
Supplementary Materials for DYNOTEARS: Structure Learning

from Time-Series Data

Roxana Pamfil1⇤, Nisara Sriwattanaworachai1⇤, Shaan Desai1†, Philip Pilgerstorfer1,
Paul Beaumont1, Konstantinos Georgatzis1, Bryon Aragam2

1QuantumBlack, a McKinsey company 2University of Chicago
causal@quantumblack.com bryon@chicagobooth.edu

⇤These authors contributed equally.

A Comparison of one-stage and

two-stage algorithms

It is possible to minimize the DYNOTEARS objective
using either a one-stage algorithm (see Section 2.2)
or a two-stage algorithm (see Section 2.3). The two
formulations give nearly identical results when the num-
ber of samples exceeds the number of variables (i.e.,
when n� dp). However, the two-stage algorithm runs
somewhat faster, so it should be the preferred option
in cases where there is su�cient data.

The di↵erence between the two implementations be-
comes noticeable especially when the number of sam-
ples is below the number of variables. In such cases,
estimating the reduced-form VAR from Equation (9)
leads to overfitting. In particular, when n < dp, we are
solving an underdetermined system, so the residual is
e = 0 and we cannot get a meaningful estimate of W.
One might resort to regularization by imposing an `1
penalty to enforce the sparsity of Bi in Equation (9).
As Ai = Bi(I �W) = Bi � BiW, we see that the
sparsity of Bi does not translate directly to the sparsity
of Ai. We also observe empirically that Ai is denser
than Bi in most cases. As a result, one should use a
larger regularization parameter in the two-stage setting
compared to the one-stage setting. However, to prevent
error propagation, it is preferable to estimate W and
A simultaneously via the combined loss from (5).

B Numerical experiments

B.1 Alternative algorithms

The first algorithm that we use for benchmarking is
based on an approach that Murphy proposed in Murphy
(2002). His idea was to learn intra-slice and inter-slice
structures independently; the former task reduces to a
static structure-learning problem, and the latter can

† Contributed during an internship at QuantumBlack.

be viewed as a feature-selection problem. We use static
NOTEARS (with `1 regularization) to estimate W,
and we use Lasso regression (which incorporates `1
regularization by definition) to estimate A. This pro-
vides a more appropriate comparison to DYNOTEARS
than the original setup (Friedman et al., 1998; Murphy,
2002). Note that learning W and A independently in
this way is not equivalent to the two-step formulation of
DYNOTEARS from Section 2.3; in the latter case, we
apply NOTEARS to the residuals e, rather than to the
original data X. Our variant of Murphy’s method has
the same hyperparameters as DYNOTEARS: two regu-
larization parameters �W and �A, and two thresholds
⌧W and ⌧A for the weights.

The second algorithm is the SVAR estimation method
from Hyvärinen et al. (2010), a time-series version of
the LiNGAM algorithm from Shimizu et al. (2006). It
follows the two-step approach from Section 2.3 of first
estimating a reduced-form VAR model and then apply-
ing LiNGAM to the residuals. With the assumption
of non-Gaussian errors, the resulting model is identi-
fiable (Hyvärinen et al., 2010; Shimizu et al., 2006).
The two hyperparameters of the time-series version of
LiNGAM are the weight thresholds ⌧W and ⌧A, which
we include for comparability with the other algorithms.
(The authors of Hyvärinen et al., 2010 did not have
this thresholding as part of their method.)

The third algorithm in our experiments is tsGFCI (Ma-
linsky and Spirtes, 2018), a time-series extension of
the Greedy Fast Causal Inference (GFCI) algorithm
(Ogarrio et al., 2016). Both GFCI and tsGFCI are hy-
brid algorithms that rely on conditional-independence
tests and on local changes to a graph to incremen-
tally improve the BIC score. These algorithms work
in settings with latent variables and return a partial
ancestral graph (PAG). We define heuristics to extract
adjacency matrices W and A from the output PAG
(see Appendix B.2 for details). When there is ambi-
guity in whether an edge is present or not, we treat

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

tsGFCI as favorably as possible. One important param-
eter in tsGFCI is the “penalty discount”; larger values
of this parameter increase the BIC penalty and thus
result in sparser output graphs. In our experiments
on simulated data, we find that setting the penalty
discount between 2 and 4 produces output graphs that
are closest to the ground truth. Our simulations from
Section 3.2 and Appendix B.7 use a value of 2 (which
is also the default value).

