literals such as (Age > 30) or (Sex = Female),
as is standard in e.g. decision tree learning. A con-
junction may thus be represented as the product of
binary indicators of these literals. We let K index the
set of all possible (exponentially many) conjunctions of
literals, e.g. (Age > 30)∧Female. Then, for k ∈ K, let
aik ∈ {0, 1} denote the value taken by the k-th conjunc-
tion at sample xi. Let the DNF rule be parametrized

by r ∈ {0, 1}|K| such that rk = 1 indicates that the
k-th conjunction is used in the rule.

Define an error variable ξi for i in U ∪ I representing
the penalty for covering or failing to cover point i,
depending on its set membership. Then, problem (7)
may be reformulated as follows,

minimize
r

1

|U|
∑
i∈U

ξi +R(r) (10)

subject to



rk ∈ {0, 1}, k ∈ K,
ξi ≥ 1−

∑
k∈K

aikrk, ξi ≥ 0, i ∈ I,∑
i∈I

ξi ≤ (1− α)m

ξi = max
k∈K

(aikrk), i ∈ U .

Problem (10) is an IP with an exponential number of
variables and is intractable as written. We follow the
column generation approach of Dash et al. (2018) to
effectively manage the large number of variables and
solve (10) approximately. As in that previous work,
we bound from above the max in the last constraint of
(10) with the sum (Hamming loss instead of zero-one
loss) as it gives better numerical results. The choice of
regularization in (6) implies R(r) =

∑
k∈K λkrk with

λk = λ0 + λ1pk. Thus the objective becomes linear in
r,
∑
k∈K

(
1/|U|

∑
i∈U aik + λk

)
rk, and the ξi, i ∈ U

constraints are absorbed into the objective. We then
follow the overall procedure in (Dash et al., 2018) of
solving the linear programming (LP) relaxation, using
column generation to add variables only as needed.

We make the following departures from Dash et al.
(2018). As noted, (10) has a constraint on false negative
rate instead of a corresponding objective term and
a complexity penalty R(r) while Dash et al. (2018)
use a constraint. As a result, the LP reduced costs,
needed for column generation, are different. With dual
variables µi ≥ 0, i ∈ I corresponding to the ξi, i ∈ I
constraints in (10), the reduced cost of conjunction k is
now 1/|U|

∑
i∈U aik + λk −

∑
i∈I µiaik, which remains

a linear function of aik, allowing the same column
generation method to be used. We also avoid the
need for an IP solver as used in Dash et al. (2018)
by a) solving the column generation problem using a
beam search algorithm from (Wei et al., 2019), and
b) restricting (10) to the final columns once column
generation terminates, converting to a weighted set
cover problem, and applying a greedy algorithm to
obtain an integer solution.

5 EXPERIMENTS

In our experiments, we seek to address the following
questions, while relating the performance of OverRule
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to that of MaxBox (MB) (Fogarty et al., 2016), which
is also designed to produce interpretable study popula-
tions. (i) Why is support estimation important?
In Section 5.1 we give a conceptual illustration using
the Iris dataset, where MaxBox returns a description
that empirically includes a large space outside of the
true overlap region. (ii) How well does OverRule
approximate the base estimators / true overlap
region? In Section 5.2 we use the Jobs (LaLonde,
1986) dataset to show that performance of OverRule
is comparable to that of the base estimators, and gen-
erally surpasses the performance of MaxBox. (iii) Do
the resulting rules yield any insights? We apply
OverRule to overlap estimation in two real-world clini-
cal datasets on (1) post-surgical opioid prescriptions,
and (2) policy evaluation in antibiotic prescriptions.
For the former, we conducted a user study with three
clinicians to interpret and critique the output, with
additional comparison to the output of MaxBox.

OverRule and MaxBox algorithms are both meta-
algorithms in the sense that they take (as input) labels
indicating whether each data point is in the overlap set.
To generate these labels, we use a variety of base over-
lap estimators: (i) Covariate Bounding Boxes: The
intersection of covariate (marginal) bounding boxes
(CBB), analogous to classical balance checks in causal
inference. The bounding boxes are selected to cover the
[(1−α)/2, (1 +α)/2] quantiles of the data. (ii) Propen-
sity Score Estimators: Standard propensity score es-
timators as described in (8) and Crump et al. (2009)
with logistic regression (PS-LR) or k-nearest neigh-
bors (PS-kNN) estimates of the propensity. These can
be viewed as a binary version of overlap weights (Li
et al., 2018). (iii) One-Class SVMs: One-Class Support
Vector Machines (OSVM) to first estimate conditional
supports and then use their intersection as overlap la-
bels. Details on hyperparameter selection and feature
binarization are given in the supplement, along with
general guidance on hyperparameter selection depend-
ing on user goals, from optimizing an observable metric
(e.g., accuracy w.r.t the base estimator), to generating
shorter rule sets, to exploring structure in the data.

