
Stable behaviour of infinitely wide deep neural networks

A Large width asymptotics: k = 1

We first consider the case with of a single input being a real-valued vector of dimension I. By means of (4) and
(5) we can write for i � 1 and l = 2, . . . , D:
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We show that, as n ! +1,

f (l)
i (x, n)

w
�! St(↵,�(l)), (19)

and we determine the expression of �(l).

A.1 Asymptotics for the i-th coordinate

It comes from (8) that, for every fixed l and for every fixed n the sequence (f (l)
i (n, x))i�1 is exchangeable. In

particular, let p(l)n denote the directing (random) probability measure of the exchangeable sequence (f (l)
i (n, x))i�1.
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That is, by de Finetti representation theorem, conditionally to p(l)n the f (l)
i (n, x)’s are iid as p(l)n . Now, consider

the induction hypothesis that, as n ! +1
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n

w
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with q(l�1) being St(↵,�(l � 1)), and the parameter �(l � 1) will be specified. Therefore, we can write the
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A.1.2 Proof of L1.1)
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A.1.5 Combine L1), L2) and L3)

We combine L1), L2) and L3) to prove the large n behavior of the i-th coordinate n�1/↵fi(x, n). From (20)

E[eitf
(l)
i (x,n)]

= exp {�|t|↵�↵
b }E

✓Z
exp

⇢
�|t|↵

�↵
w

n
|�(f)|↵

�
p(l�1)
n (df)

◆n�

= exp {�|t|↵�↵
b }E



{(p(l�1)
n 2I)}

✓Z
exp

⇢
�|t|↵

�↵
w

n
|�(f)|↵

�
p(l�1)
n (df)

◆n�
.

Then, by Lagrange theorem, there exists a value ✓n 2 [0, 1] such that the following equality holds true

1� exp

⇢
�|t|↵

�↵
w

n
|�(f)|↵

�
= |t|↵

�↵
w

n
|�(f)|↵ exp

⇢
�✓n|t|

↵�
↵
w

n
|�(f)|↵

�
,

thus

exp

⇢
�|t|↵

�↵
w

n
|�(f)|↵

�

= 1� |t|↵
�↵
w

n
|�(f)|↵ exp

⇢
�✓n|t|

↵�
↵
w

n
|�(f)|↵

�

= 1� |t|↵
�↵
w

n
|�(f)|↵ + |t|↵

�↵
w

n
|�(f)|↵

✓
1� exp

⇢
�✓n|t|

↵�
↵
w

n
|�(f)|↵

�◆
.

Now, since

0 

Z
|�(f)|↵[1� e�✓n|t|↵

�↵
w
n |�(f)|↵ ]p(l�1)

n (df)



Z
|�(f)|↵[1� e�|t|↵ �↵

w
n |�(f)|↵ ]p(l�1)

n (df),

then

E[eitf
(l)
i (x,n)]

 E[exp {�|t|↵�↵
b }]E



{(p(l�1)
n 2I)}

✓
1� |t|↵

�↵
w

n

Z
|�(f)|↵p(l�1)

n (df)

+ |t|↵
�↵
w

n

Z
|�(f)|↵[1� e�|t|↵ �↵

w
n |�(f)|↵ ]p(l�1)

n (df)

◆n�
.

Thus, by using the definition of the exponential function, i.e. ex = limn!+1(1 + x/n)n, and L1)-L3) we have

E[eitf
(l)
i (x,n)] ! e�|t|↵[�↵

b +�↵
w

R
|�(f)|↵q(l�1)(df)],



Stable behaviour of infinitely wide deep neural networks
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B Large width asymptotics: k � 1

We now consider the case with of a k inputs, each one being a real-valued vector of dimension I. We represent
this generic case with a I ⇥ k input matrix X. Let 1r denote a vector of dimension k ⇥ 1 with 1 in the r-the
entry and 0 elsewhere, and 1 denote a vector of dimension k ⇥ 1 of 1’s. If xj denotes the j-th row of the input
matrix, then we can write
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B.1.1 Proof of L1)

The proof of L1) follows by induction. In particular, L1) is true for the envelope condition (6), i.e.,
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B.1.2 Proof of L1.1)

The proof of L1.1) follows by induction, and along lines similar to the proof of L1). In particular, let ✏ be such
that ��(↵ + ✏)/↵ < 1 and �(↵ + ✏) < 1. It exists since �� < 1 and �↵ < 1. For l = 2, we can find C(k) > 0
finite such that:
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since (↵ + ✏)�� < ↵. This follows along lines similar to those applied in the previous subsection. Moreover the
bound is uniform with respect to n since the law is invariant with respect to n. Let us assume that L1.1) is true
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for (l � 2). Then we can write the following
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B.1.3 Proof of L2)

By the induction hypothesis, p(l�1)
n converges to p(l�1) in distribution with respect to the weak topology. Since

the limit law is degenerate (on p(l�1)), then for every subsequence (n0) there exists a subsequence (n00) such that

p(l�1)
n00 converges a.s. By the induction hypothesis, p(l�1) is absolutely continuous with respect to the Lebesgue
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B.1.4 Proof of L3)

Let ✏ be as in L1.1), and let p = (↵+ ✏)/↵ and q = (↵+ ✏)/✏. Then 1/p+ 1/q = 1. Thus, by Holder inequality
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as n ! 1, by L1.1).

