
Balancing Learning Speed and Stability in Policy Gradient
via Adaptive Exploration

Matteo Papini Andrea Battistello Marcello Restelli
Politecnico di Milano Politecnico di Milano Politecnico di Milano

Abstract

In many Reinforcement Learning (RL) appli-
cations, the goal is to find an optimal de-
terministic policy. However, most RL algo-
rithms require the policy to be stochastic in
order to avoid instabilities and perform a suf-
ficient amount of exploration. Adjusting the
level of stochasticity during the learning pro-
cess is non-trivial, as it is difficult to assess
whether the costs of random exploration will
be repaid in the long run, and to contain
the risk of instability. We study this prob-
lem in the context of policy gradients (PG)
with Gaussian policies. Using tools from the
safe PG literature, we design a surrogate ob-
jective for the policy variance that captures
the effects this parameter has on the learning
speed and on the quality of the final solution.
Furthermore, we provide a way to optimize
this objective which guarantees a stable im-
provement of the original performance mea-
sure. We evaluate the proposed methods on
simulated continuous control tasks.

1 Introduction

Reinforcement learning (RL, Sutton and Barto, 2018)
is an approach to adaptive intelligence that employs a
reward signal to train an autonomous agent on a gen-
eral task through direct interaction with an unknown
environment. The results recently achieved by RL in
challenging games (Mnih et al., 2015; Silver et al.,
2017; OpenAI, 2018) are astounding. However, in or-
der to apply RL to real-world scenarios (e.g., robotics,
autonomous driving, finance), we have to tackle fur-
ther challenges. Unlike games, problems involving

Proceedings of the 23rdInternational Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2020, Palermo,
Italy. PMLR: Volume 108. Copyright 2020 by the au-
thor(s).

physical systems are more naturally modeled as con-
tinuous control tasks. For this reason, we will focus on
policy gradient (PG, Sutton et al., 1999; Deisenroth
et al., 2013), an RL technique that employs stochas-
tic gradient ascent to optimize parametric controllers.
PG is particularly suitable for continuous tasks due
to its robustness to noise, convergence properties, and
versatility in policy design (Peters et al., 2005). An-
other perk of games is that they are easily simulated.
Simulations require a reliable model of the environ-
ment, which is often not available. Learning online
on a physical system (like a robot) sharpens the need
for stable learning algorithms, as large deviations from
known policies may yield unsafe behavior or unrecov-
erable costs.

Although we normally look for a deterministic con-
troller, PG is only able to stably improve stochastic
policies. A notable exception is Deterministic Policy
Gradient (DPG, Silver et al., 2014; Lillicrap et al.,
2016), which optimizes a deterministic policy while
collecting data with a noisy version of it. Even in
this case, the stochastic nature of the behavioral pol-
icy is necessary to maintain a sufficient level of ex-
ploration and avoid the local optima. This introduces
an inevitable trade-off: policy stochasticity facilitates,
stabilizes, and speeds up the learning of other policy
parameters (Ahmed et al., 2019). On the other hand,
random behavior yields worse online performance, and
may be unsafe in some applications. A natural solu-
tion to this problem is to adapt the amount of ex-
ploration during the learning process. Unfortunately,
this is highly non-trivial, as it falls under the infa-
mous exploration-exploitation dilemma. If exploration
is abandoned too soon, the agent may never know all
the relevant aspects of the task and get stuck in subop-
timal behavior. If the transition to deterministic be-
havior is delayed too much, the learning process may
become unnecessarily long and expensive. This prob-
lem has been thoroughly studied in the Multi-Armed
Bandit (MAB) literature (Bubeck and Cesa-Bianchi,
2012; Lattimore and Szepesvári, 2019). Adaptive ex-
ploration has a long history also in RL, mostly lim-
ited to the tabular setting (Kearns and Singh, 2002;

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Brafman and Tennenholtz, 2002; Strehl et al., 2009;
Jaksch et al., 2010; Lattimore and Hutter, 2014; Dann
and Brunskill, 2015; Dann et al., 2017; Jin et al.,
2018; Ok et al., 2018), with extensions to continuous
states (Ortner and Ryabko, 2012; Lakshmanan et al.,
2015; Bellemare et al., 2016). In Policy Gradient meth-
ods, it is common to learn the amount of stochasticity
via gradient ascent on the performance measure, like
any other policy parameter (Duan et al., 2016). As
randomness typically erodes performance, this greedy
approach can yield premature convergence to quasi-
deterministic policies, causing learning instability and
getting stuck to local optima. The current trend is to
augment the traditional performance objective (Sut-
ton et al., 1999) with an entropy bonus (Haarnoja
et al., 2017, 2018; Nachum et al., 2018; Shani et al.,
2018) which favors more stochastic policies. However,
the exploration-exploitation trade-off is still unsolved,
as one has to decide how much weight to give to the
entropy bonus.

In this paper, we propose an alternative approach: we
design a separate optimization objective for the policy
stochasticity that also accounts for the long-term ef-
fects of random exploration. We do so for the special
case of Gaussian policies, which are, however, the most
used in practice (Duan et al., 2016). In this frame-
work, the amount of exploration can be controlled via
the policy variance parameters1. To do so, we use in-
sights from the safe policy gradient literature (Kakade
and Langford, 2002; Pirotta et al., 2013, 2015; Papini
et al., 2017, 2019), where the effects of policy variance
on performance improvement have been already ex-
posed, but not fully exploited. We hence propose the
Meta-Exploring Policy Gradient (MEPG) algorithm,
that optimizes the variance parameters via gradient
ascent on the new surrogate objective, while concur-
rently optimizing the other parameters as in vanilla
PG.

Although built upon insights from the safe PG liter-
ature, the MEPG algorithm is heuristic and comes
with no formal guarantees. By developing an adap-
tive meta-parameter schedule, we devise the Stably
Exploring Policy Gradient (SEPG) algorithm, a vari-
ant of MEPG with guarantees of monotonic improve-
ment of the original performance objective. To do so,
we generalize existing improvement guarantees (Pap-
ini et al., 2019) for Gaussian policies to the previously
uncharted case of adaptive policy variance. These im-
provement guarantees come at the cost of worsening
learning speed and sample complexity, which can be

1Extensions to other classes of policies are possible,
but require to identify explicit scale parameters e.g.,
the temperature for Softmax policies or the variance for
(reparametrized) beta policies.

critical in RL applications, where collecting samples is
costly and time-consuming. Although the scope of this
work is mostly theoretical, for the sake of applicability,
we also relax the classical monotonic improvement con-
straint (Kakade and Langford, 2002) to a more general
bounded worsening constraint. This allows the practi-
tioner to specify how much performance he would ac-
cept to lose (and with which probability) at any policy
update, introducing a way to trade-off the stability of
learning with the time required.

The paper is structured as follows: in Section 2, we
provide an essential background on PG and review
the existing performance improvement guarantees for
this framework. In Section 3, we present our novel
exploration objective and the MEPG algorithm. In
Section 4.1, we extend existing improvement guar-
antees for Gaussian policies to the adaptive-variance
case, providing safe exact-gradient updates. In sec-
tion 4.2, we generalize these results to the more real-
istic stochastic-gradient case, and present the SEPG
algorithm. Finally, in Section 5, we evaluate the pro-
posed algorithms on simulated control tasks. Proofs
of all the formal statements are given in Appendix A.

2 Preliminaries

In this section, we provide an essential back-
ground on policy gradient methods, including existing
performance-improvement guarantees.

2.1 Policy Gradient Fundamentals

A continuous Markov Decision Process (MDP, Puter-
man, 1994) xS,A,P,R, γ, ρy is defined by a continu-
ous state space S Ď Rd; a continuous action space A; a
Markovian transition kernel P, where Pps1|s, aq is the
transition density from state s to s1 under action a;
a reward function R, where Rps, aq P r´Rmax, Rmaxs

is the reward for state-action pair ps, aq and Rmax is
the maximum absolute-value reward; a discount fac-
tor γ P r0, 1q; and an initial-state distribution ρ on S.
An agent’s behavior is modeled as a policy π, where
πp¨|sq is the density function over A in state s. We
study episodic MDPs with indefinite horizon. In prac-
tice, we consider episodes of length H, the effective
horizon of the task. A trajectory τ is a sequence of
states and actions ps0, a0, s1, a1, . . . , sH´1, aH´1q ob-
served by following a stationary policy, where s0 „ ρ
and sh`1 „ Pp¨|sh, ahq. The policy induces a measure
pπ over trajectories. We denote with Rpτq the total
discounted reward provided by trajectory τ : Rpτq “
řH´1
h“0 γ

hRpsh, ahq. Policies can be ranked based on
their expected total reward Jpπq “ Eτ„pπ rRpτqs.
Solving the MDP means finding an optimal policy
π˚ P arg maxπtJpπqu.

Matteo Papini, Andrea Battistello, Marcello Restelli

Policy gradient (PG, Sutton et al., 1999; Peters
and Schaal, 2008) methods restrict this optimiza-
tion problem to a class of parametric policies
ΠΘ “ tπθ : θ P Θ Ď Rmu, so that πθ is differentiable
w.r.t. θ. We denote the performance of a parametric
policy πθ with Jpθq. A locally optimal policy can be
found via gradient ascent on the performance measure:

θt`1 Ð θt ` αt∇θJpθtq,
where ∇θJpθq “ E

τ„pθ
r∇θ log pθpτqRpτqs , (1)

where t denotes the current iteration, pθ is short for
pπθ

, and pαtq
8
t“1 is a sequence of positive step sizes. In

practice, ∇θJ is not available, but can be estimated
from a batch of trajectories DN “ tτ1, . . . , τNu. The
GPOMDP (Baxter and Bartlett, 2001) algorithm (a
refinement of REINFORCE, Williams, 1992) provides
an unbiased gradient estimator:

p∇Nθ Jpθq “
1

N

N
ÿ

n“1

H´1
ÿ

h“0

˜

h
ÿ

i“0

∇θ log πθpa
n
i |s

n
i q

¸

¨
`

γhRpsnh, anhq ´ b
˘

, (2)

where b is a baseline used to reduce variance. Any
baseline that does not depend on actions preserves
the unbiasedness of the estimator.2 We employ the
variance-minimizing baselines provided by Peters and
Schaal (2008).

A widely used (Duan et al., 2016) policy class is the
Gaussian3:

πθpa|sq “
1

?
2πσω

exp

#

´
1

2

ˆ

a´ µυpsq

σω

˙2
+

, (3)

also denoted with N pa|µυpsq, σ2
ωq, where the action

space is A “ R, µυ is the state-dependent mean and
σ2
ω ą 0 is the variance (σω is the standard deviation).

The policy parameters consist of a vector of mean
parameters υ P Υ Ď Rm and a variance parameter
ω P Ω Ď R, i.e., θ ” rυT |ωsT and Θ ” ΥˆΩ Ď Rm`1.
We focus on the following, common (Rajeswaran et al.,
2017) parametrization:

µυpsq “ υ
Tφpsq, σω “ eω, (4)

where φp¨q is a vector of m state-features4. We also as-
sume that the state features are bounded in Euclidean
norm, i.e., supsPS }φpsq} ď ϕ, and both Υ and Ω are
convex sets.

