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Abstract

Structured constraints in Machine Learning
have recently brought the Frank-Wolfe (FW)
family of algorithms back into the spotlight.
While the classical FW algorithm has poor
local convergence properties, Away-steps FW
and Pairwise FW have emerged as improved
variants with faster convergence. However,
these improved variants suffer from two prac-
tical limitations: they require at each it-
eration to solve a 1l-dimensional minimiza-
tion problem to set the step-size and also
require the Frank-Wolfe linear subproblems
to be solved exactly. In this paper, we pro-
pose variants of Away-steps and Pairwise
FW that lift both restrictions simultaneously.
The proposed methods set the step-size based
on a sufficient decrease condition, and do
not require prior knowledge of the objec-
tive. Furthermore, they inherit all the favor-
able convergence properties of the exact line-
search version, including linear convergence
for strongly convex functions over polytopes.
Benchmarks on different machine learning
problems illustrate large performance gains
of the proposed variants.

1 Introduction

The Frank-Wolfe (FW) or conditional gradient algo-
rithm (Frank and Wolfe, 1956; Levitin and Polyak,
1966; Demyanov and Rubinov, 1967) is a method for
constrained optimization that solves problems of the
form

minimize f(a
xeconv(A) f( ),

(OPT)
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where f is a smooth function for which we have access
to its gradient and conv(A) is the convex hull of A; a
bounded but potentially infinite set of elements in R?
which we will refer to as atoms.

The FW algorithm is one of the oldest methods for
non-linear constrained optimization and has experi-
enced a renewed interest in recent years due to its
applications in machine learning and signal process-
ing (Jaggi, 2013). Despite some favorable properties,
the local convergence of the FW algorithm is known
to be slow, achieving only a sublinear rate of con-
vergence for strongly convex functions when the solu-
tion lies in the boundary (Canon and Cullum, 1968).
To overcome these limitations, variants of the FW
algorithms with better convergence properties have
been proposed. Two of these variants, the Away-
steps FW (Guélat and Marcotte, 1986) and Pairwise
FW (Lacoste-Julien and Jaggi, 2015) enjoy a linear
rate of convergence over polytopes (Lacoste-Julien and
Jaggi, 2015).

Despite this theoretical breakthrough, Away-steps and
Pairwise FW are not yet practical off-the-shelf solvers
due to two main limitations. The first and most im-
portant is that both variants rely on an exact line-
search. That is, they require to solve at each iteration
1-dimensional subproblems of the form

argmin f(z; +vdy) , (1)
’YG[O-,'YmEX]

where d; is the update direction and vmax is the maxi-
mum admissible step-size. In a few cases like quadratic
objectives, the exact line-search subproblem has a
closed form solution. In most other cases, it is a costly
optimization problem that needs to be solved at each
iteration, making these methods impractical. The sec-
ond limitation is that they require access to an exact
Linear Minimization Oracle (LMO), which leaves out
important cases like minimization over a trace norm
ball where the LMO is computed up to some prede-
fined tolerance. In this paper we develop methods that
lift both limitations simultaneously.

Our main contribution is the design and analysis of
variants of Away-steps and Pairwise FW that ¢) don’t
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& Related work non-convex approximate linear adapt'}ve bounde(El

o analysis subproblems convergence step-size backtracking
= This work / V4 / / /

< | (Lacoste-Julien and Jaggi, 2015) X X V4 X N/A

E (Beck et al., 2015) X 4 X v X

(Dunn, 1980) v X X v X
o This work v v v v v
2 (Locatello et al., 2017) X / / X N/A

Table 1: Comparison with related work. non-convex analysis: convergence guarantees for problems with a
non-convex objective. approximate subproblems: convergence guarantees cover the case in which linear subprob-
lems are solved approximately. linear convergence: guaranteed linear rate of convergence (under hypothesis).
adaptive step-size: step-size is set using local information of the objective. bounded backtracking: explicit bound
for the total number of inner iterations in adaptive step-size methods. T = assumes cartesian product domain.

require access to an exact line-search or knowledge of
properties of the objective like its curvature or Lips-
chitz constant, and i) admits the FW subproblems to
be solved approximately. We describe our approach in
§2. Although our main motivation is to develop prac-
tical variants of Away-steps and Pairwise FW, we also
show that this technique extends to other methods like
FW and Matching Pursuit.