B.2 Interpreting a PAG as a DAG

The tsGFCI algorithm returns a partial ancestral graph
(PAG), which one cannot immediately compare to a
ground-truth DAG. Thus, we developed a set of rules
to convert the PAG output to a DAG, making sure to
do so in a manner that favors tsGFCI. The rules are
as follows:

• If an edge is directed (i.e., A ! B in the PAG),
then we treat it as a directed edge in the DAG.

• If an edge in the PAG is either directed or it
indicates the presence of a latent factor (i.e., A
� ! B), then we check whether the directed edge
exists in the ground truth graph and assume that
tsGFCI made the correct choice.

• If two nodes are related through a latent variable
(i.e., A ! B in the PAG), then we disregard the
edge.

• If the edge is ambiguous (i.e., A � � � B), then
we assume that tsGFCI made the correct choice;
in other words, we check whether A ! B, B
A, or A is not connected to B in the ground-truth
DAG and we assume that tsGFCI made the same
choice.

Using these rules, we pick the outcomes most favorable
for tsGFCI in ambiguous cases. This implies, in partic-
ular, that our results slightly overstate the performance
of tsGFCI on simulated data.

B.3 Hyperparameter selection

For our simulations with n = 500, we apply a small
amount of regularization, �W = �A = 0.05, for both
DYNOTEARS and NOTEARS + Lasso. Because the
number of samples exceeds the number of variables,
performance is not particularly sensitive to the amount
of regularization. For all algorithms except tsGFCI, we
apply the weight thresholds ⌧W = 0.3 and ⌧A = 0.1.
We set ⌧W = 0.3 to be consistent with the experiments
for static NOTEARS from Zheng et al. (2018), and
we set ⌧A = 0.1 using an analogous heuristic. (We
experimented with other threshold values, and the
relative ranking of the algorithms was largely the same.)
For tsGFCI, we set the penalty discount to 2; recall
discussion from Appendix B.1.

Regularization becomes more important for n = 50,
so we set �W = �A = 0.2 for DYNOTEARS and
NOTEARS + Lasso. We set ⌧W = 0.3 and ⌧A =
0.2. We keep the penalty discount at 2 for tsGFCI,
as experimentation with other values did not yield
superior results.

Although we did not attempt to optimize hyperparam-
eters for our experiments on simulated data, our work
on the S&P100 and the DREAM4 datasets (see Sec-
tion 4) indicates ways in which one can estimate these
parameters through cross-validation.

B.4 Data generation process

We provide more details about the data generation
process that we use in our numerical experiments from
Section 3.

Intra-slice model As in Zheng et al. (2018), we use
either the Erdős–Rényi (ER, Newman, 2018) model or
the Barabási–Albert (BA, Barabási and Albert, 1999)
model to generate intra-slice graphs given a target mean
degree k (which counts both incoming and outgoing
edges). In the ER model, one samples edges using
i.i.d. Bernoulli trials. To ensure that the resulting
graph is a DAG, we sample lower-triangular entries
of Wbin in this way, and we then permute the rows
and columns to randomize node order. By setting the
probability of each Bernoulli trial to k/(d � 1), the
expected mean degree in the resulting graph is k, as
desired. The BA model (Barabási and Albert, 1999)
relies on a “preferential attachment” mechanism to
generate growing networks in which nodes are added
one by one. For each new node, one generates k/2
outgoing edges. The targets of these edges are selected
at random from the existing nodes, proportionally to
their current degrees. This mechanism encapsulates a
“rich get richer” e↵ect that produces, at the end of the
process, graphs with a power-law degree distribution.
The BA model thus produces graphs that mirror the
wide degree distributions that are common in many
real-world networks. By construction, this formulation
of the BA model generates DAGs. As for ER models,
we permute the rows and columns of the resulting
adjacency matrix so that nodes are not a priori sorted
in the topological order.

To go from an unweighted to a weighted DAG, we follow
Zheng et al. (2018) and we sample weights uniformly
at random from [�2.0, �0.5] [[0.5, 2.0].