2Some action-dependent baselines are also possible.
See (Tucker et al., 2018) for a discussion.

3We consider scalar actions for simplicity. Multi-
dimensional actions are discussed in Appendix D, together
with heteroskedastic exploration.

4This is a shallow policy since we assume to have the fea-
tures already available, as opposed to a deep policy, where
the features are learned together with υ in an end-to-end
fashion. Generalizations to deep neural policies are plausi-
ble, but beyond the scope of this paper.

Entropy regularization (Schulman et al., 2017) consists
in modifying the reward to favor policy stochasticity:

rrt “ p1´ τqrt ` τH pπp¨|stqq , (5)

where H pπp¨|stqq “ Ea„πp¨|stq r´ log πpa|stqs is the en-
tropy of the action distribution at state st and τ P
r0, 1q is a regularization coefficient. In the case of
Gaussian policies, the entropy bonus can be computed
in closed form and the GPOMDP algorithm can be
easily modified to account for the new reward func-
tion (e.g., Ahmed et al., 2019). Vanilla policy gradient
is recovered for τ “ 0.

2.2 Safe Policy Gradients

When learning on-line in the real world, we would
like to avoid oscillations in the performance Jpθq,
as large deviations from previously observed behavior
may compromise the safety of the system or deemed
unacceptable by stakeholders. A convenient way to
enforce this desideratum is through an improvement
constraint (Thomas et al., 2015):

Definition 2.1. Given a parametric policy πθ with
current parameter θt, we say that update ∆θ P Rm`1

is safe w.r.t. requirement Ct P R if:

Jpθt`1q ´ Jpθtq ě Ct, (6)

where θt`1 “ θt `∆θ.

We talk of a required performance improvement when
Ct is non-negative, otherwise of a bounded worsening.
The case Ct ” 0 corresponds to the well-studied mono-
tonic improvement constraint (Kakade and Langford,
2002; Pirotta et al., 2013; Papini et al., 2017). This
constraint can also be used to enforce an absolute per-
formance threshold Jmin, by setting Ct “ Jmin´Jpθtq.
For instance, if we want to guarantee that the perfor-
mance is never worse than that of the initial policy,
Jpθ0q, we set Ct “ Jpθ0q ´ Jpθtq. This can be use-
ful in safety-critical systems where the initial policy
is designed to be safe, assuming the performance mea-
sure captures all sources of risk (Garćıa and Fernández,
2015; Amodei et al., 2016). Recent work (Papini et al.,
2019) provides improvement guarantees for a general
family of policies. Given positive constants ψ, κ and
ξ, a policy class ΠΘ is called pψ, κ, ξq-smoothing if:

sup
sPS

Ea„πθp¨|sq

”

}∇ log πθpa|sq}
ı

ď ψ,

sup
sPS

Ea„πθp¨|sq

”

}∇ log πθpa|sq}
2
ı

ď κ,

sup
sPS

Ea„πθp¨|sq

”

›

›∇∇T log πθpa|sq
›

›

ı

ď ξ, (7)

for all θ P Θ, where }¨} denotes the Euclidean norm
for vectors and the spectral norm for matrices. In par-
ticular, Gaussian policies with fixed standard deviation

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

(constant ω) are pψ, κ, ξq-smoothing with the following
constants (Papini et al., 2019):

ψ “
2ϕ

?
2πσω

, κ “ ξ “
ϕ2

σ2
ω

, (8)

where ϕ is the Euclidean-norm bound on state fea-
tures. For a pψ, κ, ξq-smoothing policy, the perfor-
mance improvement yielded by a policy gradient up-
date can be lower-bounded by a function of the step
size α as follows (Theorem 9 from Papini et al., 2019):

Jpθt`1q ´ Jpθtq ě α }∇Jpθtq}2 ´ α2L

2
}∆θ}

2
, (9)

where θt`1 “ θt ` α∇Jpθtq and L “

Rmax

p1´γq2

´

2γψ2

1´γ ` κ` ξ
¯

. This allows to select a

safe step size for improvement constraint Ct, i.e.,
a step size for which (6) is satisfied by the policy
gradient update (1). In this paper, whenever multiple
choices of the step size are safe, we decide to employ
the largest safe step size. This is meant to yield
faster convergence (see Section 5 for an empirical
substantiation of this claim). In the fixed-variance
Gaussian case, we can obtain a safe step size for the
mean-parameter update (adaptation of Corollary 10
from Papini et al., 2019):

Lemma 2.1. Let ΠΥ be the class of Gaussian poli-
cies parametrized as in (4), but with fixed variance
parameter ω. Let υt P Rm and υt`1 “ υt `
αt∇υJpυt, ωq. For any Ct ď C˚t , the largest step size
guaranteeing Jpυt`1, ωq ´ Jpυt, ωq ě Ct is:

αt :“
σ2
ω

F

˜

1`

d

1´
Ct
C˚t

¸

, (10)

where F “
2ϕ2Rmax

p1´γq2

´

1` 2γ
πp1´γq

¯

and C˚t “

σ2
ω}∇υJpυt,ωq}

2

2F .

We have highlighted the role of the policy standard
deviation. We can see how a larger σω allows to take
larger steps. Moreover, it increases the maximum im-
provement guarantee that one can ask for (although
Ct can be selected by the user at each step, its high-
est feasible value C˚t depends on the current policy
variance and gradient norm). In fact, both αt and
C˚t are Opσ2

ωq. This is due to the smoothing effect of
the policy variance on the optimization landscape, in
accordance with the empirical analysis from (Ahmed
et al., 2019). In practice, C˚t is too small to be of any
relevance, so we are more interested in the cases when
Ct ď 0.

3 Adaptive Exploration

In this section, we use some insights from the safe PG
literature to devise a heuristic approach to adapt the

standard deviation of a Gaussian policy during the
learning process. Our desiderata are fast convergence,
avoiding instabilities and not getting stuck in local op-
tima. The algorithm we present here is heuristic. A
variant with formal improvement guarantees is pre-
sented in the next section.

Consider a Gaussian policy πυ,ωpa|sq “

N pa|µυpsq, σωq, parametrized as in (4). As men-
tioned above, it is common to learn the policy
variance parameter via gradient ascent just like any
other parameter, i.e., ωt`1 Ð ωt ` βt∇ωJpυt, ωtq.
However, the effects of σ on the optimization land-
scape, exposed by Lemma 2.1, suggest to treat it with
particular care, both to exploit its potential and to
avoid its possible risks. In fact, adjusting the policy
variance with policy gradient tends to degenerate
too early into quasi-deterministic policies, getting
stuck in local optima or even causing divergence
issues (see Section 5). We use our understanding
of the special nature of this parameter to modify
GPOMDP in two ways. First of all, we make the
step size for updating the mean parameters dependent
on the policy variance, like the safe step size from
Lemma 2.1. In particular, we use the following:

αt “
ασ2

ωt

}∇υJpυt, ωtq}
, (11)

to update the mean parameters υ, where α ą 0 is a
hyper-parameter. This has both the effect of reducing
the step size when a small σ makes the optimization
landscape less smooth, preventing oscillations, and in-
creasing it when a large σ allows it to do so, increasing
the learning speed. This is not entirely unheard of, as
it is exactly what a natural gradient (Kakade, 2001;
Amari, 1998) would do in a pure Gaussian setting (1{σ2

is the Fisher information w.r.t. the mean parameters
of a Gaussian distribution, see Sehnke et al., 2008;
Miyamae et al., 2010). We also divide the step size by
the norm of the gradient. This is a common normal-
ization technique (Peters et al., 2005), and is further
motivated by the results of Section 4.2 on stochastic
gradient updates.

As for the variance parameter ω, we treat it as a
separate meta-parameter and we learn it in a meta-
gradient fashion (Sutton, 1992; Schraudolph, 1999;
Veeriah et al., 2017; Xu et al., 2018). Specifically, we
employ a more far-sighted learning objective to avoid
premature convergence to deterministic behavior. To
do so, we look at the target performance one step in
the future:

J

ˆ

υt ` ασ
2
ωt

∇υJpυt, ωtq
}∇υJpυt, ωtq}

, ωt

˙

» Jpυt, ωtq ` ασ
2
ωt }∇υJpυt, ωtq} :“ Lpυt, ωtq, (12)

where we performed a first-order approximation. The

Matteo Papini, Andrea Battistello, Marcello Restelli

Algorithm 1 MEPG

1: Input: Initial parameters υ0 and ω0, step size α ą 0, meta step size η ą 0, batch size N
2: for t “ 1, 2, . . . do
3: Collect a batch of N trajectories with πvt,ωt
4: Estimate p∇υJpυt, ωtq, p∇ωJpυt, ωtq and p∇ω }∇υJpυt, ωtq} Ź See Appendix B

5: p∇ωLpυt, ωtq “ p∇ωJpυt, ωtq ` αe2ωt
´

2
›

›

›

p∇υJpυt, ωtq
›

›

›
` p∇ω }∇υJpυt, ωtq}

¯

6: ωt`1 Ð ωt ` η p∇ωLpυt, ωtq
L

›

›

›

p∇ωLpυt, ωtq
›

›

›

7: υt`1 Ð υt ` αe
2ωt p∇υJpυt, ωtq

L

›

›

›

p∇υJpυt, ωtq
›

›

›

8: end for

gradient of L w.r.t. ω is:

∇ωLpυt, ωtq “ ∇ωJpυt, ωtq ` 2ασ2
ωt }∇υJpυt, ωtq}

` ασ2
ωt∇ω }∇υJpυt, ωtq} . (13)

The first term of the sum is the usual policy gradi-
ent w.r.t. ω, and accounts for the immediate effect of
policy stochasticity on performance. The role of the
second term is to increase the step size αt, more so if
the gradient w.r.t. υ is large. The third term is meant
to modify the policy variance to increase the gradient
norm and can be seen as a way to escape local op-
tima. The last two terms, together, account for the
long-term effects of modifying the policy variance. We
propose to update ω in the direction of the (normal-
ized) meta-gradient ∇ωL using a meta-step size η ą 0:

ωt`1 Ð ωt ` η
∇ωLpυt, ωtq
}∇ωLpυt, ωtq}

. (14)

In practice, exact gradients are not available. The pol-
icy gradient for the mean-parameter update can be
estimated with GPOMDP (2). Computing p∇ωL also
requires estimating ∇ω }∇υJpυt, ωtq}, which is com-
putationally no more expensive, but could suffer from
more variance (See Appendix B). The pseudocode for
the resulting algorithm, called Meta-Exploring Policy
Gradient (MEPG), is provided in Algorithm 1.

4 Stable Exploration

In this section, we extend the performance improve-
ment guarantees reported in Section 2.2 to Gaussian
policies with adaptive variance and we use these theo-
retical results to devise a variant of Algorithm 1 with
improvement guarantees.