We develop in §3 a convergence rate analysis for the
proposed methods. The obtained rates match asymp-
totically the best known bounds on convex, strongly
convex and non-convex problems, including linear con-
vergence for strongly convex functions.

Finally, we show in §4 benchmarks between the pro-
posed and related methods, and discuss the impor-
tance of large step-sizes in Pairwise FW.

1.1 Related work

We comment on the most closely related ideas, sum-
marized in Table 1.

Away-Steps FW (Guélat and Marcotte, 1986) is a pop-
ular variant of FW that adds the option to move away
from an atom in the current representation of the iter-
ate. In the case of a polytope domain, it was recently
shown to enjoy a linear convergence rate for strongly
convex objectives (Garber and Hazan, 2013; Lacoste-
Julien and Jaggi, 2015). Pairwise FW (Lacoste-Julien
and Jaggi, 2015) simplifies the above-described vari-
ant by replacing the two kinds of steps by a single
step modifying the weights of only two atoms. It gen-
eralizes the algorithm of Mitchell et al. (1974) used in
geometry and SMO (Platt, 1998) for training SVMs.
These methods all require exact line-search.

Variants of FW that, like the proposed methods, set
the step-size based on a local decrease condition have
been described by Dunn (1980) and Beck et al. (2015),
but none of these methods achieve a linear convergence
rate to the best of our knowledge.

Matching Pursuit (MP) (Mallat and Zhang, 1993) is an
algorithm for constrained optimization problems of the
form (OPT) with conv(.A) replaced by linspan(A), the
linear span of A. Locatello et al. (2018) has recently
shown that MP and FW are deeply related. We show
that our algorithm and convergence results also extend
naturally to MP, and as a byproduct of our analysis we
obtain the first convergence rate for MP on non-convex
objectives to the best of our knowledge.

Notation. Throughout the paper we denote vectors
and vector-valued functions in lowercase boldface (e.g.
@ or arg min), matrices in uppercase boldface letters
(e.g. D), and sets in caligraphic letters (e.g., A). We
say a function f is L-smooth if it is differentiable and
its gradient is L-Lipschitz continuous, that is, if it ver-
ifies |Vf(z) — Vf(y)|| < L|jz — y|| for all x,y in the
domain. A function is p-strongly convex if f— & - ||?
is convex. || - || denotes the euclidean norm.

2 Methods

In this section we describe the core part of our con-
tribution, which is a strategy to select the step-size in
FW-type algorithms.

Since this strategy can be applied very broadly to
Frank-Wolfe variants including Away-steps, Pairwise,
classical FW and Matching Pursuit, we describe it
within the context of a generic FW-like algorithm.
This generic algorithm is detailed in Algorithm 1 and
depends on two key functions: update_direction and
step_size. The first one computes the direction that
we will follow to compute the next iterate and its im-
plementation will depend on the FW variant. The
second one will choose an appropriate step-size based
upon local information of the objective and is the key
novelty of this algorithm. We now describe them in
more detail.
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Algorithm 1: Generic FW with backtracking

Algorithm 2: Backtracking for FW variants

Input: x( € conv(A), initial Lipschitz estimate
L_; > 0, tolerance € > 0, subproblem quality
d€(0,1]

fort=0,1...do

di, v = update_direction(xy, V fi)

9t = (=Vf(x),dy)

if g; < de then return xy;

max

Ve, Ly = stepsize(f,ds, x¢, g¢, Li—1, %)

Tir1 = Ty + yedy

2.1 Update direction

In this subsection we describe update_direction in
Algorithm 1, the function that computes the up-
date direction d; and the maximum allowable step-
size v}"®*. While its implementation varies according
to the FW variant, all of them require to solve one or
two linear problems, often referred to as linear mini-
mization oracle (LMO).

The first of these subproblems is the same for all vari-
ants and consists in finding s; in the domain such that:

(Vf(@e), 80 — @) < omin(Vf(@e), s —ae) . (2)
Here, we introduce a subproblem quality parameter
d € (0,1] that allows this subproblem to be solved
approximately. When § = 1, the problem is solved
exactly and becomes argmin, . ,(V f(x;),s), which
consists in selecting the atom that correlates the most
with the steepest descent direction, —V f(x;).

Away-steps and Pairwise FW will also require to solve
another linear subproblem, this time over the active
set S¢. This is the set of atoms with non-zero weight
in the decomposition of ;. More formally, the active
set S; C A is the set of atoms that have non-zero

weight os ¢ > 0 in the expansion x; = ZSGSt Oty 1 S.