Inter-slice model We use two models to generate
inter-slice graphs. One is a directed ER model in which
we sample entries of the binary adjacency matrix Abin

using i.i.d. Bernoulli trials with probabilities k/d. This
choice implies that the mean in-degree of nodes at time

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

t is equal to pk. The other model is a simplified type of
the so-called stochastic block model (SBM, Newman,
2018). In our simulations, we partition the d variables
into two blocks, and we assume that the probability of
an inter-slice edge from i to j is equal to pin if i and j
are in the same block, and it is equal to pout otherwise.
We select pin and pout such that pout/pin = 0.3 (so
edges are more likely between two variables in the same
cluster) and such that the expected mean in-degree of
nodes at time t is pk. In applications to real data we
expect some clustering of the variables and of their
causal e↵ects, and we rely on SBMs to replicate this
feature in our simulation experiments.

Given a binary inter-slice adjacency matrix Abin, we
sample edge weights uniformly at random from a spec-
ified interval, which we allow to depend on p. More
precisely, we sample edge weights from slice t�p to slice
t from [�0.5↵, �0.3↵][[0.3↵, 0.5↵], where ↵ = 1/⌘p�1

with ⌘ � 1. The weight decay parameter ⌘ therefore
reduces the influence of variables that are farther back
in time from the current time slice. (Of course, there
is no such penalty when ⌘ = 1.) We incorporate this
parameter into our data-generation process because
it replicates a time-decay scenario that we expect to
encounter in real-world applications. It also allows us
to determine whether DYNOTEARS can learn edge
weights across multiple scales, ideally without hav-
ing to specify di↵erent thresholds for each matrix Ai

(i 2 {1, . . . , p}).

Once we have W and A, we use the SEM from (3) to
generate a data matrix X of size n⇥d. The noise term
Z in (3) is a matrix of i.i.d. random variables. Following
Zheng et al. (2018), we use normal and exponential
distributions with tuneable scale parameters (set to 1
by default) for these random variables.

B.5 Autoregressive order

In Section 3.2, we assumed that the correct value of
the autoregressive order p is given. This is rarely the
case in applications, so it is useful to be able to es-
timate p from data. In Figure B.1, we indicate two
such potential diagnostics for a simulated dataset with
ptrue = 5. In Figure B.1a, we see that the objective
function decreases as we run DYNOTEARS for increas-
ing values of p. However, the objective values plateau
once p > ptrue, as the increasingly complex models do
not yield better fits to the data. For real-world data,
where there is no single “true” value for p, one can
also look at plateaus in the BIC score. An alternative
method for selecting p is to look at the magnitude of
the weights in the estimated inter-slice matrices, as
we do in Figure B.1b. For p > ptrue, Ap does not
contain entries that are significantly above 0 in magni-
tude. Thus, in cases when p is unknown, one can keep

1 2 3 4 5 6 7 8 9 10
p

5

10

F
(W

,A
)

p > ptrue

(a) Objective value as a function of p

1 2 3 4 5 6 7 8 9 10
p

0.0

0.5

1.0

1.5

m
ax

(A
p)

p > ptrue

(b) Largest absolute value in Ap as a function
of p

Figure B.1: Results for fitting a model using di↵erent
values of p to data with ptrue = 5. (a) The objective
value F (W,A) plateaus for p > ptrue. (b) The esti-
mated edge weights in Ap are close to 0 for p > ptrue.

increasing p until the entries of Ap become negligible.

B.6 Running times

We provide some illustrative running times for di↵er-
ent values of d in Figure B.2. These running times
also depend on the density of the underlying graph
and on the distribution of edge weights, although it
is di�cult to quantify the precise relationship. The
speed of DYNOTEARS and NOTEARS + LiNGAM
is heavily dependent on the values of the regularisa-
tion parameters, with larger values resulting in faster
running times.1

Although tsGFCI and LiNGAM run significantly faster
than DYNOTEARS, we believe that the gain in accu-
racy from using the latter makes it worthwhile even
in cases with hundreds of variables. As a reminder,
running DYNOTEARS on the S&P100 dataset (which
has d ⇡ 100) takes a few minutes on a typical laptop.

1For the DREAM4 datasets, the CPU times are approx-
imately 0.1 minutes, 1.5 minutes, and 60 minutes, respec-
tively, for �W 2 {0.1, 0.01, 0.001} and �A = 0.01.

