
A Proofs

This section contains all the proofs of the theorems stated in the main text and the lemmas required to prove
them.

Proof of Theorem 2.1. This is (Nelson, 1990, Theorem 2.2): Assumption 2.1 and the postulated weakly unique
and non-explosive weak solution satisfy all the conditions required for the application of (Nelson, 1990, Theorem
2.2). Note that we use a stronger non-explosivity condition Øksendal (2003). Alternatively, for this standard
result the reader can refer to the monograph Stroock and Varadhan (2006) on which Nelson (1990) is based; yet
another reference is Ethier and Kurtz (2009).

Lemma A.1. If φ satisfies Assumption 3.2, ε ∼ N (0, σ2) with σ2 ≤ σ2
∗, α > 0, then we can find M2(α, σ2

∗) <∞
and M3(α, σ2

∗) <∞ such that:

E [|φ′′(ε)|α] ≤M2(α, σ2
∗)

E [|φ′′′(ε)|α] ≤M3(α, σ2
∗)

Proof. We prove the result only for φ′′(ε), the case for φ′′′(ε) being identical. Let L large enough such that
|φ′′(x)| ≤ K1e

K2|x| for |x| ≥ L then:

E [|φ′′(ε)|α] = E
[
|φ′′(ε)|α1|ε|≤L

]
+ E

[
|φ′′(ε)|α1|ε|>L

]
≤ sup
|x|≤L

|φ′′(x)|α +Kα
1 E[eK2α|ε|]

The first term is finite, that the second one can be bounded by a finite and increasing function in σ2 follows from
the symmetry in law of ε and the form of its movement generating function.

Proof of Theorem 3.1. We suppress the dependency on t of vector and matrices and the conditioning in expecta-
tions and covariances in this proof to ease the notation. We also drop the boldness of xt as no confusion arises in
this setting. We instead reserve subscripts for indexing: for example xd denotes the d-th element of a vector x.

Let h = (µW
√

∆t+ εW )ψ(x) + (µb
√

∆t+ εb) so that h
√

∆t = ∆Wψ(x) + ∆b. By second order Taylor expansion
of φ around 0 we have for d = 1, . . . , D
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∆t+ εbd and the distribution assumptions on εW and εb lead to
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It remains to show that
lim
∆t↓0

sup
‖x‖<R

∣∣∣(µbd + µWd ψ(x)
)2∣∣∣∆t = 0,



which holds as ψ is locally bounded, and that
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for which it suffices to show that sup‖x‖<R
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Again, as ψ is locally bounded the constraint sup‖x‖<R corresponds to a constraint on the variance of hd hence
the second sup is finite. By Lemma A.1 the first sup is finite too and not increasing in ∆t as |ϑd| ≤

√
∆t|hd|

which allows us to produce the desired bound M(R).

Regarding (3), by first order Taylor expansion of φ around 0 we need to show that for d = 1, . . . , D and R > 0
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∆t). Note that The term inside the expectation is composed of a sum of terms of the
form khndφ

′′(ϑd)
m∆tα for integers n,m ≥ 0 and reals α > 0, k ∈ R. This results from repeated applications of

the Cauchy–Schwarz inequality and Lemma A.1 as we did previously to prove (1).

Regarding (2), we can compute E[∆x(∆x)>]/∆t instead of V[∆x]/∆t as in the infinitesimal limit of ∆t ↓ 0 the
two quantities have to agree due to the convergence of the infinitesimal mean that we have already established.
Hence by first order Taylor expansion of φ around 0 we need to show that for d, u = 1, . . . , D and R > 0:
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The (uniform on compacts) convergence of all terms aside from σ2
x(x)d,u to 0 once again follows from repeated

applications of the Cauchy–Schwarz inequality and Lemma A.1.

Now, the continuity of µx(x) and σx(x) are a consequence of the continuity of the conditional covariance
V[εWψ(x) + εb], and as V[εWψ(x) + εb] is positive semi-definite so is σ2

x(x). Hence all the conditions of
Assumption 2.1 hold true.

Finally, as ψ is differentiable two times with continuity, it follows from the dependency of µx and σ2
x on x only

through V[εWψ(x) + εb] that Assumption 2.2 is satisfied too. The application of Theorem 2.1 completes the
proof.

Proof of Corollary 3.1. Notice that

d[Wψ(x)]t + d[b]t = d[Wψ(x) + b]t = diag(V[εWt ψ(xt) + εbt |xt])dt

Then expanding dWt and dbt in (12) shows that the drift terms are matched between (11) and (12). The quadratic
variation of (11) is

φ′(0)2 diag(V[εWt ψ(xt) + εbt |xt])dt
which is equal to the quadratic variation of (12) as it is computed as

d[x]t = d[φ′(0)(Wψ(x) + b)]t = φ′(0)2d[Wψ(x) + b]t

This shows the equivalence in law between the solution of (11) and the solution of (12). Then (13) immediately
follows by direct computation.



Proof of Corollary 3.2 and Corollary 3.3. Notice that
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This proves Corollary 3.2. Corollary 3.3 follows by setting σb = σb ID, σWI = ID and σWO = σwD
−1/2 ID.