The linear subproblem that needs to be solved consists
in finding v; such that:

(Vf(xs), xr — vy) S(Sgéiél(Vf(wt),a:t—v) . (3)
Unlike the previous linear subproblem, this time the
problem is over the typically much smaller active
set S;. As before, 6 € (0,1] allows this subproblem
to be solved approximately. When § = 1, the sub-
problem becomes arg max, s, (V f(x:), v), which can
be interpreted as selecting the atom in the active set

that correlates the most with the steepest ascent di-
rection V f(x;).

© 0 N O oA W N =

Procedure step_size(f,d;, ¢, 9¢, Li—1, Ymax)
Choose 7> 1,7 <1
Choose M € [nLi—1, Li—1]

7 = min {go/ (M), e
while f(x; +~vd;) > Qi(v, M) do

M=1M

7 = min {gt/(M”dt‘P)v’)’max}
end
return v, M

FW, AFW and PFW then combine the solution to
these linear subproblems in different ways, and Line 3’s
update_direction is implemented as:

o FW returns d;, = s; — x; and ;" = 1: the next
iterate will be a convex combination of x; and s;.

e AFW considers directions s; — x; and x; — vy,
and chooses the one that correlates the most with
=V f(xy). P> =1ifdy = sp—xy and o, /(1 -, )
otherwise, where v, is the weight associated with v
in the decomposition of x; as a convex combination
of atoms.

o PFW uses d; = s; — vy, shifting weight from v; to s;

in our current iterate, and y"** = a,,.

max

e MP uses d; = s; and v
straint set is not bounded.

= 400, since the con-

2.2 Backtracking line-search

In this subsection we describe the step-size selection
routine step_size (Algorithm 2). This is the main
novelty in the proposed algorithms, and allows for the
step-size to be computed using only local properties of
the objective, as opposed to other approaches that use
global quantities like the gradient’s Lipschitz constant.
As we will see in §4, this results in step-sizes that are
often more than an order of magnitude larger than
those estimated using global quantities.

Minimizing the exact line-search objective v
f(xy +~vd;) yields the highest decrease in objective
but can be a costly optimization problem. To over-
come this, we will replace the exact line-search objec-
tive with the following quadratic approximation:

2
¥ M
Qi(y, M) :f(mt)—Vgt'i‘THdt”Q . (4)
This approximation has the advantage that its min-
imum over vy € [0,4™*] can be computed in closed
form, which gives the step-size used in line 4:

. gt
Yr=min{q ————, Y™ 5
i =min{ i 7 ®)
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The quality of this quadratic approximation will de-
pend on the Lipschitz estimate parameter M. This
parameter needs to be carefully selected to maintain
the convergence guaratees of exact line-search, while
keeping the number of objective function evaluations
to a minimum.

This is achieved through the strategy implemented in
Algorithm 2. The algorithm initializes the Lipschitz
estimate M to a value between nL;_; and the previ-
ous iterate L; 1, where 7 is a user-defined parameter
(default values discussed later). A value of n = 1 is
admissible but would not allow the Lipschitz estimate
to decrease through the optimization, and we have ob-
served empirically a drastic benefit in doing so.

The algorithm then defines a candidate step-size
(Line 4) and checks whether the following sufficient
decrease condition is verified for this step-size

fl@etvdy) < Qu(y, M) ,y=min {g,/(M||d|?), v} .

If it is not verified, we increase this constant by a power
factor of 7 > 1 (Line 6). By the properties of L-smooth
functions, we know that this condition is verified for
all M > L, and so this loop has a finite termination.

Once this condition is verified, the current step-size is
accepted and the value of M is assigned the name L;.
Geometrically, the suf-
ficient decrease condi-
tion ensures that the
quadratic approxima-
tion is an upper bound
at its constrained mini-
mum of the line-search
objective. We empha-
size that this upper

’y:O Yt ,Y:,_Yinax

bound does not need to be a global one, as it only
holds at ;. This allows for smaller L; than the global
Lipschitz constant L, and therefore larger step-sizes.
As we will see in §3, this translates into faster con-
vergence rates that depend on L;, as well as faster
empirical convergence (§4).

