A PROOFS

Proof for Definition 1 We write a proof in the case where $\mathcal{E} = \{\mathbb{R}^d\}$. If K > 1, the proof can be applied independently on each set of the partition.

Let $(f_n)_{n \in \mathbb{N}}$ be such that $f_n(0) = 0$ for all $n \in \mathbb{N}$ and

$$W_2\left[(\nabla f_n)_{\sharp}\mu,\nu\right] \leq \frac{1}{n+1} + \inf_{f \in \mathcal{F}_{\ell,L}} W_2\left[(\nabla f)_{\sharp}\mu,\nu\right].$$

Let $x_0 \in \operatorname{supp}(\mu)$. Then there exists C > 0 such that for all $n \in \mathbb{N}$, $\|\nabla f_n(x_0)\| \leq C$. Indeed, suppose this is not true. Take r > 0 such that $V := \mu[B(x_0, r)] > 0$. By Prokhorov theorem, there exists R > 0 such that $\nu[B(0, R)] \geq 1 - \frac{V}{2}$. Then for C > 0 large enough, there exists an $n \in \mathbb{N}$ such that:

$$W_{2}^{2}[(\nabla f_{n})_{\sharp}\mu,\nu] = \min_{\pi \in \Pi(\mu,\nu)} \int \|\nabla f_{n}(x) - y\|^{2} d\pi(x,y)$$

$$\geq \int \|\nabla f_{n}(x) - \operatorname{proj}_{B(0,R)} [\nabla f_{n}(x)] \|^{2} d\mu(x)$$

$$\geq \int_{B(x_{0},r) \cap \operatorname{supp}(\mu)} \|\nabla f_{n} - \operatorname{proj}_{B(0,R)} [\nabla f_{n}] \|^{2} d\mu$$

$$\geq \frac{1}{2} V \min_{\substack{x \in B(x_{0},r) \\ y \in B(0,R)}} \|\nabla f_{n}(x) - y\|^{2}$$

$$\geq \frac{1}{2} V(C - Lr - R)$$

which contradicts the definition of f_n when C is sufficiently large.

Then for $x \in \mathbb{R}^d$,

$$\|\nabla f_n(x)\| \le L \|x - x_0\| + \|\nabla f_n(x_0)\| \le L \|x - x_0\| + C.$$

Since $(\nabla f_n)_{n \in \mathbb{N}}$ is equi-Lipschitz, it converges uniformly (up to a subsequence) to some function g by Arzelà–Ascoli theorem. Note that g is L-Lipschitz.

Let $\epsilon > 0$ and let $N \in \mathbb{N}$ such that $n \ge N \Rightarrow$ $\|\nabla f_n - g\|_{\infty} \le \epsilon$. Then for $n \ge N$ and $x \in \mathbb{R}^d$,

$$|f_n(x)| = \left| \int_0^1 \langle \nabla f_n(tx), x \rangle \, dt \right| \le ||x|| (||g||_\infty + \epsilon)$$

so that $(f_n(x))$ converges up to a subsequence. Let ϕ, ψ be two extractions and α, β such that $f_{\phi(n)}(x) \to \alpha$ and $f_{\psi(n)}(x) \to \beta$. Then

$$\begin{aligned} |\alpha - \beta| &= \lim_{n \to \infty} \left| \int_0^1 \langle \nabla f_{\phi(n)}(tx) - \nabla f_{\psi(n)}(tx), x \rangle \, dt \right| \\ &\leq \lim_{n \to \infty} \|x\| \|\nabla f_{\phi(n)} - \nabla f_{\psi(n)}\|_{\infty} = 0. \end{aligned}$$

This shows that $(f_n)_{n \in N}$ converges pointwise to some function f_* . In particular, f_* is convex. For $x \in \mathbb{R}^d$, using Lebesgue's dominated convergence theorem,

$$f_{\star}(x) = \lim_{n \to \infty} f_n(x) = \lim_{n \to \infty} \int_0^1 \langle \nabla f_n(tx), x \rangle \, dt$$
$$= \int_0^1 \left\langle \lim_{n \to \infty} \nabla f_n(tx), x \right\rangle \, dt = \int_0^1 \langle g(tx), x \rangle \, dt$$

so f_{\star} is differentiable and $\nabla f_{\star} = g$. Using Lebesgue's dominated convergence theorem, uniform (hence pointwise) convergence of $(\nabla f_n)_{n \in \mathbb{N}}$ to ∇f_{\star} shows that $(\nabla f_n)_{\sharp} \mu \rightarrow (\nabla f_{\star})_{\sharp} \mu$. Then classical optimal transport stability theorems *e.g.* (Villani, 2009, Theorem 5.19) show that

$$W_2\left[(\nabla f_\star)_{\sharp}\mu,\nu\right] = \lim_{n \to \infty} W_2\left[(\nabla f_n)_{\sharp}\mu,\nu\right]$$
$$= \inf_{f \in \mathcal{F}_{\ell,L}} W_2\left[(\nabla f)_{\sharp}\mu,\nu\right],$$

i.e. f_{\star} is a minimizer.

