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A PROOFS

Proof for Definition 1 We write a proof in the case
where E = {Rd}. If K > 1, the proof can be applied
independently on each set of the partition.

Let (fn)n∈N be such that fn(0) = 0 for all n ∈ N and

W2 [(∇fn)]µ, ν] ≤ 1

n+ 1
+ inf
f∈F`,L

W2 [(∇f)]µ, ν] .

Let x0 ∈ supp(µ). Then there exists C > 0 such that
for all n ∈ N, ‖∇fn(x0)‖ ≤ C. Indeed, suppose this is
not true. Take r > 0 such that V := µ[B(x0, r)] > 0.
By Prokhorov theorem, there exists R > 0 such that
ν [B(0, R)] ≥ 1 − V

2 . Then for C > 0 large enough,
there exists an n ∈ N such that:

W 2
2 [(∇fn)]µ, ν] = min

π∈Π(µ,ν)

∫
‖∇fn(x)− y‖2 dπ(x, y)

≥
∫
‖∇fn(x)− projB(0,R) [∇fn(x)] ‖2 dµ(x)

≥
∫
B(x0,r)∩supp(µ)

‖∇fn − projB(0,R) [∇fn] ‖2 dµ

≥ 1

2
V min
x∈B(x0,r)
y∈B(0,R)

‖∇fn(x)− y‖2

≥ 1

2
V (C − Lr −R)

which contradicts the definition of fn when C is suffi-
ciently large.
Then for x ∈ Rd,

‖∇fn(x)‖ ≤ L‖x−x0‖+ ‖∇fn(x0)‖ ≤ L‖x−x0‖+C.

Since (∇fn)n∈N is equi-Lipschitz, it converges uni-
formly (up to a subsequence) to some function g by
Arzelà–Ascoli theorem. Note that g is L-Lipschitz.
Let ε > 0 and let N ∈ N such that n ≥ N ⇒
‖∇fn − g‖∞ ≤ ε. Then for n ≥ N and x ∈ Rd,

|fn(x)| =
∣∣∣∣ ∫ 1

0

〈∇fn(tx), x 〉 dt
∣∣∣∣ ≤ ‖x‖(‖g‖∞ + ε)

so that (fn(x)) converges up to a subsequence. Let φ, ψ
be two extractions and α, β such that fφ(n)(x) → α
and fψ(n)(x)→ β. Then

|α− β| = lim
n→∞

∣∣∣∣ ∫ 1

0

〈∇fφ(n)(tx)−∇fψ(n)(tx), x 〉 dt
∣∣∣∣

≤ lim
n→∞

‖x‖‖∇fφ(n) −∇fψ(n)‖∞ = 0.

This shows that (fn)n∈N converges pointwise to some
function f?. In particular, f? is convex. For x ∈ Rd,
using Lebesgue’s dominated convergence theorem,

f?(x) = lim
n→∞

fn(x) = lim
n→∞

∫ 1

0

〈∇fn(tx), x 〉 dt

=

∫ 1

0

〈
lim
n→∞

∇fn(tx), x
〉
dt =

∫ 1

0

〈g(tx), x 〉 dt

so f? is differentiable and ∇f? = g. Using Lebesgue’s
dominated convergence theorem, uniform (hence point-
wise) convergence of (∇fn)n∈N to ∇f? shows that
(∇fn)]µ ⇀ (∇f?)]µ. Then classical optimal trans-
port stability theorems e.g. (Villani, 2009, Theorem
5.19) show that

W2 [(∇f?)]µ, ν] = lim
n→∞

W2 [(∇fn)]µ, ν]

= inf
f∈F`,L

W2 [(∇f)]µ, ν] ,

i.e. f? is a minimizer.

Proof of Theorem 1 For f ∈ F`,L,E , ∇f]µ =∑n
i=1 aiδ∇f(xi). Writing zi = ∇f(xi), we wish to mini-

mizeW 2
2 (
∑n
i=1 aiδzi , ν) over all the points z1, . . . , zn ∈

Rd such that there exists f ∈ F`,L,E with ∇f(xi) = zi
for all i ∈ JnK. Following (Taylor, 2017, Theorem 3.8),
there exists such a f if, and only if, there exists u ∈ Rn
such that for all k ∈ JKK and for all i, j ∈ Ik,

ui ≥ uj + 〈zj , xi − xj 〉+
1

2(1− `/L)

(
1

L
‖zi − zj‖2

+`‖xi − xj‖2 − 2
`

L
〈zj − zi, xj − xi 〉

)
.