4.1 Exact framework

Existing guarantees for fixed-variance Gaussian poli-
cies are based on the smoothing constants from (Pa-
pini et al., 2019), reported in (8). These depend (in-
versely) on σ2

ω, hence are no longer constant once we
allow ω to vary. In particular, they tend to infin-
ity as the policy approaches determinism. Unfortu-

nately, this is enough to invalidate the safety guar-
antees. A workaround would be to replace σω with
a lower bound, which can be imposed by constraining
the parameter space Ω or by changing the parametriza-
tion. However, this would make the improvement
bounds unnecessarily conservative, and would prevent
the agent to converge to deterministic behavior in the
end. For these reasons, we instead propose to update
the mean and variance parameters alternately. First,
we show that Gaussian policies are smoothing w.r.t.
the variance parameter alone:

Lemma 4.1. Let ΠΩ be the class of Gaussian poli-
cies parametrized as in (4), but with fixed mean pa-

rameter υ. ΠΩ is
´

4?
2πe

, 2, 2
¯

-smoothing.

This allows to devise a safe policy-gradient update for
the variance parameters:

Theorem 4.2. Let ΠΩ be the class of poli-
cies defined in Lemma 4.1. Let ωt P Ω and
ωt`1 Ð ωt ` βt∇ωJpυ, ωtq. For any Ct ď C˚t , the
largest step-size satisfying (6) is:

βt “
1

G

˜

1`

d

1´
Ct
C˚t

¸

, (15)

where C˚t “
}∇ωJpυ,ωtq}2

2G and

G “ 4Rmax

p1´γq2

´

1` 4γ
πep1´γq

¯

.

Similarly to the mean parameters case, βt “
1
G is the

greedy-safe step size and βt “
2
G is the largest step

size guaranteeing monotonic improvement.

Alternately updating the mean parameter as in
Lemma 2.1 and the variance parameter as in Theo-
rem 4.2 ensures Jpυt`1, ωt`1q´Jpυt, ωtq ě Ct for all t.

However, Theorem 4.2 still pertains näıve variance up-
dates, which suffer from all the problems discussed in
Section 3. The next question is how to optimize the
surrogate exploratory objective L from (12) while sat-
isfying the original constraint (6) on the performance
objective J . The following Theorem provides a safe

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Algorithm 2 SEPG

1: Input: Initial parameters υ0 and ω0, batch size N , improvement thresholds tCtu
8
t“1, confidence parameter

δ, discount factor γ, maximum reward Rmax, feature bound ϕ
2: for t “ 1, 2, . . . do
3: Collect a batch of N trajectories with πvt,ωt
4: Estimate p∇υJpυt, ωtq,
5: if t is odd then
6: υt`1 “ υt ` rαt∇υJpυt, ωtq Ź Safe step size from Section 4.2
7: else
8: estimate p∇ωJpυt, ωtq and p∇ω

›

›

›

p∇υJpυt, ωtq
›

›

›
Ź See Appendix B

9: p∇ωLpυt, ωtq “ p∇ωJpυt, ωtq ` rαt

´

2
›

›

›

p∇υJpυt, ωtq
›

›

›
` p∇ω }∇υJpυt, ωtq}

¯

10: ωt`1 “ ωt ` rηt∇ωLpυt, ωtq Ź Safe meta-step size from Section 4.2
11: end if
12: end for

update for a smoothing policy in the direction of a
generic update vector xt (∇ωL in MEPG):

Theorem 4.3. Let ΠΘ be a pψ, κ, ξq-smoothing pol-
icy class, θt P Θ, and θt`1 “ θt ` ηtxt, where xt P
Rm and ηt P R is a (possibly negative) step size. Let

λt :“ x∇θJpθtq,xty
}xt}

be the scalar projection of ∇θJpθtq
onto xt. For any Ct ď C˚t , provided λt ‰ 0, the largest
step size guaranteeing Jpθt`1q ´ Jpθtq ě Ct is:

ηt “
|λt|

L }xt}

˜

signpλtq `

d

1´
Ct
C˚t

¸

, (16)

where C˚t “
λ2
t

2L and L “ Rmax

p1´γq2

´

2γψ2

1´γ ` κ` ξ
¯

.

Note that a positive performance improvement up to
C˚t can always be guaranteed, even if the improve-
ment direction ∇θJ is not explicitly followed. How-
ever, when the scalar projection λt is negative, the
largest safe step size is negative. This corresponds to
the case in which maximizing the surrogate objective
reduces the original one. For positive values of Ct (re-
quired improvement), there may be no way to safely
pursue the surrogate objective. In this case, a nega-
tive step size is prescribed to follow the direction of
∇θJ instead5. We can use the step size ηt from Theo-
rem 4.3 to safely replace ∇ωJ with the meta gradient
∇ωL from (13) in the variance update:

υt`1 Ð υt ` αt∇υJpυt, ωtq, (17)

ωt`2 Ð ωt`1 ` ηt`1∇ωLpυt`1, ωt`1q, (18)

where ωt`1 ” ωt and υt`2 ” υt`1, as the two set of
parameters cannot be safely updated together.

5 The special case when the two gradients are orthogo-
nal (λt “ 0) is discussed in Appendix A.

4.2 Approximate framework

In practice, exact gradients are not available and must
be estimated from data. In this section, we show how
to adapt the safe step sizes from Section 4 to take gra-
dient estimation errors into account. Let p∇Nυ J , p∇Nω J
and p∇Nω L be unbiased estimators of ∇υJ , ∇υJ and
∇ωL, respectively, each using a batch of N trajecto-
ries. As for MEPG, the first two can be GPOMDP es-
timators (2) and meta-gradient estimation is discussed
in Appendix B. We make the following assumption on
the gradient estimators6:

Assumption 4.4. For every δ P p0, 1q there exists a
non-negative constant εδ such that, with probability at
least 1´ δ:

›

›

›
∇υJpυ, ωq ´ p∇Nυ Jpυ, ωq

›

›

›
ď

εδ
?
N
,

›

›

›
∇ωJpυ, ωq ´ p∇Nω Jpυ, ωq

›

›

›
ď

εδ
?
N
,

for every υ P Υ, ω P Ω and N ě 1.

Here εδ represents an upper bound on the gradient
estimation error. This can be characterized using var-
ious statistical inequalities (Papini et al., 2017). A
possible one, based on ellipsoidal confidence regions,
is described in Appendix C. Under Assumption 4.4,
for a sufficiently large batch size, the safe step size for
the mean update can be adjusted as follows:

rαt “
σ2
ω

´
›

›

›

p∇Nυ Jpυt, ωtq
›

›

›
´

εδ?
N

¯

F
›

›

›

p∇Nυ Jpυt, ωtq
›

›

›

˜

1`

d

1´
Ct
C˚t

¸

,

where C˚t “
σ2
ωt

´

} p∇Nυ Jpυt,ωtq}´
εδ?
N

¯2

2F and F is from
Lemma 2.1. Similarly, the safe step size for the vari-

6We do not need a similar assumption on the meta-

gradient estimator p∇ωL, since our improvement require-
ments are always on the performance J (see Appendix A.2).

Matteo Papini, Andrea Battistello, Marcello Restelli

0 0.2 0.4 0.6 0.8 1

·105
0

200

400

600

800

1,000

Episodes

A
ve
ra
ge

R
et
u
rn

0 0.2 0.4 0.6 0.8 1

·105
0

1

2

3

4

5

Episodes

P
ol
ic
y
S
td

0 0.2 0.4 0.6 0.8 1

·105
0

200

400

600

800

1,000

Episodes

A
ve
ra
ge

R
et
u
rn

0 0.2 0.4 0.6 0.8 1

·105
0

1

2

3

4

5

Episodes

P
ol
ic
y
S
td

MEPG Fixed-variance PG Adaptive-variance PG Entropy-augmented PG

Figure 1: Average return (undiscounted) and policy standard deviation per episode of MEPG, fixed-variance
PG, adaptive-variance PG and entropy-augmented PG on the continuous Cart-Pole task, starting from σ “ 5
(left) and σ “ 0.5 (right); averaged over 10 independent runs with 95% Student’s t-confidence intervals.

ance update can be adjusted as follows:

rηt “

ˇ

ˇ

ˇ

pλt

ˇ

ˇ

ˇ
´

εδ?
N

G
›

›

›

p∇Nω Lpυt, ωtq
›

›

›

˜

sign
´

pλt

¯

`

d

1´
Ct
C˚t

¸

,

where pλt is the scalar projection of p∇Nω Jpυt, ωtq onto

p∇Nω Lpυt, ωtq, C˚t “
´

|pλt|´
εδ?
N

¯2

2G and G is from The-
orem 4.2. We call the variant of MEPG that alter-
nates mean and variance updates using these step sizes
Stably Exploring Policy Gradient (SEPG), detailed
in Algorithm 2. The SEPG algorithm satisfies our
bounded-worsening constraint (6) with high probabil-
ity:

Theorem 4.5. Under Assumption 4.4, provided
Ct ď 0 and N ą ε2δ

L

pλ2
t , Algorithm 2 guarantees

Jpθt`1q ´ Jpθtq ě Ct with probability at least 1 ´ δ
for any t ě 1.

In Appendix F we prove a stronger version of this the-
orem that also allows strictly positive improvements.
The requirement on the batch size ensures that estima-
tion errors are smaller than the estimates themselves.
If this requirement is not satisfied, we can either col-
lect more samples or terminate. This typically hap-
pens close to stationary points anyway. The step sizes
proposed by SEPG may be excessively conservative.
This is similar to what happens in supervised learn-
ing, where the convergence-guaranteeing step sizes are
rarely used in practice, typically replaced by heuris-
tics (Kingma and Ba, 2015). However, since policy up-
dates in online RL can have concrete consequences, we
will use the prescribed step sizes in our experiments,
leaving the possibility of explicitly relaxing the safety
requirements.

5 Experiments

In this section, we test the proposed methods on sim-
ulated continuous control tasks. More details on the
simulation environments are provided in Appendix E.

MEPG We test MEPG on a continuous-action ver-
sion of the Cart-Pole balancing task (Barto et al.,
1983). Figure 1 shows the performance (1000 is
the maximum) and the policy standard deviation of
MEPG and three versions of PG (with the GPOMDP
gradient estimator). In fixed-variance PG, the pol-
icy variance parameter is kept constant. In adaptive-
variance PG, it is learned via gradient ascent as any
other parameter. Entropy-augmented PG is the same,
but with entropy regularization (5). For each algo-
rithm, the best hyper-parameters (step sizes and en-
tropy coefficient τ) have been selected by grid search
(see Appendix F). Two very different initializations
are considered for the standard deviation: σω0

“ 5
(on the left of Figure 1) and σω0

“ 0.5 (on the right).
As shown by the behavior of fixed-variance GPOMDP,
the former constant value is too large to achieve op-
timal performance at convergence, while the latter is
too small to properly explore the environment. As ex-
pected, adaptive-variance GPOMDP is too greedy and
ends up always reducing the standard deviation. Be-
sides preventing exploration, divergence issues force us
to use a smaller step size (α “ 0.01 instead of 0.1), re-
sulting in slower learning. This problem is fixed by the
entropy bonus, which prevents the policy from becom-
ing deterministic and allows to use the larger learning
rate (α “ 0.1). However, entropy-augmented PG does
not perform significantly better than its fixed-variance
counterpart on this task, as the amount of exploration
needed to find the global optimum is not maintained
(or is pursued too late). Instead, MEPG is able to
settle on an intermediate value with both variance ini-
tializations. This allows both to learn faster and to
achieve optimal performance, although non-negligible
oscillations can be observed. This oscillations are
partly due to the variance of the meta-gradient esti-
mator, and can be mitigated by the conservative step
sizes prescribed by SEPG.