Default and initial parameters. Algorithm 1 re-
quires an (arbitrary) initial value for the Lipschitz
estimate L_;. We found the following heuristic us-
ing the definition of Lipschitz continuity of the gra-
dient to work well in practice. Select a small con-
stant e, say 1073, and compute an initial value as
Loy = [V f(@o) — V f{wo +=do)l/ 1]

The step_size depends on hyperparameters n and .
Although the algorithm is guaranteed to converge for
any n < 1, 7 > 1, we recommend 1 = 0.9, 7 = 2, as we
found that it performs well in a variety of scenarios.
These are the values used throughout benchmarks §4.

This method also requires to choose the initial value
of the Lipschitz estimate M to a value between nL;_1
and L;_1. A choice that we found to work remarkably
well in practice is to initialize it to

2
. gt
M =cl .
CUPLy_1, L1 (2(ft1 — ft)|dt||2> (6)

The value inside the clip function corresponds to the
optimal value of M for a quadratic interpolation be-
tween the previous two iterates and the derivative
of the line-search objective f(x: + vd;) at v = 0.
Since this value might be outside of the interval
[nL¢—1, Li—1], we clip the result to this interval.

Pseudocode and implementation details. A
practical implementation of these algorithms depends
on other details that are not specific to the back-
tracking variant, such as efficiently maintaining the
active-set in the case of Away-steps and Pairwise. For
completeness, Appendix A contains a full pseudocode
for all these algorithms. A Python implementation
of these methods, as well as the benchmarks used in
84 will be made open source upon publication of this
manuscript.

3 Analysis

In this section, we provide a convergence rate analy-
sis of the proposed methods, showing that all enjoy
a O(1/+/t) convergence rate for non-convex objectives
(Theorem 2), a stronger O(1/t) convergence rate for
convex objectives (Theorem 3), and for some variants
linear convergence for strongly convex objectives over
polytopes (Theorem 4).

Notation. In this section we make use of the follow-
ing extra notation:

e For convenience we will refer to the variants
of FW, Away-steps FW, Pairwise FW and MP
with backtracking line-search as AdaFW, AdaAFW,
AdaPFW and AdaMP respectively.

e We denote the objective suboptimality at step t as
hy = f(mt) - minm€conv(A) f(ili)

e Good and bad steps. Our analysis, as that of
Lacoste-Julien and Jaggi (2015), relies on a notion
of “good” and “bad” steps. We define bad steps
as those that verify v = "** and 7{"® < 1 and
good steps as any step that is not a bad step. The
name “bad steps” makes reference to the fact that
we won’t be able to bound non-trivially the im-
provement for these steps. For these steps we will
only be able to guarantee that the objective is non-
increasing. AdaAFW and AdaPFW both may have
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Algorithm | Non-convex Convex Sctc:z\r:iy
1 1 2p)!
AdaAFW | O(57) O(z) O((1-6%p))

( (52)

AdaPFW | O(5%) O(s) O((1-6%p)h)

AdaFW | O(s)  O() O(5)
(57) O(:%)

AdaMP @ O((1—52pMp)t)

Table 2: Convergence rate summary on non-
convex, convex and strongly convex objectives. For
non-convex objectives, bound is on the minimum FW
gap (MP gap in the case of AdaMP), in other cases its
on the objective suboptimality.

bad steps. Let us denote by N; the number of “good
steps” up to iteration t. We can lower bound the
number of good steps by

N; > t/2 for AdaAFW | (7)
Ny > t/(3|A|!' + 1) for AdaPFW (8)

where it is worth noting that the last bound for
AdaPFW requires the set of atoms A to be finite.
The proof of these bounds can be found in Ap-
pendix C.1 and are a direct translation of those in
(Lacoste-Julien and Jaggi, 2015). We have found
these bounds to be very loose, as in practice the
fraction of bad/good steps is negligible, commonly
of the order of 1075 (see last column of the table in
Figure 1).

e Average and mazximum of Lipschitz estimates. In
order to highlight the better convergence rates that
can be obtained by adaptive methods we introduce
the average and maximum estimate over good step-
sizes. Let G; denote the indices of good steps up to
iteration ¢t. Then we define the average and maxi-
mum Lipschitz estimate as

— def 1
L = EZkegth (9)
Lpex Lef maxgeg, Lk (10)

respectively. In the worst case, both quantities
can be upper bounded by max{rL,L_;} (Propo-
sition 2), which can be used to obtain asymptotic
convergence rates. This bound is however very pes-
simistic. We have found that in practice L; is often
more than 100 times smaller than L (see second to
last column of the table in Figure 1).