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

Figure B.2: CPU times for the simulations from Fig-
ure B.3 (Gaussian noise and n = 500). Running times
are comparable for Exponential noise and for n = 50.

B.7 Additional results

Additional ground-truth graphs The relative
performance of di↵erent algorithms varies as we change
the density of the ground-truth graphs. In Figure B.3,
we show the F1 scores for simulated data with Gaus-
sian noise, n = 500, four choices of intra-slice graphs
(columns), and four choices of inter-slice graphs (rows).
The performance of tsGFCI is especially sensitive to
changes in graph densities, with a notable drop in F1
scores when the intra-slice graph is ER4.

Additional performance metrics In Figures B.4
to B.7, we plot four additional performance metrics to
complement the F1 scores from Figure 3 in the main
part of the paper. The metrics are standard and are
defined as follows:

• True positive rate (TPR): number of correctly-
identified edges divided by the number of edges in
the ground-truth graph.

• False discovery rate (FDR): number of incorrectly-
identified edges divided by the number of edges in
the estimated graph.

• Structural Hamming distance (SHD): number
of changes (i.e., edge removals, edge additions,
and edge reversals) required to go from one (un-
weighted) graph to another.

• Frobenius norm (FRO) of the di↵erence between
two weighted matrices (i.e., between a ground-
truth adjacency matrix and an estimated matrix).

Note that the Frobenius norm does not apply to the ts-
GFCI algorithm, which only returns unweighted edges.

For n = 500, DYNOTEARS generally outperforms
the other algorithms for both Gaussian (Figure B.4)

and exponential noise (Figure B.5); there are some
exceptions to this when the number of variables is small,
d 2 {5, 10, 20}. For n = 50 (see Figures B.6 and B.7),
NOTEARS + Lasso and LiNGAM output estimated
graphs that are significantly denser than the ground
truth. As a result, while these two algorithms have large
TPRs, their overall performance is not competitive due
to a large number of false positives.

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

Figure B.3: F1 score for n = 500, p = 1, d 2 {5, 10, 20, 50, 100}, Gaussian noise, and di↵erent choices of intra-slice
graphs (columns) and inter-slice graphs (rows). Each marker indicates the mean performance across 5 algorithms
runs (each on a di↵erent simulated dataset).

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

(a) True positive rate (b) False discovery rate

(c) Structural Hamming distance (d) Frobenius norm

Figure B.4: Results for n = 500, Gaussian noise. Each panel corresponds to a di↵erent performance metric.

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

(a) True positive rate (b) False discovery rate

(c) Structural Hamming distance (d) Frobenius norm

Figure B.5: Results for n = 500, exponential noise. Each panel corresponds to a di↵erent performance metric.

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

(a) True positive rate (b) False discovery rate

(c) Structural Hamming distance (d) Frobenius norm

Figure B.6: Results for n = 50, Gaussian noise. Each panel corresponds to a di↵erent performance metric.
LiNGAM does not work for n < d, so the corresponding results are missing from the plots.

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

(a) True positive rate (b) False discovery rate

(c) Structural Hamming distance (d) Frobenius norm

Figure B.7: Results for n = 50, exponential noise. Each panel corresponds to a di↵erent performance metric.
LiNGAM does not work for n < d, so the corresponding results are missing from the plots.

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

C S&P100 application

C.1 Parameter selection

We hold out the last 400 trading days as a validation set
and we discard 2 data points between the validation
and trainining sets. This roughly corresponds to a
33%/66% split. We report the Frobenius norm across
a range of parameter values in Figure C.1. Note that
the multiples of 3 are used as half-way points in the
log-10 space and added to create a finer grid. However,
we find that the surface is fairly smooth and we show
these values for completeness. We select �W = 0.1 and
�A = 0.1, as they correspond to the smallest values in
the grid.

0.001 0.003 0.01 0.03 0.1 1.0
A-parameter �a

0.
00

01
0.

00
1

0.
01

0.
03

0.
1

0.
3

1.
0

W
-p

ar
am

et
er

�
w

180.813 178.464 173.603 170.472 169.643 170.025

180.655 177.623 172.894 170.442 170.240 170.273

178.200 175.227 170.739 167.566 167.949 168.277

178.521 175.916 171.781 167.521 167.566 167.436

178.855 176.435 171.851 168.362 167.387 167.665

202.998 200.129 193.937 188.568 186.061 186.055

231.327 228.913 223.632 219.003 217.606 217.596

180

195

210

225

Figure C.1: Heatmap of validation loss using the Frobe-
nius norm for the S&P100 dataset across a range of �A

and �W parameters. Note that �W = 1 and �A = 1
correspond to zero-matrices for W and A and the
loss is equal to the Frobenius norm of the dataset,
217.596. The loss for static NOTEARS with �W = 0.1
is 167.784.