SEPG Figure 2 shows the performance and the
policy standard deviation of SEPG on the one-

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

0 1 2 3 4 5

·105
−150

−100

−50

0

Episodes

A
ve
ra
ge

R
et
u
rn

0 1 2 3 4 5

·105
0

0.2

0.4

0.6

0.8

1

Episodes

P
ol
ic
y
S
td

SEPG (MI) SEPG (BUDGET) ADASTEP

Figure 2: Average return (undiscounted) and standard
deviation per episode of SEPG and ADASTEP on the
LQG task, averaged over 10 independent runs with 95%
Student’s t-confidence intervals.

0 1 2 3 4 5

·105
0

200

400

600

800

1,000

Episodes

A
ve
ra
ge

R
et
u
rn

0 1 2 3 4 5

·105
0

1

2

3

4

5

Episodes

P
ol
ic
y
S
td

Ct ≡ −10 Ct ≡ −100 Ct ≡ −1000 MEPG

Figure 3: Average return (undiscounted) and standard
deviation per episode of SEPG on the Cart-Pole task
for different values of Ct, averaged over 5 runs with
95% confidence intervals. The learning curve of MEPG
is reported as a reference.

dimensional LQG (Linear-Quadratic Gaussian reg-
ulator) task (Peters and Schaal, 2008). SEPG
with a monotonic improvement constraint (Ct ” 0)
is compared with the adaptive-step-size algorithm
(ADASTEP in the figure) by Pirotta et al. (2013).
Starting from σω0 “ 1, SEPG achieves higher returns
by safely lowering it, while ADASTEP has no way to
safely update this parameter. Both algorithms use δ “
0.2 and a large batch size (N “ 500). We also consider
a looser constraint, already discussed in Section 2.2
(BUDGET in the figure): that of never doing worse
than the initial performance (Ct “ Jpθ0q´Jpθtq). As
expected, this allows faster learning, leading to opti-
mal performance within a reasonable time.

On the Cart-Pole task, MEPG showed an oscillatory
behavior. Motivated by this fact, we run SEPG with
a fixed, negative improvement threshold Ct. Recall
that the meaning of such a constraint is to limit per-
update performance worsening. Figure 3 shows the re-
sults for different values of the threshold, starting from
σω0

“ 5 and neglecting the gradient estimation error
(i.e., by setting δ “ 1). Even under this simplifying as-
sumption, only a very large value of Ct allows to reach
optimal performance within a reasonable time. This
is due to the over-conservativeness of the step sizes
proposed by SEPG, as already discussed. Note how
oscillations are reduced w.r.t. MEPG, and how pol-
icy standard deviation is first reduced and then safely
increased again.

6 Discussion and Future Work

We have highlighted the special role of stochasticity
in PG with Gaussian policies, complementing the em-
pirical observations from (Ahmed et al., 2019) with
theoretical insights from the Safe PG literature (Pa-
pini et al., 2019). We have proposed a variant of
GPOMDP for this setting, called Meta-Exploring Pol-
icy Gradient (MEPG), which is able to adapt the vari-

ance parameter in a more far-sighted way than vanilla
or entropy-augmented gradient ascent. We have em-
pirically shown the effectiveness of this approach on
the Cart-Pole balancing task, where the entropy bonus
is able to prevent divergence but not to escape local
optima. This should be intended as a proof of con-
cept: entropy augmentation is still a natural choice for
most applications due to its simplicity. Future work
on MEPG algorithms should study its applicability to
larger control problems and overcome its potential bot-
tlenecks, such as the second-order term in (12).

Furthermore, we have generalized the existing
performance-improvement bounds for Gaussian poli-
cies to the adaptive-variance case and proposed SEPG,
a variant of MEPG with guarantees of stable improve-
ment. Experiments confirmed several intuitions pro-
vided by the theory. Unfortunately, learning speed
is heavily degraded for meaningful values of the im-
provement requirement Ct, due to over-conservative
step sizes. The desired balance between speed and
stability can still be achieved by hand-tuning it as a
hyper-parameter. Replacing the theoretically sound
upper bounds with estimates (Allen-Zhu, 2018) could
bridge the gap between theory and practice. Another
possible improvement is to employ an adaptive batch
size as proposed in (Papini et al., 2017, 2019). Future
work should also study in more depth the issue of local
optima. Recent work (Agarwal et al., 2019) shows how
(natural) PG can achieve global optimality in some
cases, and highlights the importance of exploration on
this matter. Moreover, adaptively changing the policy
variance as in MEPG can be seen as an online ver-
sion of graduated optimization (Hazan et al., 2016), a
popular technique for finding the global optimum of
a nonconvex function. Finally, further aspects of safe
exploration (Hans et al., 2008; Turchetta et al., 2016;
Cohen et al., 2018) should be considered for the online
selection of policy stochasticity in real-world control
tasks.

Matteo Papini, Andrea Battistello, Marcello Restelli

Acknowledgements

The study was partially funded by Lombardy Region
(Announcement PORFESR 2014-2020).

References

Agarwal, A., Kakade, S. M., Lee, J. D., and Mahajan,
G. (2019). Optimality and approximation with pol-
icy gradient methods in markov decision processes.
CoRR, abs/1908.00261.

Ahmed, Z., Roux, N. L., Norouzi, M., and Schuur-
mans, D. (2019). Understanding the impact of en-
tropy on policy optimization. In ICML, volume 97
of Proceedings of Machine Learning Research, pages
151–160. PMLR.

Allen-Zhu, Z. (2018). Natasha 2: Faster non-convex
optimization than SGD. In NeurIPS, pages 2680–
2691.

Amari, S. (1998). Natural gradient works efficiently in
learning. Neural Computation, 10(2):251–276.

Amodei, D., Olah, C., Steinhardt, J., Christiano, P. F.,
Schulman, J., and Mané, D. (2016). Concrete prob-
lems in AI safety. CoRR, abs/1606.06565.

Barto, A. G., Sutton, R. S., and Anderson, C. W.
(1983). Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Trans.
Systems, Man, and Cybernetics, 13(5):834–846.

Baxter, J. and Bartlett, P. L. (2001). Infinite-horizon
policy-gradient estimation. J. Artif. Intell. Res.,
15:319–350.

Bellemare, M. G., Srinivasan, S., Ostrovski, G.,
Schaul, T., Saxton, D., and Munos, R. (2016). Uni-
fying count-based exploration and intrinsic motiva-
tion. In NeurIPS, pages 1471–1479.

Brafman, R. I. and Tennenholtz, M. (2002). R-MAX
- A general polynomial time algorithm for near-
optimal reinforcement learning. J. Mach. Learn.
Res., 3:213–231.

Brockman, G., Cheung, V., Pettersson, L., Schneider,
J., Schulman, J., Tang, J., and Zaremba, W. (2016).
Openai gym. CoRR, abs/1606.01540.

Bubeck, S. and Cesa-Bianchi, N. (2012). Regret analy-
sis of stochastic and nonstochastic multi-armed ban-
dit problems. Foundations and Trends in Machine
Learning, 5(1):1–122.

Cohen, A., Yu, L., and Wright, R. (2018). Diverse
exploration for fast and safe policy improvement. In
AAAI, pages 2876–2883. AAAI Press.

Dann, C. and Brunskill, E. (2015). Sample complexity
of episodic fixed-horizon reinforcement learning. In
NeurIPS, pages 2818–2826.

Dann, C., Lattimore, T., and Brunskill, E. (2017).
Unifying PAC and regret: Uniform PAC bounds for
episodic reinforcement learning. In NeurIPS, pages
5713–5723.

Deisenroth, M. P., Neumann, G., and Peters, J.
(2013). A survey on policy search for robotics. Foun-
dations and Trends in Robotics, 2(1-2):1–142.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and
Abbeel, P. (2016). Benchmarking deep reinforce-
ment learning for continuous control. In ICML, vol-
ume 48 of JMLR Workshop and Conference Pro-
ceedings, pages 1329–1338. JMLR.org.

Garćıa, J. and Fernández, F. (2015). A comprehen-
sive survey on safe reinforcement learning. J. Mach.
Learn. Res., 16:1437–1480.

Haarnoja, T., Tang, H., Abbeel, P., and Levine, S.
(2017). Reinforcement learning with deep energy-
based policies. In ICML, volume 70 of Proceedings
of Machine Learning Research, pages 1352–1361.
PMLR.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S.
(2018). Soft actor-critic: Off-policy maximum en-
tropy deep reinforcement learning with a stochastic
actor. In ICML, volume 80 of Proceedings of Ma-
chine Learning Research, pages 1856–1865. PMLR.

Hans, A., Schneegaß, D., Schäfer, A. M., and Udluft,
S. (2008). Safe exploration for reinforcement learn-
ing. In ESANN, pages 143–148.

Härdle, W. and Simar, L. (2012). Applied multivariate
statistical analysis, volume 22007. Springer.

Hazan, E., Levy, K. Y., and Shalev-Shwartz, S.
(2016). On graduated optimization for stochastic
non-convex problems. In ICML, volume 48 of JMLR
Workshop and Conference Proceedings, pages 1833–
1841. JMLR.org.

Jaksch, T., Ortner, R., and Auer, P. (2010). Near-
optimal regret bounds for reinforcement learning. J.
Mach. Learn. Res., 11:1563–1600.

Jin, C., Allen-Zhu, Z., Bubeck, S., and Jordan, M. I.
(2018). Is q-learning provably efficient? In NeurIPS,
pages 4868–4878.

Kakade, S. M. (2001). A natural policy gradient. In
NeurIPS, pages 1531–1538. MIT Press.

Kakade, S. M. and Langford, J. (2002). Approxi-
mately optimal approximate reinforcement learning.
In ICML, pages 267–274. Morgan Kaufmann.

Kearns, M. J. and Singh, S. P. (2002). Near-optimal
reinforcement learning in polynomial time. Machine
Learning, 49(2-3):209–232.

Kingma, D. P. and Ba, J. (2015). Adam: A method
for stochastic optimization. In ICLR (Poster).

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Lakshmanan, K., Ortner, R., and Ryabko, D. (2015).
Improved regret bounds for undiscounted continu-
ous reinforcement learning. In ICML, volume 37 of
JMLR Workshop and Conference Proceedings, pages
524–532. JMLR.org.

Lanczos, C. (1950). An iteration method for the so-
lution of the eigenvalue problem of linear differen-
tial and integral operators. United States Governm.
Press Office Los Angeles, CA.