Proof of Theorem 1 For $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$, $\nabla f_{\sharp}\mu = \sum_{i=1}^{n} a_i \delta_{\nabla f(x_i)}$. Writing $z_i = \nabla f(x_i)$, we wish to minimize $W_2^2 \left(\sum_{i=1}^{n} a_i \delta_{z_i}, \nu \right)$ over all the points $z_1, \ldots, z_n \in \mathbb{R}^d$ such that there exists $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$ with $\nabla f(x_i) = z_i$ for all $i \in [n]$. Following (Taylor, 2017, Theorem 3.8), there exists such a f if, and only if, there exists $u \in \mathbb{R}^n$ such that for all $k \in [K]$ and for all $i, j \in I_k$,

$$u_{i} \geq u_{j} + \langle z_{j}, x_{i} - x_{j} \rangle + \frac{1}{2(1 - \ell/L)} \left(\frac{1}{L} \| z_{i} - z_{j} \|^{2} + \ell \| x_{i} - x_{j} \|^{2} - 2 \frac{\ell}{L} \langle z_{j} - z_{i}, x_{j} - x_{i} \rangle \right).$$

Then minimizing over $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$ is equivalent to minimizing over (z_1, \ldots, z_n, u) under these interpolation constraints.

The second part of the theorem is a direct application of (Taylor, 2017, Theorem 3.14).

Proof of Proposition 1 Let $f : \mathbb{R} \to \mathbb{R}$. Then $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$ if and only if it is convex and *L*-smooth on each set $E_k, k \in \llbracket K \rrbracket$, *i.e.* if and only if for any $k \in \llbracket K \rrbracket$, $0 \leq f''|_{E_k} \leq L$.

For a measure ρ , let us write F_{ρ} and Q_{ρ} the cumulative distribution function and the quantile function (*i.e.* the generalized inverse of the cumulative distribution function). Then $Q_{\nabla f_{\sharp}\mu} = \nabla f \circ Q_{\mu}$.

Using the closed-form formula for the Wasserstein distance in dimension 1, the objective we wish to minimize (over $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$) is:

$$W_2^2(f'_{\sharp}\mu,\nu) = \int_0^1 \left[f' \circ Q_{\mu}(t) - Q_{\nu}(t)\right]^2 dt.$$

Suppose μ has a density w.r.t the Lebesgue measure. Then by a change of variable, the objective becomes

$$\int_{-\infty}^{+\infty} \left[f'(x) - Q_{\nu} \circ F_{\mu}(x) \right]^2 d\mu(x) = \| f' - \overline{\pi} \|_{L^2(\mu)}^2.$$

Indeed, $Q_{\nu} \circ F_{\mu}$ is the optimal transport map from μ to ν , hence its own barycentric projection. The result

follows.

Suppose now that μ is purely atomic, and write $\mu = \sum_{i=1}^{n} a_i \delta_{x_i}$ with $x_1 \leq \ldots \leq x_n$. For $0 \leq i \leq n$, put $\alpha_i = \sum_{k=1}^{i} a_k$ with $\alpha_0 = 0$. Then

$$W_{2}^{2}(f_{\sharp}'\mu,\nu) = \sum_{i=1}^{n} \int_{\alpha_{i-1}}^{\alpha_{i}} (f'(x_{i}) - Q_{\nu}(t))^{2} dt$$

$$= \sum_{i=1}^{n} a_{i} \left[f'(x_{i}) - \frac{1}{a_{i}} \left(\int_{\alpha_{i-1}}^{\alpha_{i}} Q_{\nu}(t) dt \right) \right]^{2}$$

$$+ \int_{\alpha_{i-1}}^{\alpha_{i}} Q_{\nu}(t)^{2} dt - \frac{1}{a_{i}} \left(\int_{\alpha_{i-1}}^{\alpha_{i}} Q_{\nu}(t) dt \right)^{2}.$$