5.1 Illustrative Example: Iris

We use the Iris dataset to illustrate the importance
of combining explicit support estimation (lacking in
MaxBox) with an interpretable characterization of the
overlap region (lacking in propensity score models). We
use OverRule to identify the overlap between members
of two species of Iris, as represented by their sepal
and petal dimensions. In Figure 2, we visualize the
estimates Ô learned using OverRule and MaxBox in
the space of sepal length and width. In contrast, the
coefficients of a logistic regression propensity score
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Figure 2: Overlap (orange stripes) between Versicolor
(blue circles) and Virginica (red triangles) species in the
Iris dataset as identified by OverRule (left) and MaxBox
(right) using the same base estimator of propensity.
Black stars indicate samples of the (unobserved) Setosa
species. We see that MaxBox identifies several of the
Setosa samples as being in the overlap set, despite it
being outside of the support of the observed data.

AND NOT Rule S.4:

Hispanic

and RE75 > $26k

Age ≤ 27 y.o

and ¬ Degree

Rule B.1:

Support rules ෡𝓢

Overlap rules ෡𝓑

AND NOT Rule S.3:

¬Married

and RE75 > $32k

NOT Rule S.1:

Yrs. Edu. > 11

and ¬ Degree

and RE74 > $33k

AND NOT Rule S.2:

Yrs. Edu. > 11

and ¬ Degree

and RE75 > $32k

AND NOT Rule S.6:

RE74 > $33k

and RE75 in (0, $26k] 

AND NOT Rule S.7:

RE74 in (0, $26k]

and RE75 > $32k 

AND NOT Rule S.5:

Black

and Hispanic

Black

and ¬Married

OR Rule B.2:

RE75 ≤ $10k

and ¬Married

OR Rule B.3:

Figure 3: OverRule description of the overlap region
O in the Jobs dataset learned using the LR propensity
base estimator, achieving held-out balanced accuracy
of 0.88. ¬ indicates a negation, and CNF support
rules are given with rule-level negations applied for
readability. If none of the support rules (top) and any
of the overlap rules (bottom) apply, a subject is in O.

model, [−1.7,−1.5, 2.5, 2.6]> reveal very little about
which points lie in the overlap set.

5.2 Job Training Programs

In this section, we demonstrate that OverRule com-
pares favorably to MaxBox in terms of approximating
both the derived overlap labels (using a base estima-
tor), as well as the “ground truth” overlap labels in a
real dataset. To do so, we use data from a famous trial
performed to study the effects of job training (LaLonde,
1986; Smith and Todd, 2005), in which eligible US cit-
izens were randomly selected into (T = 1), or left
out of (T = 0) job training programs. The RCT
(E = 1), which satisfies overlap by definition, has since
been combined with non-experimental control samples
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Table 1: Overlap estimation in Jobs. Balanced accu-
racy (Acc), false positive rate (FPR), false negative rate
(FNR), and number of literals (L) with standard devi-
ations over 5-fold CV. MB and OR indicate MaxBox
and OverRule. MB did not run with CBB.

Acc FPR FNR L

Baselines (base estimators):
CBB 0.75± 0.02 0.12± 0.01 0.38± 0.03 —
OSVM 0.82± 0.01 0.22± 0.03 0.14± 0.02 —
PS-k-NN 0.90± 0.02 0.14± 0.02 0.05± 0.02 —
PS-LR 0.96± 0.01 0.10± 0.01 0.09± 0.03 —

MaxBox with base estimator:
OSVM 0.68± 0.01 0.09± 0.02 0.54± 0.01 16
PS-kNN 0.84± 0.01 0.03± 0.01 0.29± 0.02 16
PS-LR 0.80± 0.02 0.04± 0.01 0.35± 0.04 16

OverRule with base estimator:
CBB 0.83± 0.01 0.16± 0.01 0.19± 0.02 20
OSVM 0.84± 0.02 0.25± 0.03 0.07± 0.02 23
PS-kNN 0.89± 0.02 0.16± 0.02 0.06± 0.02 40
PS-LR 0.88± 0.02 0.15± 0.04 0.09± 0.01 21

(E = 0, T = 0), forming a larger observational set
(Jobs), to serve as a benchmark for causal effect esti-
mation (LaLonde, 1986). Here, we aim to characterize
the overlap between treated and control subjects.