Lattimore, T. and Hutter, M. (2014). Near-optimal
PAC bounds for discounted mdps. Theor. Comput.
Sci., 558:125–143.

Lattimore, T. and Szepesvári, C. (2019). Bandit Al-
gorithms. Cambridge University Press (preprint).

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N.,
Erez, T., Tassa, Y., Silver, D., and Wierstra, D.
(2016). Continuous control with deep reinforcement
learning. In ICLR (Poster).

Miyamae, A., Nagata, Y., Ono, I., and Kobayashi,
S. (2010). Natural policy gradient methods with
parameter-based exploration for control tasks. In
NeurIPS, pages 1660–1668. Curran Associates, Inc.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,
Veness, J., Bellemare, M. G., Graves, A., Riedmiller,
M. A., Fidjeland, A., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Ku-
maran, D., Wierstra, D., Legg, S., and Hassabis, D.
(2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.

Nachum, O., Norouzi, M., Tucker, G., and Schuur-
mans, D. (2018). Smoothed action value functions
for learning gaussian policies. In ICML, volume 80
of Proceedings of Machine Learning Research, pages
3689–3697. PMLR.

Ok, J., Proutière, A., and Tranos, D. (2018). Ex-
ploration in structured reinforcement learning. In
NeurIPS, pages 8888–8896.

OpenAI (2018). Openai five. https://blog.openai.
com/openai-five/.

Ortner, R. and Ryabko, D. (2012). Online regret
bounds for undiscounted continuous reinforcement
learning. In NeurIPS, pages 1772–1780.

Papini, M., Pirotta, M., and Restelli, M. (2017). Adap-
tive batch size for safe policy gradients. In NeurIPS,
pages 3591–3600.

Papini, M., Pirotta, M., and Restelli, M. (2019).
Smoothing policies and safe policy gradients. CoRR,
abs/1905.03231.

Peters, J. and Schaal, S. (2008). Reinforcement learn-
ing of motor skills with policy gradients. Neural
Networks, 21(4):682–697.

Peters, J., Vijayakumar, S., and Schaal, S. (2005).
Natural actor-critic. In ECML, volume 3720 of
Lecture Notes in Computer Science, pages 280–291.
Springer.

Pirotta, M., Restelli, M., and Bascetta, L. (2013).
Adaptive step-size for policy gradient methods. In
NeurIPS, pages 1394–1402.

Pirotta, M., Restelli, M., and Bascetta, L. (2015). Pol-
icy gradient in lipschitz markov decision processes.
Machine Learning, 100(2-3):255–283.

Puterman, M. L. (1994). Markov Decision Processes:
Discrete Stochastic Dynamic Programming. Wiley
Series in Probability and Statistics. Wiley.

Rajeswaran, A., Lowrey, K., Todorov, E., and Kakade,
S. M. (2017). Towards generalization and simplicity
in continuous control. In NeurIPS, pages 6550–6561.

Schraudolph, N. N. (1999). Local gain adaptation in
stochastic gradient descent.

Schulman, J., Abbeel, P., and Chen, X. (2017). Equiv-
alence between policy gradients and soft q-learning.
CoRR, abs/1704.06440.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves, A.,
Peters, J., and Schmidhuber, J. (2008). Policy gra-
dients with parameter-based exploration for control.
In ICANN (1), volume 5163 of Lecture Notes in
Computer Science, pages 387–396. Springer.

Shani, L., Efroni, Y., and Mannor, S. (2018). Revis-
iting exploration-conscious reinforcement learning.
CoRR, abs/1812.05551.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou,
I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Ku-
maran, D., Graepel, T., Lillicrap, T. P., Simonyan,
K., and Hassabis, D. (2017). Mastering chess and
shogi by self-play with a general reinforcement learn-
ing algorithm. CoRR, abs/1712.01815.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., and Riedmiller, M. A. (2014). Deterministic
policy gradient algorithms. In ICML, volume 32 of
JMLR Workshop and Conference Proceedings, pages
387–395. JMLR.org.

Strehl, A. L., Li, L., and Littman, M. L. (2009). Re-
inforcement learning in finite mdps: PAC analysis.
J. Mach. Learn. Res., 10:2413–2444.

Sutton, R. S. (1992). Adapting bias by gradient de-
scent: An incremental version of delta-bar-delta.
In AAAI, pages 171–176. AAAI Press / The MIT
Press.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Sutton, R. S., McAllester, D. A., Singh, S. P., and
Mansour, Y. (1999). Policy gradient methods for

https://blog.openai.com/openai-five/
https://blog.openai.com/openai-five/

Matteo Papini, Andrea Battistello, Marcello Restelli

reinforcement learning with function approximation.
In NeurIPS, pages 1057–1063. The MIT Press.

Thomas, P. S., Theocharous, G., and Ghavamzadeh,
M. (2015). High confidence policy improvement. In
ICML, volume 37 of JMLR Workshop and Confer-
ence Proceedings, pages 2380–2388. JMLR.org.

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R. E.,
Ghahramani, Z., and Levine, S. (2018). The mi-
rage of action-dependent baselines in reinforcement
learning. In ICML, volume 80 of Proceedings of Ma-
chine Learning Research, pages 5022–5031. PMLR.

Turchetta, M., Berkenkamp, F., and Krause, A.
(2016). Safe exploration in finite markov decision
processes with gaussian processes. In NeurIPS,
pages 4305–4313.

Veeriah, V., Zhang, S., and Sutton, R. S. (2017).
Crossprop: Learning representations by stochas-
tic meta-gradient descent in neural networks. In
ECML/PKDD (1), volume 10534 of Lecture Notes
in Computer Science, pages 445–459. Springer.

Williams, R. J. (1992). Simple statistical gradient-
following algorithms for connectionist reinforcement
learning. Machine Learning, 8:229–256.

Xu, Z., van Hasselt, H., and Silver, D. (2018). Meta-
gradient reinforcement learning. In NeurIPS, pages
2402–2413.

Zhao, T., Hachiya, H., Niu, G., and Sugiyama, M.
(2011). Analysis and improvement of policy gradient
estimation. In NeurIPS, pages 262–270.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Table of Supplementary Contents

• Appendix A: Proofs

• Appendix B: Meta Gradient Estimation

• Appendix C: Characterizing the Estimation Error

• Appendix D: Extensions

• Appendix E: Task Specifications

• Appendix F: Experimental Setting

A Proofs

In this section we provide proofs for all the formal statements made in the paper. Recall that Rmax is the
maximum absolute value reward, ϕ the Euclidean-norm bound on state features, γ the discount factor, and π
with no subscript denotes the mathematical constant.

A.1 Exact framework

Lemma 2.1. Let ΠΥ be the class of Gaussian policies parametrized as in (4), but with fixed variance param-
eter ω. Let υt P Rm and υt`1 “ υt ` αt∇υJpυt, ωq. For any Ct ď C˚t , the largest step size guaranteeing
Jpυt`1, ωq ´ Jpυt, ωq ě Ct is:

αt :“
σ2
ω

F

˜

1`

d

1´
Ct
C˚t

¸

, (10)

where F “ 2ϕ2Rmax

p1´γq2

´

1` 2γ
πp1´γq

¯

and C˚t “
σ2
ω}∇υJpυt,ωq}

2

2F .

Proof. This is just a slight adaptation of existing results from (Papini et al., 2019). Since the fixed-variance Gaus-
sian policy is smoothing (Lemma 15 from Papini et al., 2019), we plug its smoothing constants (8) into (9) (The-
orem 9 from Papini et al., 2019) to obtain, for all α P R:

Jpυt`1, ωq ´ Jpυt, ωq ě α }∇υJpυt, ωq}2 ´ α2 F

2σ2
ω

}∇υJpυt, ωq}2 :“ fpαq. (19)

Thus, imposing fpαq ě Ct is enough to ensure Jpυt`1, ωq´ Jpυt, ωq ě Ct. This yields a second-order inequality
in α, whose solution is:

σ2
ω

F

˜

1´

d

1´
Ct
C˚t

¸

ď α ď
σ2
ω

F

˜

1`

d

1´
Ct
C˚t

¸

, (20)

provided ∇υJpυt, ωq ‰ 0, which is a reasonable assumption (if ∇υJpυt, ωq “ 0, the algorithm has already
converged and any update is void), and Ct ď C˚t , which is true by hypothesis. To conclude the proof, we just
select the largest step size satisfying (20).

Lemma 4.1. Let ΠΩ be the class of Gaussian policies parametrized as in (4), but with fixed mean parameter

υ. ΠΩ is
´

4?
2πe

, 2, 2
¯

-smoothing.

Proof. The definition of smoothing policies is from (Definition 4 in Papini et al., 2019) and reported in (7). Since
the mean parameter υ is fixed, the policy parameter space can be restricted to Ω. Recall that σω “ eω. We need
the following derivatives:

∇ω log πυ,ωpa|sq “ ∇ω
ˆ

´ω ´
1

2
e´2ωpa´ µυpsqq

2

˙

“ e´2ωpa´ µυpsqq
2 ´ 1, (21)

∇ω∇Tω log πυ,ωpa|sq “ ´2e´2ωpa´ µυpsqq
2. (22)

Matteo Papini, Andrea Battistello, Marcello Restelli

Let x :“ e´ωpa´ µυpsqq in the following, and note that ∇ωx “ e´ω. First we compute ψ:

sup
sPS

E
a„πυ,ω

“

}∇ω log πυ,ωpa|sq}
‰

“ sup
sPS

e´ω
?

2π

ż

R
e´

1
2 e
´2ω

pa´µυpsqq
2 ˇ
ˇe´2ωpa´ µυpsqq

2 ´ 1
ˇ

ˇda

“
1
?

2π

ż

R
e´

x2{2|x2 ´ 1|dx

“
4

?
2πe

:“ ψ. (23)

Next, we compute κ:

sup
sPS

E
a„πυ,ω

”

}∇ω log πυ,ωpa|sq}
2
ı

“ sup
sPS

e´ω
?

2π

ż

R
e´

1
2 e
´2ω

pa´µυpsqq
2 `

e´2ωpa´ µυpsqq
2 ´ 1

˘2
da

“
1
?

2π

ż

R
e´

x2{2px2 ´ 1q2dx “ 2 :“ κ. (24)

Finally, we compute ξ:

sup
sPS

E
a„πυ,ω

“
›

›∇ω∇Tω log πυ,ωpa|sq
›

›

‰

“ sup
sPS

e´ω
?

2π

ż

R
e´

1
2 e
´2ω

pa´µυpsqq
2 ˇ
ˇ´2e´2ωpa´ µυpsqq

2
ˇ

ˇda

“
2
?

2π

ż

R
e´

x2{2x2dx “ 2 :“ ξ. (25)

Indeed, the computed constants are independent from the value of ω.