Since $\sum_{i=1}^{n} \int_{\alpha_{i-1}}^{\alpha_{i}} Q_{\nu}(t)^{2} dt - \frac{1}{a_{i}} \left(\int_{\alpha_{i-1}}^{\alpha_{i}} Q_{\nu}(t) dt \right)^{2}$ does not depend on f, minimizing $W_{2}^{2}(f_{\sharp}'\mu,\nu)$ over $f \in \mathcal{F}_{\ell,L,\mathcal{E}}$ is equivalent to solve

$$\min_{f \in \mathcal{F}_{\ell,L,\mathcal{E}}} \sum_{i=1}^n a_i \left[f'(x_i) - \frac{1}{a_i} \left(\int_{\alpha_{i-1}}^{\alpha_i} Q_{\nu}(t) dt \right) \right]^2.$$

There only remains to show that $\overline{\pi}(x_i) = \frac{1}{a_i} \int_{\alpha_{i-1}}^{\alpha_i} Q_{\nu}(t) dt$. Using the definition of the conditional expectation and the definition of π :

$$\begin{split} \overline{\pi}(x_i) &= \frac{1}{a_i} \int_{-\infty}^{+\infty} y \, \mathbf{1}\{x = x_i\} \, d\pi(x, y) \\ &= \frac{1}{a_i} \int_{-\infty}^{+\infty} y \, \mathbf{1}\{x = x_i\} \, d(Q_\mu, Q_\nu)_{\sharp} \mathscr{L}^1|_{[0,1]} \\ &= \frac{1}{a_i} \int_0^1 Q_\nu(t) \, \mathbf{1}\{Q_\mu(t) = x_i\} \, dt \\ &= \frac{1}{a_i} \int_{\alpha_{i-1}}^{\alpha_i} Q_\nu(t) \, dt. \end{split}$$

Proof of Proposition 2 Since $\mathcal{E} = \{\mathbb{R}^d\}$, and using the triangular inequality for the Wasserstein distance,

$$\begin{aligned} \left| W_{2}(\mu,\nu) - \widehat{W}_{2}(\mu,\nu) \right| &= \left| W_{2}(\mu,\nu) - W_{2}(\mu,\nabla\hat{f}_{n\,\sharp}\mu) \right| \\ &\leq W_{2} \left(\nabla\hat{f}_{n\,\sharp}\mu,\nu \right) \\ &\leq W_{2} \left(\nabla\hat{f}_{n\,\sharp}\mu,\nabla\hat{f}_{n\,\sharp}\hat{\mu}_{n} \right) \quad (4) \\ &+ W_{2} \left(\nabla\hat{f}_{n\,\sharp}\hat{\mu}_{n},\hat{\nu}_{n} \right) \quad (5) \end{aligned}$$

$$+ W_2\left(\hat{\nu}_n,\nu\right). \tag{6}$$

We now successively upper bound terms (4), (5), (6). Since $\nabla \hat{f}_n$ is *L*-Lispchitz, almost surely:

$$(4) = W_2\left(\nabla \hat{f}_{n\sharp} \mu, \nabla \hat{f}_{n\sharp} \hat{\mu}_n\right) \le L W_2\left(\mu, \hat{\mu}_n\right) \underset{n \to \infty}{\longrightarrow} 0$$

since almost surely, $\hat{\mu}_n \rightharpoonup \mu$ and μ has compact support, cf. (Santambrogio, 2015, Theorem 5.10). For the same reason, almost surely:

$$(6) = W_2\left(\hat{\nu}_n, \nu\right) \xrightarrow[n \to \infty]{} 0$$

Finally, since $f_{\star} \in \mathcal{F}_{\ell,L,\mathcal{E}}$ and $\nabla \hat{f}_n$ is an optimal SSNB potential, it almost surely holds:

$$(5) = W_2\left(\nabla \hat{f}_{n\sharp}\hat{\mu}_n, \hat{\nu}_n\right) \le W_2\left(\nabla f_{\star\sharp}\hat{\mu}_n, \hat{\nu}_n\right)$$
$$\xrightarrow[n \to \infty]{} W_2\left(\nabla f_{\star\sharp}\mu, \nu\right) = 0$$

because $(\hat{\mu}_n, \hat{\nu}_n) \rightarrow (\mu, \nu)$, and by definition of f_{\star} , $\nabla f_{\star \sharp} \mu = \nu$.