Our new convergence rates are presented in the follow-
ing theorems, which consider the cases of non-convex,

convex and strongly convex objectives. The results are
discussed in §3.5 and the proofs can be found in Ap-
pendix D, Appendix E and Appendix F respectively.

3.1 Overhead of backtracking

Evaluation of the sufficient decrease condition Algo-
rithm 2 requires two extra evaluations of the objec-
tive function. If the condition is verified, then it is
only evaluated at the current and next iterate. FW
requires anyway to compute the gradient at these iter-
ates, hence in cases in which the objective function is
available as a byproduct of the gradient this overhead
becomes negligible.

Furthermore, we can provide a bound on the total
number of evaluations of the sufficient decrease con-
dition:

Theorem 1. Let n; be the total number of evaluations
of the sufficient decrease condition up to iteration t.
Then we have

1 1 L
ng < |1-— o8 (t+1)+ —— max logT—,O ,
log 7 log T L4

This result highlights the trade-off faced when choos-
ing 1. Minimizing it with respect to n gives n = 1,
in which case (1 —logn/log7) = 1 and so there’s an
asymptotically vanishing number of failures in the suf-
ficient decrease condition. Unfortunately, n = 1 also
forbids the Lipschitz estimate to decrease along the
optimization. Ideally, we would like 1 small enough so
that the Lipschitz estimate decreases when it can, but
not too small so that we waste too much time in failed
sufficient decrease evaluations.

As mentioned before, we recommend parameters n =
0.9, = = 2. With these values, we have that

[1 — %géﬁ] < 1.16, and so asymptotically no more than

16% of the iterates will result in more than one evalu-
ations of the sufficient decrease condition.

3.2 Non-convex objectives

Gap function. Convergence rates for convex and
strongly convex functions are given in terms of the
objective function suboptimality or a primal-dual gap.
As the gap upper-bounds (i.e. certifies) the subopti-
mality, the latter is a stronger result in this scenario.
In the case of non-convex objectives, as is common for
first order methods, we will only be able to guaran-
tee convergence to a stationary point, defined as any
element * € conv(A) such that (Vf(x*),z —x*) >
0 for all € conv(A) (Bertsekas, 1999).

Following Lacoste-Julien (2016); Reddi et al. (2016),
for FW wvariants we will use as convergence
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criterion the FW gap, defined as ¢"W(z) =
MaXgeconv(A)(Vf(€),x —s). From the definition of
stationary point it is clear that the FW gap is zero
only at a stationary point. These rates are also valid
for AdaMP, albeit for the more appropriate gap func-
tion ¢gMP detailed in Appendix D.

Theorem 2. Let x; denote the iterate generated by
any of the proposed algorithms after t iterations, with
Nii1 > 1. Then we have:

tlggo g(x) =0 and (11)
, C 1

<t __—o(—), 12

k;%}pwtg(wk)_ SN (5\5) (12)

where Cy = max{2hg, L** diam(A)?} and g = g¥'W
is the FW gap for AdaF'W, AdaAFW, AdaPFW and

C; = radius(A)\/2hoLi+1 and g = g™ is the MP gap
for AdaMP.

3.3 Convex objectives

For convex objectives we will be able to improve the
results of Theorem 2. We will first state the conver-
gence results for FW variants and then for MP.

For adaptive FW variants, we will be able to give
an O(1/6%t) convergence rate on the primal-dual gap,
which trivially implies a bound on the objective sub-
optimality. In order to define the primal-dual gap, we
define the following dual objective function

Tﬁ(u) d:ef _f*(u) - Uconv(A)(_u) ) (13)

where f* denotes the convex conjugate of f and
Teonv(A) (T) Lf sup{(x,a) : a € conv(A)} is the sup-
port function over conv(A), which is the convex con-
jugate of the indicator function. Note that 1 is con-
cave and that when f convex, we have by duality
minchonv(.A) f(mt) = INaXqyeRrp w(u)

Theorem 3 (FW variants). Let f be convex, x; de-
note the iterate generated by any of the proposed FW
variants (AdaFW, AdaAFW, AdaPFW) after t itera-
tions, with Ny > 1, and let uw; be defined recursively
as ug = Vf(xg), ury1 = (1 —&)ur + &V f(x), where
& =2/(ON: +2) if t is a good step and & = 0 other-
wise. Then we have:

he < o) — vlw) (1)
L, diam(A)2 -4
<* 5N, +(5) 523\(132 +5)Nt (£(o) = ¥(uo))

0] (51%) : (15)

3.4 Strongly convex objectives

The next result states the linear convergence of some
algorithm variants and uses the notions of pyrami-
dal width (PWidth) and minimal directional width
(mDW) that have been developed in (Lacoste-Julien,
2016) and (Locatello et al., 2017) respectively, which
we state in Appendix B for completeness. We note
that the pyramidal width of a set A is lower bounded
by the minimal width over all subsets of atoms, and
thus is strictly greater than zero if the number of atoms
is finite. The minimal directional width is a much sim-
pler quantity and always strictly greater than zero by
the symmetry of our domain.