B.1.5 Combine L1), L2) and L3)

We combine L1), L2) and L3) to prove the large n behavior of the i-th coordinate n�1/↵fi(x, n). From (20)
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C Finite-dimensional projections

We show that, as n ! +1,
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by proving the large n asymptotic behavior of any finite linear combination of the f (l)
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See, e.g. Billingsley (1999) and reference therein. Following the notation of Matthews et al. (2018b), consider a
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Then, along lines similar to the proof of the large n asymptotics for the i-th coordinate, we have
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as n ! +1. This complete the proof.
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Figure 1: 2D-KDE estimates for y ⇠ f (l)
1 (x, x0, n) (red) and y ⇠ Stk(↵, e�(x, x0, l,M)) (blue).

D Numerical evaluation of the recursion

In this section we perform a preliminary numerical investigation of the approach proposed in Section 6.1 for the
evaluation of recursion (13)-(14). We consider only the case of two inputs x = �0.5, x0 = 1.0 (i.e. a bivariate
stable distribution) and we use pseudo random numbers, i.e. standard Monte Carlo (MC), instead of quasi
random numbers as suggested in the main text. We consider �b = �w = 1, the tanh activation function, di↵erent
values of the stability index ↵, and both shallow (l = 2, i.e. 1 hidden layer) and deep (l = 10) NNs. In all cases
the networks are wide: n = 300. In Figure 1 we compare the bivariate distributions of: i) the first dimension

(i = 1) of the NN distribution y ⇠ f (l)
1 (x, x0, n) ii) its asymptotic distribution y ⇠ Stk(↵, e�(x, x0, l,M)) as

n ! +1. In ii) we use M = 1000 MC samples to evaluate the discrete spectral measure e� at each layer. In both
i) and ii) we generate 100.000 samples for y 2 R2 that are used to obtain the 2D-KDE plots of Figure 1. We can
observe close agreement in all cases considered (the ”squarish” level curves near the central regions for small ↵
are an artifact due to the specific KDE estimation algorithm employed and its non-robustness to ”outliers”).

The code at https://github.com/stepelu/deep-stable contains a numpy-based Python implementation of
the algorithms used for the simulation of scalar and multivariate stable distributions. Scalar stable variables
are generated according to Weron (1996); Weron et al. (2010). In the case of multivariate stable variables the
algorithm implemented is the one reported in Nolan (2008), note that the discrete spectral measure needs to be
symmetrized. The code also contains the routines used to sample from f (l)(x, n) and from Stk(↵, e�(x, l,M)).
The implementation does not rely on advanced features so it is easily portable to deep learning frameworks such
as tensorflow or pytorch. By modifying the calls to uniform random generators, it is also possible to use quasi
random number generators. In all cases, the usual precaution to exclude the extremes of the supports of the
uniform distributions involved (i.e. to sample from U(0, 1), not from U [0, 1]) applies.

https://github.com/stepelu/deep-stable
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Figure 2: Histograms for the stability indexes ↵ of the fitted Stable distributions for all layers, in blue for the
weights and in yellow for the biases. The models, from left-to-right, are: VGG-16, ResNet-50 and ResNet-101.

Figure 3: Histograms of the cdf evaluations for the Stable distribution (blue) and Gaussian distribution (orange)
fitted to the weights of the first three layers (left-to-right) of the VGG16 model.

E Empirical analysis of trained CNNs

In this section we investigate whether trained models exhibit parameters distributions close to that of Stable
distributions with stability index 0 < ↵ < 2, i.e. non-Gaussian. We consider 3 models from the PyTorch’s
TorchVision repository, i.e. CNNs trained on ImageNet. While fully connected networks are ideal starting
points for a theoretical analysis, it seems possible to expand our results to CNNs as done in Garriga-Alonso et al.
(2019) for Gaussian Processes (GP). This allows us to investigate the parameter distributions of trained model
in the ”realistic” setting of overparametrized models applied to big datasets with the use of batch normalization
and adaptive optimizers.

We restrict our analysis to marginal distributions and for each layer we collect all weights (CNN filters) and
biases and fit a Stable distribution via maximum likelihood estimation (MLE). In Figure 2 we plot histograms
for the stability indexes ↵ of the fitted Stable distributions for all layers. We see that distributions are often
non-Gaussian, and ↵ seems to be decreasing with the depth of the model. However, it is not possible to draw
definitive conclusions from this short experiment.

To obtain an indication of the goodness of fit of Stable distributions to the parameters, for the first three layers
of VGG-16 (↵ ⇠ 1.7) we: fit a Stable distribution to the weights; compute the cumulative distribution function
(cdf) of this Stable distribution for each weight; fit a Gaussian distribution to the weights; compute the cdf of
this Gaussian distribution for each weight; plot in Figure 3 a histogram of the cdf evaluations for the Stable
and Gaussian distribution. In case of perfect fit the histogram should be flat, as the cdf evaluations should be
iid uniformly distributed. We see that the fit of the Stable distributions is as expected better than the fit of
Gaussian distributions, especially in the tails. The peculiar behavior at extremes of the histograms (tails) could
be due to the use of truncated initializations in PyTorch. We validated MLE (limited here to ↵ > 0.5) and cdf
computation on synthetic data generated via sample stable() from the code accompanying this paper.