Then minimizing over f ∈ F`,L,E is equivalent to mini-
mizing over (z1, . . . , zn, u) under these interpolation
constraints.

The second part of the theorem is a direct application
of (Taylor, 2017, Theorem 3.14).

Proof of Proposition 1 Let f : R → R. Then
f ∈ F`,L,E if and only if it is convex and L-smooth
on each set Ek, k ∈ JKK, i.e. if and only if for any
k ∈ JKK, 0 ≤ f ′′ Ek

≤ L.
For a measure ρ, let us write Fρ and Qρ the cumulative
distribution function and the quantile function (i.e.
the generalized inverse of the cumulative distribution
function). Then Q∇f]µ = ∇f ◦Qµ.
Using the closed-form formula for the Wasserstein dis-
tance in dimension 1, the objective we wish to minimize
(over f ∈ F`,L,E) is:

W 2
2 (f ′]µ, ν) =

∫ 1

0

[f ′ ◦Qµ(t)−Qν(t)]
2
dt.

Suppose µ has a density w.r.t the Lebesgue measure.
Then by a change of variable, the objective becomes∫ +∞

−∞
[f ′(x)−Qν ◦ Fµ(x)]

2
dµ(x) = ‖f ′ − π‖2L2(µ).

Indeed, Qν ◦ Fµ is the optimal transport map from µ
to ν, hence its own barycentric projection. The result
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follows.

Suppose now that µ is purely atomic, and write µ =∑n
i=1 aiδxi with x1 ≤ . . . ≤ xn. For 0 ≤ i ≤ n, put

αi =
∑i
k=1 ak with α0 = 0. Then

W 2
2 (f ′]µ, ν) =

n∑
i=1

∫ αi

αi−1

(f ′(xi)−Qν(t))2dt

=

n∑
i=1

ai

[
f ′(xi)−

1

ai

(∫ αi

αi−1

Qν(t)dt

)]2

+

∫ αi

αi−1

Qν(t)2dt− 1

ai

(∫ αi

αi−1

Qν(t)dt

)2

.

Since
∑n
i=1

∫ αi

αi−1
Qν(t)2dt− 1

ai

(∫ αi

αi−1
Qν(t)dt

)2

does
not depend on f , minimizing W 2

2 (f ′]µ, ν) over f ∈
F`,L,E is equivalent to solve

min
f∈F`,L,E

n∑
i=1

ai

[
f ′(xi)−

1

ai

(∫ αi

αi−1

Qν(t)dt

)]2

.

There only remains to show that π(xi) =
1
ai

∫ αi

αi−1
Qν(t) dt. Using the definition of the condi-

tional expectation and the definition of π:

π(xi) =
1

ai

∫ +∞

−∞
y 1{x = xi} dπ(x, y)

=
1

ai

∫ +∞

−∞
y 1{x = xi} d(Qµ, Qν)]L

1
[0,1]

=
1

ai

∫ 1

0

Qν(t)1{Qµ(t) = xi} dt

=
1

ai

∫ αi

αi−1

Qν(t) dt.

Proof of Proposition 2 Since E = {Rd}, and using
the triangular inequality for the Wasserstein distance,∣∣∣W2(µ, ν)− Ŵ2(µ, ν)

∣∣∣ =
∣∣∣W2(µ, ν)−W2(µ,∇f̂n]µ)

∣∣∣
≤W2

(
∇f̂n]µ, ν

)
≤W2

(
∇f̂n]µ,∇f̂n]µ̂n

)
(4)

+W2

(
∇f̂n]µ̂n, ν̂n

)
(5)

+W2 (ν̂n, ν) . (6)

We now successively upper bound terms (4), (5), (6).

Since ∇f̂n is L-Lispchitz, almost surely:

(4) = W2

(
∇f̂n]µ,∇f̂n]µ̂n

)
≤ LW2 (µ, µ̂n) −→

n→∞
0

since almost surely, µ̂n ⇀ µ and µ has compact support,
cf. (Santambrogio, 2015, Theorem 5.10). For the same
reason, almost surely:

(6) = W2 (ν̂n, ν) −→
n→∞

0.

Finally, since f? ∈ F`,L,E and ∇f̂n is an optimal SSNB
potential, it almost surely holds:

(5) = W2

(
∇f̂n]µ̂n, ν̂n

)
≤W2

(
∇f?]µ̂n, ν̂n

)
−→
n→∞

W2

(
∇f?]µ, ν

)
= 0

because (µ̂n, ν̂n) ⇀ (µ, ν), and by definition of f?,
∇f?]µ = ν.
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