Theorem 4 (Linear convergence rate for strongly con-
vex objectives). Let f be u—strongly convex. Then for
AdaAFW, AdaPFW or AdaMP we have the following
linear decrease for each good step t:

hes1 < (1= 8%pi)hy, (16)
where
_p (PWidth(A)
Pr= 4L, \ diam(A)

K (mDW(A)
L \radius(A)

2
) for AdaAFW and AdaPFW,

2
Dt ) for AdaMP.

The previous theorem gives a geometric decrease on
good steps. Combining this theorem with the bound
for the number of bad steps in (7), and noting that
the sufficient decrease guarantees that the objective
is monotonically decreasing, we obtain a global linear
convergence for AdaAFW, AdaPFW and AdaMP.

3.5 Discussion

Non-convex objectives. Lacoste-Julien (2016) studied
the convergence of FW assuming the linear subprob-
lems are solved exactly (6 = 1) and obtained a rate of
the form (11) with Cy = max{2hg, L diam(conv(.A))?}
instead. Both rates are similar, although our analy-
sis is more general as it allows to consider the case
in which linear subproblems are solved approximately
(6 < 1) and also gives rates for the Away-steps and
Pairwise variants, for which no rates were previously
known.

Theorem 2 also gives the first known convergence rates
for a variant of MP on general non-convex functions.
Contrary to the case of FW, this bound depends on
the mean instead of the maximum of the Lipschitz
estimate.

Convex objectives. Compared with (Jaggi, 2013), the
primal-dual rates of Theorem 3 are stronger as they
hold for the last iterate and not only for the minimum
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over previous iterates. To the best of our knowledge,
primal-dual convergence rates on the last iterate have
only been derived in (Nesterov, 2017) and were not
extended to approximate linear subproblems nor the
Away-steps and Pairwise variants.

Compared to Nesterov (2017) on the special case of
exact subproblems (§ = 1), the rates of Theorem 3
are similar but with L; replaced by L. Hence, in the
regime L; < L (as is often verified in practice), our
bounds have a much smaller leading constant.

For MP, Locatello et al. (2018) obtain a similar conver-
gence rate of the form O(1/(6%t)), but with constants
that depend on global properties of V f, instead of the
adaptive, averaged Lipschitz estimate in our case.

Strongly convex objectives. For the FW variants, the
rates are identical to the ones in (Lacoste-Julien and
Jaggi, 2015, Theorem 1), with the significant difference
of replacing L with the adaptive L, in the linear rate
factor, giving a larger per-iteration decrease whenever
L; < L. Our rates are the first also covering approx-
imate subproblems for Away-Steps and Pairwise FW
algorithms. It’s also worth noticing that both Away-
steps FW and Pairwise FW have only been previously
analyzed in the presence of exact line-search (Lacoste-
Julien and Jaggi, 2015). Additionally, unlike (Lacoste-
Julien and Jaggi, 2015), we do not require a smooth-
ness assumption on f outside of the domain. Finally,
for the case of MP, we again obtain the same conver-
gence rates as in (Locatello et al., 2017, Theorem 7),
but with L replaced by L.

4 Benchmarks

We compared the proposed methods across three prob-
lems and three datasets. The three datasets are sum-
marized in the table of Figure 1, where density denotes
the fraction of nonzero coefficients in data matrix and
where the last two columns are quantities that arise
during the optimization of AdaPFW and shed light
into their empirical value. In both cases t is the num-
ber of iterates until 107'° suboptimality is achieved.

4.1 /;-constrained logistic regression

The first problem that we consider is a logistic regres-
sion with an ¢; norm constraint on the coefficients of
the form:

Ll T A
argmin — E o(a; x, b;) + || , (17)
lella<p TS 2

where ¢ is the logistic loss. § is chosen to give approx-
imately 1%, 20% of nonzero coefficients respectively.
The linear subproblems in this case can be computed

exactly (6 = 1) and consist of finding the largest entry
of the gradient. The /5 regularization parameter \ is
always set to A = L.