D DREAM4 application

D.1 Cross validation

We use 10-fold cross validation to select the regulariza-
tion parameters �W and �A. The number of folds is a
natural choice, as each dataset consists of 10 separate
time series evaluated at 21 time steps for the same 100
genes. We evaluate performance on the validation set
using the root mean squared error (RMSE). We find
that for su�ciently low �A, the RMSE is not sensi-
tive to the values of �W (see Figure D.1). A plausible
explanation is that our data consist of time steps sepa-
rated at intervals of 50, but the underlying process is
at a slower scale; the model therefore predominantly

captures lagged inter-slice directed edges. As such, we
set �W to the largest value in the range of optimal
RMSE to enforce sparsity and simplicity. We apply
cross validation separately for each of the 5 datasets in
DREAM4, and we use the optimal parameters in each
case to compute the average AUPR and AUROC.

D.2 Comparison to other methods

In tables D.1 and D.2, we compare the performance of
DYNOTEARS to that of other methods. We obtain
performance metrics for other algorithms from Lu et al.
(2019).

The performance of our method can be compared to
other solvers. Note that our model returns two matrices,
W and A, which can be interpreted as learning fast-
acting (W) and slow-acting (A) influences. As such,
we combine the two matrices by an element-wise sum
to generate our final weight matrix. The results are
summarized in Table D.1 and Table D.2. Note that
there are missing values in the table because they were
not initially reported.

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

Figure D.1: Heatmaps of cross-validation RMSE for the 5 DREAM4 datasets across a range of �A and �W

parameters.

Algorithm Method Average STD Network Network Network Network Network Overall DBN
Type AUROC AUROC 1 2 3 4 5 Rank Rank

DYNOTEARS DBN 0.664 0.047 0.748 0.612 0.634 0.674 0.653 8 2
Ebdbnet DBN 0.643 11 4
G1DBN DBN 0.676 0.030 0.680 0.640 0.680 0.660 0.720 6 1
ScanBMA DBN 0.657 10 3
VBSSMa DBN 0.624 0.060 0.590 0.560 0.590 0.670 0.710 13 5
VBSSMb DBN 0.618 0.060 0.560 0.570 0.620 0.640 0.700 14 6
Jump3 DT 0.720 0.040 0.770 0.670 0.740 0.680 0.740 2
CSIc GP 0.610 0.030 0.650 0.560 0.630 0.610 0.600 15
CSId GP 0.728 0.010 0.740 0.710 0.720 0.740 0.730 1
GP4GRN GP 0.686 0.040 0.720 0.620 0.700 0.700 0.690 4
ARACNE MI 0.558 0.010 0.560 0.540 0.560 0.550 0.580 18
CLR MI 0.678 0.030 0.700 0.630 0.710 0.670 0.680 5
MRNET MI 0.672 0.030 0.680 0.630 0.710 0.660 0.680 7
TSNI ODE 0.566 0.030 0.550 0.550 0.600 0.540 0.590 17
BETS VAR 0.688 0.060 0.780 0.650 0.640 0.700 0.670 3
Enet VAR 0.662 0.050 0.730 0.620 0.620 0.670 0.670 9
GCCA VAR 0.584 0.020 0.600 0.570 0.600 0.580 0.570 16
LASSO VAR 0.643 11

Table D.1: AUROC scores of 18 structure-learning algorithms on the DREAM4 gene-expression dataset. Values
for methods other than DYNOTEARS are from Lu et al. (2019).