Theorem 4.2. Let ΠΩ be the class of policies defined in Lemma 4.1. Let ωt P Ω and ωt`1 Ð ωt ` βt∇ωJpυ, ωtq.
For any Ct ď C˚t , the largest step-size satisfying (6) is:

βt “
1

G

˜

1`

d

1´
Ct
C˚t

¸

, (15)

where C˚t “
}∇ωJpυ,ωtq}2

2G and G “ 4Rmax

p1´γq2

´

1` 4γ
πep1´γq

¯

.

Proof. Similarly to the proof of Lemma 2.1, we plug the smoothing constants from Lemma 4.1 into (9) to obtain:

Jpυ, ωt`1q ´ Jpυ, ωtq ě β }∇ωJpυ, ωtq}2 ´ β2G

2
}∇ωJpυt, ωq}2 :“ fpβq. (26)

Solving fpβq ě Ct yields:

1

G

˜

1´

d

1´
Ct
C˚t

¸

ď β ď
1

G

˜

1`

d

1´
Ct
C˚t

¸

, (27)

where, again, we assume the policy gradient is non-zero. The proof is concluded by selecting the largest step
size satisfying (27).

Theorem 4.3. Let ΠΘ be a pψ, κ, ξq-smoothing policy class, θt P Θ, and θt`1 “ θt ` ηtxt, where xt P Rm and

ηt P R is a (possibly negative) step size. Let λt :“ x∇θJpθtq,xty
}xt}

be the scalar projection of ∇θJpθtq onto xt. For

any Ct ď C˚t , provided λt ‰ 0, the largest step size guaranteeing Jpθt`1q ´ Jpθtq ě Ct is:

ηt “
|λt|

L }xt}

˜

signpλtq `

d

1´
Ct
C˚t

¸

, (16)

where C˚t “
λ2
t

2L and L “ Rmax

p1´γq2

´

2γψ2

1´γ ` κ` ξ
¯

.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Proof. Since we are no longer dealing with a policy gradient update, we need a generalization of (9). By Theorem
8 from (Papini et al., 2019):

Jpθt `∆θq ´ Jpθtq ě x∆θ,∇Jpθtqy ´
L

2
}∆θ}

2
, (28)

for any parameter update ∆θ P Rm. In our case:

Jpθt`1q ´ Jpθtq ě ηtxxt,∇Jpθtqy ´ η2
t

L

2
}xt}

2 :“ fpηtq, (29)

where x¨, ¨y denotes the dot product. Intuitively, the more xt agrees with the improvement direction ∇Jpθtq, the
more improvement can be guaranteed. We first assume xxt,∇Jpθtqy ‰ 0. Solving fpηtq ě Ct yields:

|λt|

L }xt}

˜

signpλtq ´

d

1´
Ct
C˚t

¸

ď ηt ď
|λt|

L }xt}

˜

signpλtq `

d

1´
Ct
C˚t

¸

, (30)

from which we select the largest safe step size. For Ct ě 0, depending on the sign of λt (i.e., whether xt agrees
with the gradient or not) and on the value of Ct, the step size may be non-positive. Intuitively, if a positive
improvement is required but xt is pejorative, a negative step size is used to invert it. Instead, if Ct ă 0 (bounded
worsening), a small-enough step in the direction of xt is always acceptable.

We now consider the special case xxt,∇Jpθtqy “ 0, i.e., λ “ 0. In this case, only non-positive values of Ct
are allowed. Intuitively, xt is orthogonal to the improvement direction, so no positive improvement can be
guaranteed. Under the restriction Ct ď 0, the following range of step sizes is safe:

´
1

}xt}

c

´
2Ct
L
ď ηt ď

1

}xt}

c

´
2Ct
L
, (31)

from which we select ηt “
1
}xt}

b

´ 2Ct
L .

A.2 Approximate Framework

In the following, let p∇Nυ J , p∇Nω J and p∇Nω L be unbiased estimators of ∇υJ , ∇υJ and ∇ωL, respectively, each
using a batch of N trajectories.

Corollary A.1. Let ΠΥ be the class of Gaussian policies parametrized as in (4), but with fixed variance param-

eter ω. Let υt P Rm and υt`1 “ υt ` αt p∇Nυ Jpυt, ωq. Under Assumption 4.4, provided N ą ε2δ
L

›

›

›

p∇Nυ Jpυt, ωtq
›

›

›

2

,

for any Ct ď C˚t , the largest step size satisfying (6) with probability at least 1´ δ is:

rαt “
σ2
ω

´
›

›

›

p∇Nυ Jpυt, ωtq
›

›

›
´

εδ?
N

¯

F
›

›

›

p∇Nυ Jpυt, ωtq
›

›

›

˜

1`

d

1´
Ct
C˚t

¸

,

where C˚t “
σ2
ωt

´

} p∇Nυ Jpυt,ωtq}´
εδ?
N

¯2

2F and F is from Lemma 2.1.

Matteo Papini, Andrea Battistello, Marcello Restelli

Proof. From (28) with Θ “ Υ and ∆θ “ αt p∇Nυ Jpυt, ωq we have:

Jpυt`1, ωq ´ Jpυt, ωq ě αt

A

p∇Nυ Jpυt, ωq,∇υJpυt, ωq
E

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

“ αt

A

p∇Nυ Jpυt, ωq,∇υJpυt, ωq ˘ p∇Nυ Jpυt, ωq
E

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

“ αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

` αt

A

p∇Nυ Jpυt, ωq,∇υJpυt, ωq ´ p∇Nυ Jpυt, ωq
E

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

ě αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

´ αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

›

›

›
∇υJpυt, ωq ´ p∇Nυ Jpυt, ωq

›

›

›

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

(32)

ě αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

´ αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

εδ
?
N

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

(33)

ě αt

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

ˆ

›

›

›

p∇Nυ Jpυt, ωq
›

›

›
´

εδ
?
N

˙

´ α2
t

L

2

›

›

›

p∇Nυ Jpυt, ωq
›

›

›

2

, (34)

where (32) is from Cauchy-Schwartz inequality and (33) is from Assumption 4.4. The hypothesis on the batch

size makes the
´
›

›

›

p∇Nυ Jpυt, ωq
›

›

›
´

εδ?
N

¯

term positive. We then proceed as in the proof of Lemma 2.1.

Corollary A.2. Let ΠΩ be the class of policies defined in Lemma 4.1. Let ωt P Ω and ωt`1 Ð ωt `

ηt p∇Nω Lpυ, ωtq. Under Assumption 4.4, provided pλt ‰ 0 and N ą ε2δ
L

pλ2
t , for any Ct ď C˚t , the largest step-

size satisfying (6) with probability at least 1´ δ is:

rηt “

ˇ

ˇ

ˇ

pλt

ˇ

ˇ

ˇ
´

εδ?
N

G
›

›

›

p∇ωLpυt, ωtq
›

›

›

˜

sign
´

pλt

¯

`

d

1´
Ct
C˚t

¸

,

where pλt :“
x p∇ωJpυt,ωtq, p∇ωLpυt,ωtqy

} p∇ωLpυt,ωtq}
is the scalar projection of p∇ωJpυt, ωtq onto p∇ωLpυt, ωtq, C˚t “

´

|pλt|´
εδ?
N

¯2

2G ,

and G is from Theorem 4.2.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Proof. From (28) with Θ “ Ω and ∆θ “ ηt p∇Nω Lpυ, ωtq we have:

Jpυ, ωt`1q ´ Jpυ, ωtq ě ηt

A

p∇Nω Lpυ, ωtq,∇ωJpυ, ωtq
E

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

“ ηt

A

p∇Nω Lpυ, ωtq,∇ωJpυ, ωtq ˘ p∇Nω Jpυ, ωtq
E

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

“ ηt

A

p∇Nω Lpυ, ωtq, p∇Nω Jpυ, ωtq
E

` ηt

A

p∇Nω Lpυ, ωtq,∇ωJpυ, ωtq ´ p∇Nω Jpυ, ωtq
E

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

ě ηt

A

p∇Nω Lpυ, ωtq, p∇Nω Jpυ, ωtq
E

´ |ηt|
›

›

›

p∇Nω Lpυ, ωtq
›

›

›

›

›

›
∇ωJpυ, ωtq ´ p∇Nω Jpυ, ωtq

›

›

›

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

(35)

ě ηt

A

p∇Nω Lpυ, ωtq, p∇Nω Jpυ, ωtq
E

´ |ηt|
›

›

›

p∇Nω Lpυ, ωtq
›

›

›

εδ
?
N

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

(36)

ě ηt

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

ˆ

pλt ´ signpηtq
εδ
?
N

˙

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

, (37)

where (35) is from Cauchy-Schwartz inequality and (36) is from Assumption 4.4. Note the absolute value on ηt,
which may be negative. We first consider the case ηt ą 0, which yields:

Jpυ, ωt`1q ´ Jpυ, ωtq ě ηt

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

ˆ

pλt ´
εδ
?
N

˙

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

. (38)

Solving the safety constraint for rηt yields:

rηt “
1

G
›

›

›

p∇ωLpυt, ωtq
›

›

›

˜

pλt ´
εδ
?
N
`

ˇ

ˇ

ˇ

ˇ

pλt ´
εδ
?
N

ˇ

ˇ

ˇ

ˇ

d

1´
Ct
C˚t

¸

. (39)

Given the batch size condition, the step size is indeed positive if and only if pλt ą 0. We then consider the case
ηt ď 0, which yields:

Jpυ, ωt`1q ´ Jpυ, ωtq ě ηt

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

ˆ

pλt `
εδ
?
N

˙

´ η2
t

L

2

›

›

›

p∇Nω Lpυ, ωtq
›

›

›

2

. (40)

Solving the safety constraint for rηt yields:

rηt “
1

G
›

›

›

p∇ωLpυt, ωtq
›

›

›

˜

pλt `
εδ
?
N
`

ˇ

ˇ

ˇ

ˇ

pλt `
εδ
?
N

ˇ

ˇ

ˇ

ˇ

d

1´
Ct
C˚t

¸

. (41)

Given the batch size condition, the step size is indeed non-positive if and only if pλt ă 0. The two cases can be
unified as:

ηt “

$

’

&

’

%

pλt´
εδ?
N

G} p∇ωLpυt,ωtq}

´

1`
b

1´ Ct
C˚t

¯

if pλt ą 0,

pλt`
εδ?
N

G} p∇ωLpυt,ωtq}

´

1´
b

1´ Ct
C˚t

¯

if pλt ă 0,
(42)

Matteo Papini, Andrea Battistello, Marcello Restelli

which can be further simplified to obtain the rηt in the thesis.

As in the exact framework, we can treat the case pλt “ 0 separately. Under the restriction Ct ď 0, the following
range of step sizes is safe:

´
1

›

›

›

p∇ωLpυt, ωtq
›

›

›

c

´
2Ct
G

ď ηt ď
1

›

›

›

p∇ωLpυt, ωtq
›

›

›

c

´
2Ct
G
, (43)

from which we select ηt “
1

} p∇ωLpυt,ωtq}

b

´ 2Ct
G . No assumption on the batch size is requested, but only non-

positive improvement constraints can be satisfied.