Due to the trial’s eligibility criteria, the experimental
and non-experimental cohorts barely overlap; standard
logistic regression separates the experimental and non-
experimental groups with held-out balanced accuracy
of 0.96. Since all treated subjects were part of the ex-
periment, the experimental cohort perfectly represents
the overlap region. For this reason, we use the experi-
ment indicator E as ground truth for O, at the risk of
introducing a small number of false negatives. In stud-
ies of causal effects in this data, the following features
were included to adjust for confounding: Age, #Years
of education (Educ), Race (black/hispanic/other), Mar-
ried, No degree (NoDegr), Real earnings in 1974 (RE74)
and 1975 (RE75). These are the features X for which
we estimate overlap.

We present results in Table 1 and Figure 3, where
all balanced accuracies are w.r.t. the ground truth in-
dicator E. For the propensity base estimators, the
OverRule approximations achieve slightly lower bal-
anced accuracies than the base estimator, but with a
simpler description, while for the other base estimators
the accuracy is actually better. OverRule compares
favorably to MaxBox on balanced accuracy, although
MaxBox generally achieves a lower FPR, likely because
it does not try to retain a fixed fraction β of the over-
lap set. In the supplement, we show that the held-out
balanced accuracy quickly converges as the number of
literals in the rules increases and correlates strongly
with the quality by which the rule set approximates

the base estimator.

The learned support rules in Figure 3 demonstrate that
support estimation can find gaps in the dataset that are
intuitive, such as a lack of individuals with high income
but no degree (Rules S.1-2) or whose income changes
dramatically from 1974 to 1975 (Rules S.6-7). The
learned overlap rules conform to expectations, as the
eligibility criteria for the RCT allow only subjects who
were currently unemployed and had been so for most of
the time leading up to the trial—factors that correlate
with age and education (Rule B.1), previous income
(Rule B.3), and marital status (Rules B.2-3) (Smith
and Todd, 2005).

5.3 Post-surgical Opioid Prescriptions

Opioid addiction affects millions of Americans. Un-
derstanding the factors that influence the risk of ad-
diction is thus of great importance. To this end, Brat
et al. (2018) and Zhang et al. (2017) study the effect of
choices in opioid prescriptions on the risk of future mis-
use. Here, we study a group of post-surgical patients
who were given opioid prescriptions within 7 days of
surgery, replicating the cohort eligibility criteria of Brat
et al. (2018) using a subset of the MarketScan insurance
claims database. We compare groups of patients with
morphine milligram equivalent (MME) doses above and
below the 85th percentile in the cohort, MME=450.
Subjects were represented by basic demographics (age,
sex), diagnosis history, and procedures billed as surgi-
cal on the index date (not mutually exclusive). Cohort
statistics are given in the supplement. We fit three
models: An OverRule model (OR) using DNF support
rules and a random forest base estimator, a MaxBox
model (MB) (Fogarty et al., 2016) with the same base
estimator, and another OverRule model describing the
complement of O (OR-C). The balanced accuracies
of these models w.r.t. the base were 0.90 (OR), 0.77
(MB) and 0.92 (OR-C). Learning took 10 minutes for
OverRule (Python) and 7 minutes for MaxBox (R).
Other hyperparameter details are in the supplement.

In Figure 4, we summarize the rules learned by OR
which cover 27% of the overall population. MB learned:
(Musculoskeletal surg. ∧ ¬Mediastinum surg. ∧ ¬Male gen-
ital surg. ∧ ¬Maternity surg. ∧ ¬Lumbosacral spondylosis
without myelopathy) which covers 17% of patients. The
rules learned by OR-C are presented in the supplement.

To evaluate the interpretability of the output, we con-
ducted a qualitative user study through a moderated
discussion with three participants: two attending sur-
geons (P1 & P2) and a 4th year medical student (P3)
at a large US teaching hospital. Before seeing the out-
puts of any method, the participants were asked to give
their expectations for what to find in the overlap set.
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Rule S.1:

History: and Surgical procedure:
¬ Injury of face and neck ¬ Endocrine system

and ¬ Unspecified septicemia and ¬ Mediastinum (thoracic cavity)

and ¬ Other injury of chest wall and ¬Auditory system
and ¬ Acute respiratory failure and Age ∈ [0, 64]
and ¬ Altered mental status 

Rule B.1:

Surgical procedure:
Musculoskeletal

or Rule B.2:

Age > 44
and Male
and Surgical procedure:

Cardiovascular
and ¬ Urinary system (e.g, bladder)
and ¬ Male genital system

or Rule B.3:

Surgical procedure:
Nervous (e.g., epidural)

and ¬ Maternity (e.g., C-section)
and ¬ Female genital system
or Rule B.4:

Age > 23
and Surgical procedure:

¬ Maternity
and History:

Thoracic or lumbosacral 
neuritis or radiculitis

𝒪( = S.1 ∧ (B.1 ∨ B.2 ∨ B.3 ∨ B.4)Support rules 𝒮

Propensity overlap rules ℬ

Figure 4: OverRule description of post-surgical patients
likely to receive both high and low opioid doses. A
patient is in the overlap set if the support rule (top) ap-
plies and any propensity overlap rule (bottom) applies.
¬ indicates negation. The rules cover 27% of patients
with balanced accuracy of 0.90 w.r.t. the base estima-
tor. Surgical procedures are not mutually exclusive.

The participants expected that the overlap set would
mostly correspond to patients in the higher dose range,
as these patients are often considered also for smaller
doses, and that overlap would be driven largely by
surgery type. All participants expected Musculoskele-
tal and Cardiovascular surgery patients to be predom-
inantly in the higher dose group, and sometimes in
the lower, and one suggested that Maternity surgeries
(e.g., C-sections) would be only in the lower range.
These comments are all consistent with the findings of
OverRule, which identified all of these surgery types
as important. MaxBox identified only Musculoskeletal
surgery patients as overlapping. One participant ex-
pected history of psychiatric disease and Tobacco use
disorder to be predictive of higher prescription doses
for some patients, and thus overlap. Neither method
identified psychiatric disease, but Tobacco use disorder
was identified by OR-C as predictive (see supplement).

The participants found the support rules (Ŝ) output
by OR (Figure 4 top) intuitive. P1 stated that En-
docrine surgeries are not typically followed by opioid
prescriptions. They found the MaxBox and OR rule de-
scriptions easy to interpret, and discussion focused on
their clinical meaning. The first three propensity over-
lap rules B.1-B.3 were all consistent with expectation
as described above, with the caveat that Cardiovascu-
lar patients are not typically stratified by Urinary and
Genital surgeries. This was later partially explained by
catheters being billed as Urinary and P3 interpreted

this as a proxy for more severe Cardiovascular surgeries.
P1 pointed out the value in discovering such surprising
patterns that may be hidden in black-box analyses.
The OR-C rules were found hard to interpret due to
many double negatives (“excluded from exclusion”), but
were ultimately deemed clinically sound.

Remark: We noted that these support rules primarily
exclude individually rare features, in lieu of e.g., finding
that certain non-rare surgery types do not co-occur.
This motivated both (1) an empirical study (w/semi-
synthetic data) of how support rule hyperparameters
influence the recovery of these interactions, and (2) the
generation of new rules. Both are in the supplement.

5.4 Policy Evaluation of Antibiotic
Prescription Guidelines

Using the policy evaluation formulation of Bε(π) (Sec-
tion 3.1), we apply OverRule to assess overlap for a
policy that follows clinical guidelines published by the
Infectious Disease Society of America (IDSA) for treat-
ment of uncomplicated urinary tract infections (UTIs)
in female patients (Gupta et al., 2011). Using medical
records from two academic medical centers, we apply
OverRule to a cohort of 65,000 UTI patients to test
whether it can recover a clinically meaningful overlap
set. From a qualitative perspective, we discussed the
resulting rules with an infectious disease specialist, who
verified that they have a clear clinical interpretation
as identifying primarily outpatient cases and uncompli-
cated inpatient cases, which are where the guidelines
are applied in practice. Detailed results (including
quantitative results) are given in the supplement.

6 CONCLUSION

We have presented OverRule—an algorithm for learning
rule-based characterizations of overlap between popu-
lations, or the inputs for which policy evaluation from
observational data is feasible. The algorithm learns to
exclude points that are marginally out-of-distribution,
as well as points where some population/policy has low
density. We gave theoretical guarantees for the gener-
alization of our procedure and evaluated the algorithm
on the task of characterizing overlap in observational
studies. These results demonstrated that our rule de-
scriptions often have similar accuracy to black-box es-
timators and outperform a competitive baseline. In an
application to study treatment-group overlap in post-
surgical opioid prescription, a qualitative user study
found the results interpretable and clinically meaning-
ful. Similar observations were made in an application
to evaluation of antibiotic prescription policies. Future
research challenges include investigating the scalability
of the method with the dimensionality of the input.
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