B Additional experiments and plots

B.1 Bayesian inference

In this toy experiment we perform approximate Bayesian inference via Approximate Bayesian Computation
(ABC, (Sisson et al., 2018)) rejection sampling for function regression. We consider the setting of Assumption
3.4 with φ = tanh, σ2

w = σ2
b = 10, T = 1 and L = D = 500. For this experiment we use a random input layer

given by x0 = WIz where WI ∈ RD×1 and WI,d,1
i.i.d.∼ N (0, 1) which makes the distribution of xT,1 symmetric

around 0. We refer to this model as SRtanh. We fix a computational budget of 10.000 simulations and compute
10 approximate posteriors samples by selecting the 10 function draws with smallest l2 distance from a synthetic
dataset D consisting of 3 data points. The results are reported in Figure 1 where we also compare with the
results obtained by applying the same ABC algorithm to the first pre-activation of the last layer of EOtanh. We

2 1 0 1 2

20

10

0

10

20

30

2 1 0 1 2

10

5

0

5

10

2 1 0 1 2

2

1

0

1

2 1 0 1 2

0

1

2

Figure 1: 10 function samples in light blue over z ∈ [−2, 2] for: prior xT,1 and ABC-posterior xT,1|D for SRtanh

(2 leftmost); prior xlast,1 and ABC-posterior xlast,1|D for EOtanh (2 rightmost); 3 data points of D in blue.

observe that the more flexible prior results in significantly improved efficiency with ABC: as the prior draws are
almost constant in EOtanh we are constrained to finding the line with minimum distance from the 3 points. The
use of σ2

w = σ2
b = 10 in SRtanh compared to SCtanh allows for increased range and variability of xT,1. While it’s

possible to similarly increase weight and bias variances in EOtanh while remaining on the edge of chaos, this does
not solve the underlying issue that the model a priori (hence a posteriori) assigns all probability mass to constant
functions in the limit of L ↑ ∞. Simulations (not shown) confirms that this modification does not improve the
posterior inference efficiency for EOtanh. It should be noted that we do not advocate the use of ABC rejection
sampling as a realistic solution for this inference setting. Nonetheless this toy experiment exemplifies how a
prior-data conflict typically frustrates inference algorithms.



B.2 Additional experiment for Section 4.1

We replicate the experiment of Section 4.1 for the swish activation and plot the results in Figure 2 where again
good agreement is observed.

Figure 2: For model SCswish: 2D KDE plot for (ŷ1(z(1)), ŷ1(z(2))) (left), 1D KDE and histogram plots for ŷ1(z(1))
(center), ŷ1(z(2)) (right) when ŷ1 is sampled from a ResNet (resnet) and from the Euler discretization of its
limiting SDE (sde); ŷ denotes a generic model output, hence ŷ1 is its first dimension.

B.3 Additional plots for Section 4.2

In Figure 3 we plot additional function samples for the models SCtanh and SCswish of Section 4.2 corresponding
to different combinations of L and D. We observe similar dynamics across different orders of magnitude for both
L and D.

B.4 Additional 2D plots

In Figure 4 we plot 2D function samples of xT,1 for SCtanh and SCswish to complement the visualizations of
Section 4.2.

C Related work

In this section we discuss more in detail further connections with related work. Chen et al. (2018) investigates
the connection between infinite ResNets and ordinary differential equations (ODE), with a focus on potential
computational advantages from gradient-descent training perspective. A difference between our work and that
of Chen et al. (2018) is that we only operate on the distribution of the model parameters, while Chen et al.
(2018) modifies the ResNet recursion with a ∆t multiplicative term. The two approaches are equivalent for ReLU
activations (see Section 3.4), where the SDE limit collapses to a deterministic ODE. While the focus of Chen
et al. (2018) is on the training of neural networks in the present work the emphasis is on the priori distribution of
neural networks induced by a class of priors on the model parameters.

Pennington et al. (2017, 2018) investigates the properties of the spectrum of the input-output Jacobian of deep
neural networks at initialization which affects gradient-descent training speed. Of particular interest to the setting
of the present work are the orthogonal initializations, proposed in Pennington et al. (2017) to achieve dynamical
isometry, which seem amenable to a modification of the approach presented in our paper.

While Pennington et al. (2017, 2018) relies on mean-field assumptions, i.e. infinite width and iid finite variance
initializations, Burkholz and Dubatovka (2019) consider the setting of finite width and ReLU activations to derive
exact results. Unfortunately, due to the use of ReLU activations the proposed initialization scheme is not of
particular interest to our setting (see our discussion above regarding Chen et al. (2018)).

Hanin and Rolnick (2018); Hanin (2018) study ReLU networks when the width and depth are comparable and
both large. As hinted in Section 4.2 and in the Discussion it would be interesting to investigate the behavior of
the limiting SDEs when both depth and width grow unbounded. In this setting it is possible for the order of the
limits and for the relative speed of convergence of L and D to affect the limiting dynamics.

Finally there has been recent interest in using heavy-tailed distributions for gradient noise and for trained
parameter distributions, see for instance Simsekli et al. (2019); Martin and Mahoney (2019). The present
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Figure 3: Function samples of xT,1 for SCtanh (top) and SCswish (bottom) for different values of L and D.
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Figure 4: Function samples of xT,1 for SCtanh (left) and SCswish (right) for L = 100 and D = 100 on the bounded
interval [−2, 2]× [−2, 2].

work covers exclusively Gaussian initializations and could be extended with some effort to cover finite-variance



ones. Extensions to heavy tailed distributions would me more involved and likely resulting in less tractable
Semimartingales (instead of SDEs) due to the presence of finite and infinite activity jump components. On the
other hand the added flexibility could prove beneficial in bridging the gap between the performance of finitely
trained neural networks and their limiting stochastic processes counterparts at least in some settings.
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