Theorem 4.5. Under Assumption 4.4, provided Ct ď 0 and N ą ε2δ
L

pλ2
t , Algorithm 2 guarantees Jpθt`1q ´

Jpθtq ě Ct with probability at least 1´ δ for any t ě 1.

Proof. We just combine the results from Corollary A.1 and A.2. We actually obtain a stronger versions than
the one reported in the main paper: for the odd steps of Algorithm 2 (mean updates), a batch size N ą

ε2δ
L

›

›

›

p∇Nυ Jpυt, ωtq
›

›

›

2

is enough to satisfy (6) for any Ct ď
σ2
ωt

´

} p∇Nυ Jpυt,ωtq}´
εδ?
N

¯2

2F . For the even steps (variance

updates), a batch size N ą ε2δ
L

pλ2
t allows to satisfy (6) for any Ct ď

´

|pλt|´
εδ?
N

¯2

2G . The looser version from the paper

is then obtained by observing that
›

›

›

p∇Nυ Jpυt, ωtq
›

›

›
ą |pλt| always, since pλt is a scalar projection of p∇Nυ Jpυt, ωtq,

and that both upper bounds on Ct are non-negative.

B Meta Gradient Estimation

In this section, we propose an unbiased estimator for ∇ω }∇υJpθq}, which is necessary to estimate ∇ωLpθq
(recall that θ “ rυ, ωs is the full vector of policy parameters). First note that:

∇ω }∇υJpθq} “
x∇υJpθq,∇ω∇υJpθqy

}∇υJpθq}
, (44)

which is the scalar projection of ∇ω∇υJ onto ∇υJ .

An estimator for ∇υJpθq is already available (2). We now show how to estimate ∇ω∇θJpθq. First note that:

∇ω∇υ log pθ pτq “
H
ÿ

h“0

∇ω∇υ log πθ pah | shq “
H
ÿ

h“0

∇ω
ah ´ µθpshq

e2ω
“ ´2

H
ÿ

t“0

a´ µθ
e2ω

“ ´2∇υ log pθpτq. (45)

Using the log-trick:

∇ω∇υJpθq “ ∇ω E
τ„pθ

r∇υ log pθpτqRpτqs

“ E
τ„pθ

r∇ω log pθpτq∇υ log pθpτqRpτqs ` E
τ„pθ

r∇ω∇υ log pθpτqRpτqs

“ E
τ„pθ

r∇ω log pθpτq∇υ log pθpτqRpτqs ´ 2∇υJpθq

:“ mixpθq ´ 2∇υJpθq. (46)

Since we can reuse the policy gradient w.r.t. υ in (46), we have reduced the problem of estimating ∇ωLpθq
to that of estimating mixpθq :“ Eτ„pθ r∇ω log pθpτq∇υ log pθpτqRpτqs. The following estimator is inspired by
GPOMDP (Baxter and Bartlett, 2001):

Theorem B.1. An unbiased estimator for mixpθq :“ Eτ„pθ r∇ω log pθpτq∇υ log pθpτqRpτqs is:

ymixpθq “
1

N

N
ÿ

n“1

H
ÿ

h“0

γhrnh

˜

h
ÿ

i“0

∇ω log πθpa
n
i |s

n
i q

¸˜

h
ÿ

j“0

∇υ log πθpa
n
j |s

n
j q

¸

, (47)

where subscripts denote time steps and superscripts denote trajectories. To preserve the unbiasedness of the
estimator, separate trajectories must be used to compute the two inner sums.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Proof. Let’s abbreviate action probabilities as πk “ πθpak|skq and sub-trajectory probabilities as pθpτh:kq “

πθpah|shqPpsh`1|sh, ahq . . .Ppsk|sk´1, ak´1q. We can split mixpθq into the sum of four components:

mix pθq “

ż

T

pθ pτ0:Hq∇ω log pθpτq∇θ log pθpτqRpτqdτ “

“

ż

T

pθ pτ0:Hq

˜

H
ÿ

h“0

γhrh

¸˜

H
ÿ

i“0

∇ω log πi

¸˜

H
ÿ

j“0

∇υ log πj

¸

dτ “

“

H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸˜

h
ÿ

j“0

∇υ log πj

¸

dτ (48)

`

H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸˜

H
ÿ

j“h`1

∇υ log πj

¸

dτ (49)

`

H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

H
ÿ

i“h`1

∇ω log πi

¸˜

h
ÿ

j“0

∇υ log πj

¸

dτ (50)

`

H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

H
ÿ

i“h`1

∇ω log πi

¸˜

H
ÿ

j“h`1

∇υ log πj

¸

dτ. (51)

Next, we show that (49), (50) and (51) all evaluate to 0:

p49q “
H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸˜

H
ÿ

j“h`1

∇υ log πj

¸

dτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸

dτ

ż

T

pθ pτh`1:Hq

˜

H
ÿ

j“h`1

∇υ log πj

¸

dτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸

dτ

ż

T

pθ pτh`1:Hq∇υ log pθ pτh`1:Hqdτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸

dτ

ż

T

∇υpθ pτh`1:Hqdτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrh

˜

h
ÿ

i“0

∇ω log πi

¸

dτ∇υ
ż

T

pθ pτh`1:Hqdτ

“ 0.

Analogously, we can say that (50) = 0. Finally:

p51q “
H
ÿ

h“0

ż

T

pθ pτ0:Hq γ
hrh

˜

H
ÿ

i“h`1

∇ω log πi

¸˜

H
ÿ

j“h`1

∇υ log πj

¸

dτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

pθ pτh`1:Hq∇ω log pθ pτh`1:Hq∇υ log pθ pτh`1:Hqdτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

p∇ω∇υpθpτh`1:Hq ´∇ω∇υ log pθpτh`1:Hqq dτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

∇ω∇υpθpτh`1:Hqdτ

´

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

∇ω∇υ log pθpτh`1:Hqdτ

“

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ∇ω∇υ

ż

T

pθpτh`1:Hqdτ

Matteo Papini, Andrea Battistello, Marcello Restelli

´

H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

´2pθpτh`1:Hq∇υ log pθpτh`1:Hqdτ

“ 2
H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

pθpτq∇υ log pθpτh`1:Hqdτ

“ 2
H
ÿ

h“0

ż

T

pθ pτ0:hq γ
hrhdτ

ż

T

∇υpθpτh`1:Hqdτ “ 0.

Hence, mixpθq is equal to (48) alone, of which the proposed ymixpθq is a Monte Carlo estimator.

Similarly to what has been done for GPOMDP (Peters and Schaal, 2008), we can introduce a baseline to reduce
the variance of the estimator. Let:

ymixhpθq “ E

»

—

—

—

—

–

˜

h
ÿ

k“0

∇υ log πk

¸

looooooooomooooooooon

Gh

˜

h
ÿ

k“0

∇ω log πk

¸

looooooooomooooooooon

Hh

¨

˝ γhrh
loomoon

Fh

´bh

˛

‚

fi

ffi

ffi

ffi

ffi

fl

, (52)

where bh is a generic baseline that is independent from actions ak. Any baseline bh “ rbh

´

Gh`Hh
GhHh

¯

will keep the

estimator unbiased for any value of rbh, as long as different data are used for each multiplicative term:

E rGhHh pFh ´ bhqs “ E rGhHhFhs ´ E rGhHhbhs

“ E rGhHhFhs ´ E

„

GhHh
rbh

ˆ

Gh `Hh

GhHh

˙

“ E rGhHhFhs ´ rbhE rGhs ´ rbh rHhs

“ E rGhHhFhs .

We choose rbh as to minimize the variance of ymixh:

V arrymixhs “ E
”

ymix
2

h

ı

´ E
”

ymixh

ı2

“ E

„

G2
hH

2
h

ˆ

F 2
h ´ 2Fh rbh

Gh `Hh

GhHh
` rbh

2 pGh `Hhq
2

G2
hH

2
h

˙

´ E rGhHhFhs
2

“ E
“

G2
hH

2
hF

2
h

‰

´ 2 rbhE rGhHhFh pGh `Hhqs ` rbh
2
E
”

pGh `Hhq
2
ı

´ E rGhHhFhs
2
.

Setting the gradient to zero yields:

b˚h “ arg min
Ăbh

V ar
”

ymixh

ı

“
E rGhHhFh pGh `Hhqs

E
”

pGh `Hhq
2
ı .

Hence the estimator has minimum variance with baseline:

bh “ b˚h
Gh `Hh

GhHh
“
GhHhFh pGh `Hhq

pGh `Hhq
2

Gh `Hh

GhHh
,

which can be estimated from samples as in (Peters and Schaal, 2008).

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

Finally:

p∇ω }∇υJpθq} “

A

p∇υJpθq, p∇ω∇υJpθq
E

›

›

›

p∇υJpθq
›

›

›

,

“

A

p∇υJpθq, ymixpθq ´ 2p∇υJpθq
E

›

›

›

p∇υJpθq
›

›

›

“

A

p∇υJpθq, ymixpθq
E

›

›

›

p∇υJpθq
›

›

›

´ 2. (53)

To preserve the unbiasedness of this estimator we need to employ three independent sets of sample trajectories:
two for ymix and a third one for the (normalized) policy gradient estimator w.r.t. υ. For the latter, we can re-use

the same data used to compute the other additive terms of p∇ωL. Additional, independent data are needed for
the variance-minimizing baseline. However, as often in practice, the bias introduced by using a single batch of
trajectories to compute the estimator (and its baseline) is too small to justify the variance introduced by splitting
the batch in order to preserve unbiasedness. Hence, we never split our batches in the experiments.

C Estimation Error Characterization

The safe step sizes for the approximate framework presented in Section 4.2 require an upper bound on the policy
gradient estimator error. For simplicity and generality, in this section we will not distinguish between mean and
variance parameters. Thus, we seek an εδ ą 0 such that, for all δ P p0, 1q and N ě 1:

›

›

›

p∇NJpθtq ´∇Jpθtq
›

›

›
ď

εδ
?
N
, (54)

with probability at least 1 ´ δ, where p∇NJpθtq is an unbiased estimator of ∇Jpθtq employing N sample tra-
jectories. A formal way to obtain such an εδ, based on Chebychev’s inequality and an upper bound on the
variance of GPOMDP (Zhao et al., 2011) is provided in (Papini et al., 2019). However, this solution tends to be

over-conservative (Papini et al., 2017). With a small additional assumption, i.e., Gaussianity of p∇Jpθtq, we can
use Gaussian confidence regions instead7. Since we care about the magnitude error of an m-dimensional random
vector, we propose to employ ellipsoidal confidence regions. For any δ P p0, 1q, let Eδ be the following set:

Eδ “

"

x P Rm :
´

p∇NJpθtq ´ x
¯T

S´1
´

p∇NJpθtq ´ x
¯

ă
m

N ´m
F1´δ,m,N´m

*

, (55)

where S is the sample covariance of p∇1Jpθtq and F1´δ,m,N´m is the quantile p1´ δq of the F-distribution with

m and n ´ m degrees of freedom. This set is centered in p∇NJpθtq and is delimited by an ellipsoid. It is a
standard result (Härdle and Simar, 2012) that, with probability 1 ´ δ, the true gradient is contained in this

region, i.e., P p∇Jpθtq P Eδq “ 1 ´ δ. Equivalently, the difference p∇NJpθtq ´ ∇Jpθtq is contained within the
following origin-centered ellipsoid:

Eδ “

x P Rd : xTAδx “ 1
(

, (56)

where Aδ “
´

mF1´δ,d,N´m

N´m S
¯´1

. Thus, the estimation error
›

›

›

p∇NJpθtq ´∇Jpθtq
›

›

›
cannot be larger than the

largest semi-axis of Eδ. Simple algebraic computations yield the following:

›

›

›

p∇NJpθtq ´∇Jpθtq
›

›

›
ď

c

mF1´δ,m,n´m }S}

N ´m
, (57)

with probability at least 1´ δ, where }S} denotes the spectral norm (i.e., the largest eigenvalue) of the sample
covariance. The latter can be computed efficiently with the Lanczos method (Lanczos, 1950). Finally, we define

7The plausibility of this assumption relies on the Central Limit Theorem, hence is only justified by sufficiently large
batch sizes.