We applied this problem on two different datasets:
Madelon and RCV1. We show the results in Fig-
ure 1, subplots A, B, C, D. In this figure we also show
the performance of FW, Away-steps FW (AFW) and
Pairwise FW (PFW), all of them using the step-size
ve = min {g L7 ||dy|| 72> }, as well as the back-
tracking variants of Dunn (1980) and (Beck et al.,
2015), which we denote D-FW and B-FW respectively.

4.2 Nuclear-norm constrained Huber
regression

The second problem that we consider is collabora-
tive filtering. We used the MovieLens 1M dataset,
which contains 1 million movie ratings, and consider
the problem of minimizing a Huber loss, as in (Mehta
et al., 2007), between the true known ratings and a
matrix X. We also constrain the matrix by its nu-
clear norm || X||. < 8, where 8 is chosen to give ap-
proximately 1% and 20% of non-zero singular values
respectively. The problem is of the form:

1 n
arg min — E Le(Aiy — Xij) (18)
1X1.<8 ™ jex

where H; is the Huber loss, defined as

Le(a) = 1a? for |a| <&,
S &(la] — &), otherwise.

The Huber loss is a quadratic for |a| < £ and grows
linearly for |a| > £. The parameter £ controls this
tradeoff and was set to 1 during the experiments.

In this case, the AFW and PFW variants were not
considered as they are not directly applicable to this
problem as the size of the active set is potentially un-
bounded. The results of this comparison can be see
in subplots E and F of Figure 1. We emphasize that
the goal of this experiment is to compare different FW
variants and not find the best method for matrix com-
pletion. For alternative approaches not based on FW
see for instance (Marecek et al., 2017).

We comment on some observed trends from these re-
sults:

e Importance of backtracking. Across the differ-
ent datasets, problems and regularization regimes
we found that backtracking methods always perform
better than their non-backtracking variant.

e Pairwise FW. AdaPFW shows a surprisingly good
performance when it is applicable, specially in the
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MovielLens 1M (Harper and Konstan, 2015) 6041 3707 0.04 | 1.1 x 1072 -
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Figure 1: Top table: description of the datasets. Bottom figure: Benchmark of different FW and MP variants.

The variants with backtracking line-search proposed in
= logistic regression with ¢;-constrained coefficients, i

this paper are in dashed lines. Problem in A, B, C, D
n E, F = Huber regression with on the nuclear norm

constrained coefficients and in G, H = unconstrained logistic regression (MP variants). In all the considered
datasets and regularization regimes, backtracking variants have a much faster convergence than others.

high regularization regime. A possible interpreta-
tion for this is that it is the only variant of FW
in which the coefficients associated with previous
atoms are not shrunk when adding a new atom,
hence large step-sizes are potentially even more ben-
eficial as coefficients that are already close to opti-
mal do not get necessarily modified in subsequent
updates.

e L, vs L. We compared the average Lipschitz es-
timate L; and the L, the the gradient’s Lipschitz
constant. We found that across all datasets the for-
mer was more than an order of magnitude smaller,
highlighting the need to use a local estimate of the
Lipschitz constant to use a large step-size.

Bad steps. Despite the very pessimistic bounds ob-
tained for the number of bad steps in the previous
section, we observe that in practice these are ex-
tremely rare events, happening less than once every
10,000 iterations.

5 Conclusion and Future Work

In this work we have proposed and analyzed a
novel adaptive step-size scheme that can be used in

projection-free methods such as FW and MP. The
method has minimal computational overhead and does
not rely on any step-size hyperparameter (except for
an initial estimate). Numerical experiments show large
computational gains on a variety of problems.

A possible extension of this work is to develop back-
tracking step-size strategies for randomized variants
of FW such as (Lacoste-Julien et al., 2013; Kerdreux
et al., 2018; Mokhtari et al., 2018), in which there is
stochasticity in the linear subproblems.

Another area of future research is to improve the con-
vergence rate of the Pairwise FW method. Due to the
very pessimistic bound on its number of bad steps,
there is still a large gap between its excellent empirical
performance and its known convergence rate. Further-
more, convergence of Pairwise and Away-steps for an
infinite A, such as the trace norm ball, is still an open
problem.
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