Supplementary Materials for DYNOTEARS: Structure Learning from Time-Series Data

Algorithm Method Average STD Network Network Network Network Network Overall DBN
Type AUPR AUPR 1 2 3 4 5 Rank Rank

DYNOTEARS DBN 0.173 0.041 0.235 0.110 0.177 0.188 0.155 4 1
Ebdbnet DBN 0.043 21 6
G1DBN DBN 0.110 0.010 0.110 0.100 0.130 0.100 0.110 8 2
ScanBMA DBN 0.101 9 3
VBSSMa DBN 0.086 0.020 0.080 0.050 0.110 0.100 0.090 12 5
VBSSMb DBN 0.096 0.030 0.090 0.060 0.120 0.120 0.090 11 4
dynGENIE3 DT 0.198 0.050 0.220 0.140 0.250 0.220 0.160 2
GENIE3 DT 0.072 0.020 0.050 0.060 0.100 0.060 0.090 14
Jump3 DT 0.182 0.050 0.260 0.110 0.190 0.170 0.180 3
CSIc GP 0.070 0.040 0.130 0.030 0.070 0.070 0.050 16
CSId GP 0.208 0.030 0.260 0.170 0.220 0.200 0.190 1
GP4GRN GP 0.162 0.050 0.220 0.100 0.160 0.210 0.120 6
ARACNE MI 0.046 0.010 0.030 0.040 0.060 0.040 0.060 20
CLR MI 0.072 0.020 0.050 0.060 0.110 0.060 0.080 14
MRNET MI 0.068 0.020 0.040 0.060 0.100 0.060 0.080 18
tl-CLR MI 0.168 0.050 0.180 0.110 0.240 0.150 0.160 5
Inferelator ODE 0.069 0.010 0.063 0.071 0.075 0.073 0.062 17
TSNI ODE 0.026 0.010 0.020 0.030 0.030 0.020 0.030 23
BETS VAR 0.128 0.020 0.160 0.100 0.130 0.140 0.110 7
Enet VAR 0.098 0.020 0.120 0.080 0.100 0.110 0.080 10
GCCA VAR 0.050 0.020 0.040 0.040 0.070 0.070 0.030 19
LASSO VAR 0.073 13
OKVAR-Boost VAR 0.034 0.020 0.050 0.050 0.030 0.020 0.020 22

Table D.2: AUPR scores of 23 structure-learning algorithms on the DREAM4 gene-expression dataset. Values for
methods other than DYNOTEARS are from Lu et al. (2019).

Pamfil, Sriwattanaworachai, Desai, Pilgerstorfer, Beaumont, Georgatzis, Aragam

References

Barabási, A.-L. and Albert, R. (1999). Emergence of
scaling in random networks. Science, 286(5439):509–
512.

Friedman, N., Murphy, K., and Russell, S. (1998).
Learning the structure of dynamic probabilistic net-
works. In Proceedings of the Fourteenth Conference
on Uncertainty in Artificial Intelligence, pages 139–
147. Morgan Kaufmann Publishers Inc.

Hyvärinen, A., Zhang, K., Shimizu, S., and Hoyer,
P. O. (2010). Estimation of a structural vector au-
toregression model using non-Gaussianity. Journal
of Machine Learning Research, 11(May):1709–1731.

Lu, J., Dumitrascu, B., McDowell, I. C., Jo, B., Barrera,
A., Hong, L. K., Leichter, S. M., Reddy, T. E., and
Engelhardt, B. E. (2019). Causal network inference
from gene transcriptional time series response to
glucocorticoids. bioRxiv, 587170.

Malinsky, D. and Spirtes, P. (2018). Causal structure
learning from multivariate time series in settings
with unmeasured confounding. In Proceedings of
2018 ACM SIGKDD Workshop on Causal Discovery,
pages 23–47.

Murphy, K. P. (2002). Dynamic Bayesian Networks:
Representation, Inference and Learning. PhD thesis,
University of California, Berkeley. AAI3082340.

Newman, M. E. J. (2018). Networks. Oxford University
Press.

Ogarrio, J. M., Spirtes, P., and Ramsey, J. (2016). A
hybrid causal search algorithm for latent variable
models. In Conference on Probabilistic Graphical
Models, pages 368–379.

Shimizu, S., Hoyer, P. O., Hyvärinen, A., and Kermi-
nen, A. (2006). A linear non-Gaussian acyclic model
for causal discovery. Journal of Machine Learning
Research, 7(Oct):2003–2030.

Zheng, X., Aragam, B., Ravikumar, P. K., and Xing,
E. P. (2018). DAGs with NO TEARS: Continuous
optimization for structure learning. In Advances in
Neural Information Processing Systems 31, pages
9472–9483.