Matteo Papini, Andrea Battistello, Marcello Restelli

the following error bound:

εδ “

c

NmF1´δ,m,n´m }S}

N ´m
, (58)

which can be directly used in Algorithm 2.

D Extensions

In this section, we consider possible generalizations of the results of the paper.

D.1 Multi-dimensional actions

In the main paper, we only considered scalar actions, i.e., A Ď R. However, many continuous RL tasks involve
multi-dimensional actions (Brockman et al., 2016). The natural generalization of (3) for the case A P Rd is a
multi-variate Gaussian policy:

πθpa|sq “
1

p2πqd{2|Σω|
1{2

exp

"

´
1

2
pa´ µυpsqq

TΣ´1
ω pa´ µυpsqq

*

, (59)

where Σω is a dˆ d covariance matrix parametrized by ω. In this case the policy parameters are θ “ rυT |ωT sT .
We denote with m1 the dimensionality of υ, with m2 the dimensionality of ω and with m “ m1 ` m2 the
dimensionality of the full parameter vector θ.

The simplest case is Σω “ e2ωI, where I denotes the identity matrix. This corresponds to a factored Gaussian
policy where the action dimensions are independent and the same variance is used for them all. The results of
the paper extend directly to this case.

A more common parametrization (Duan et al., 2016) is Σω “ diagpexp2ωq, where the covariance matrix is
diagonal. This corresponds to a factored Gaussian policy where the actions dimensions are independent, but a
different variance is employed for each of them. It can be useful when the actions have different scales, or when
the environment is more sensitive to particular actions. Again, the results on scalar actions can be generalized
quite easily by considering each action dimension separately.

Finally, Σω can be a full matrix. This allows to capture correlations among different actions. A possible
parametrization is Σω “ LωL

T
ω, where Lω is a lower triangular matrix with positive diagonal entries:

Lω “

»

—

—

—

–

eω11 ω12 . . . ω1d

ω21 eω22 . . . ω2d

...
. . .

. . .
...

ωd1 ωd2 . . . eωdd

fi

ffi

ffi

ffi

fl

. (60)

Generalizing our results to this case is non-trivial. However, full covariance matrices are rarely used in practice.

D.2 Heteroskedastic exploration

Another generalization is to make the policy variance state-dependent. This allows to concentrate the stochas-
ticity on those regions of the state space where there is more need of exploration. We can employ a linear
parametrization as done for the mean:

σω “ exp

ωTφpsq
(

, (61)

where φpsq is a vector of bounded state features, i.e., supsPS }φpsq} ď ϕ. Our results extend quite easily to this
case. It is enough to adjust the smoothing constants from Lemma 4.1 as follows:

ψ “
4ϕ
?

2πe
, κ “ ξ “ 2ϕ2. (62)

E Task Specifications

In this section, we provide a detailed description of the environments employed by the numerical simulations of
Section 5.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

E.1 Linear-Quadratic Gaussian regulator (LQG)

This is a 1D continuous control task. The state is initialized uniformly at random in r´4, 4s, which is also
the state space. The task is deterministic otherwise. The action space is r´4, 4s as well. The next state is
sh`1 “ sh ` ah (linear) and the reward is rh “ ´0.9s2

h ´ 0.9a2
h (quadratic). The induced goal is to bring the

state in 0 with the minimum effort. The episode is always 20 steps long. A discount factor of γ “ 0.9 is used for
this task.

E.2 Continuous-action Cart-Pole

This is a 2D continuous control task. The goal is to balance (keep upright) a pole situated on a cart, by applying
forces to the cart in the horizontal direction. The cart has a mass of 1Kg and the pole has a mass of 0.1Kg
and is 0.5m long. The state is four dimensional and includes the cart’s position x, the cart’s horizontal speed
9x, the pole’s angle w.r.t. the upright position θ and the pole’s angular velocity 9θ. The action (force) that can
be applied is a P r´10, 10s. The agent receives a reward of 1 for each step. All state variables are initialized
uniformly at random in r´0.05, 0.05s. The task is deterministic otherwise. The episode terminates when the
pole falls (|θ| ą 12 degrees), when the cart goes too far from the initial position (|x| ą 2.4), and anyway after
1000 time steps. The control frequency is 50Hz. A discount factor of γ “ 0.99 is used for this task.

F Experimental Setting

In this section, we provide further details on the experiments for the sake of reproducibility. Table 1 provides a
recap of the selected hyper-parameters.

Algorithm α η τ

MEPG (σω0
“ 5.0) 0.1 0.01

MEPG (σω0
“ 0.5) 1.0 0.1

Fixed-variance PG (σω0
“ 5.0) 1.0

Fixed-variance PG (σω0
“ 0.5) 0.1

Adaptive-variance PG 0.01
Entropy-augmented PG 0.1 0.1

Table 1: Hyper-parameters for the Cart-Pole experiment, optimized via grid search. When not specified, the
same value was selected for the two initializations.

F.1 MEPG experiment (Figure 1)

Five independent random seeds were employed for the hyper-parameter selection. Average return (i.e., averaged
both over learning iterations and across different seeds) was used as a metric. This metric is proportional to the
area under the learning curve. Step sizes causing divergence issues were discarded. In Tables 2-5, we report the
metric, averaged over the five seeds, with 95% confidence intervals, for all the candidate hyper-parameter settings.
The final choice for each experiment is in bold. The sign K corresponds to settings that caused divergence issues
and were hence discarded.

The best step sizes for MEPG were searched among pαˆ ηq P t10, 1, 0.1u ˆ t1, 0.1, 0.01u; p0.1, 0.01q was the best
choice for σω0

“ 5, while p1, 0.1q performed better in the case σω0
“ 0.5 (Table 2).

Matteo Papini, Andrea Battistello, Marcello Restelli

α “ 10 α “ 1.0 α “ 0.1

η “ 1.0 K K 258.38˘ 47.48
σ “ 5.0 η “ 0.1 K K 753.42˘ 14.34

η “ 0.01 K 733.68˘ 47.96 822.88˘ 11.41

η “ 1.0 K 139.14˘ 32.01 381.23˘ 49.14
σ “ 0.5 η “ 0.1 K 751˘ 27.06 238.30˘ 28.52

η “ 0.01 K 472.02˘ 11.71 78.42˘ 1.56

Table 2: Hyper-parameter selection of MEPG

The best step size for fixed-variance PG was searched among α P t10, 1, 0.1, 0.01u; α “ 1 turned out to be the
best choice for σω0 “ 5, while α “ 0.1 was better for σω0 “ 0.5 (Table 3).

α “ 10 α “ 1 α “ 0.1 α “ 0.01

σ “ 5.0 K 472.35˘ 39.6 182.36˘ 0.80 39.57˘ 0.15

σ “ 0.5 K K 515.14˘ 4.67 114.52˘ 0.85

Table 3: Hyper-parameter selection of fixed-variance PG

The best step size for adaptive-variance PG was searched among α P t1, 0.1, 0.01, 0.001u; α “ 0.01 turned out to
be the best choice both for σω0

“ 5 and σω0
“ 0.5 (Table 4).

α “ 1 α “ 0.1 α “ 0.01 α “ 0.001

σ “ 5.0 K K 98.64˘ 1.16 35.40˘ 0.13

σ “ 0.5 K K 117.65˘ 1.00 42.34˘ 0.11

Table 4: Hyper-parameter selection of adaptive-variance PG

The hyper-parameters for entropy-augmented PG were searched among pα, τq P t1, 0.1, 0.01u ˆ t0.05, 0.1, 0.2u;
p0.1, 0.1q was the best choice both for σω0

“ 5 and σω0
“ 0.5 (Table 5).

α “ 1 α “ 0.1 α “ 0.01

τ “ 0.05 22.86˘ 0.26 355.46˘ 20.13 84.91˘ 0.55
σ “ 5.0 τ “ 0.1 22.93˘ 0.31 371.43˘ 5.64 68.24˘ 1.08

τ “ 0.2 22.43˘ 0.15 328.02˘ 11.75 50.68˘ 0.39

τ “ 0.05 K 318.54˘ 31.75 103.36˘ 0.78
σ “ 0.5 τ “ 0.1 K 382.80˘ 3.02 90.11˘ 0.70

τ “ 0.2 K 348.92˘ 4.43 64.04˘ 0.44

Table 5: Hyper-parameter selection of entropy-augmented PG

The final results are averaged over 10 separate random seeds. The figure also reports 95% Student’s t confidence
intervals.

The batch size is N “ 500 for all algorithms.

F.2 SEPG LQG experiment (Figure 2)

All the considered algorithms tune the step sizes automatically.

A batch size of N “ 500 and a confidence parameter of δ “ 0.2 were used for all the algorithms.

Balancing Learning Speed and Stability in Policy Gradient via Adaptive Exploration

The results are averaged over 10 random seeds. The figure also reports 95% Student’s t confidence intervals.

F.3 SEPG Cart-Pole experiment (Figure 3)

SEPG tunes the step sizes automatically.

A batch size of N “ 500 and a confidence parameter of δ “ 1 were used.

The results are averaged over 5 random seeds. The figure reports 95% Student’s t confidence intervals. The
learning curve of MEPG is also reported as a reference.

The code used for the experiments is included in the supplementary materials, including scripts for reproducing
the experiments (see the README file).

	Introduction
	Preliminaries
	Policy Gradient Fundamentals
	Safe Policy Gradients

	Adaptive Exploration
	Stable Exploration
	Exact framework
	Approximate framework

	Experiments
	Discussion and Future Work
	Proofs
	Exact framework
	Approximate Framework

	Meta Gradient Estimation
	Estimation Error Characterization
	Extensions
	Multi-dimensional actions
	Heteroskedastic exploration

	Task Specifications
	Linear-Quadratic Gaussian regulator (LQG)
	Continuous-action Cart-Pole

	Experimental Setting
	MEPG experiment (Figure 1)
	SEPG LQG experiment (Figure 2)
	SEPG Cart-Pole experiment (Figure 3)

