
A PTAS for the Bayesian Thresholding Bandit Problem

A Reference on Concentration Inequalities

Theorem 17 (Hoe↵ding’s Inequality) Let X1, X2, . . . , Xn be independent random variables bounded by the
interval [a, b] : a  Xi  b, then we define X = X1 + · · ·+Xn. We have

Pr[X � E[X] � t]  exp

✓
� 2t2

n(b� a)2

◆
.

Theorem 18 (Cherno↵ Bound) Suppose X1, . . . , Xn are independent random variables, Xi 2 [0, 1]. Let X =
X1 +X2 + · · ·+Xn and let µ = E[X] denote the sum’s expected value. Then for 0  �  1,

Pr[X � (1 + �)µ]  e�
�2µ
3 .

B Deferred Proofs in Section 3.1

Proof of Lemma 5. For simplicity of the exposition, we assume that f is a deterministic policy. The case for
randomized f can be analogously addressed.

Suppose f(S) decides to query arm i. Let r be observation seen by policy f after the query and let r̃ be the
observation (or the pretended observation) seen by policy f̃ . We only need to prove that Pr[r = 1|St = S] =
Pr[r̃ = 1|S̃t = S] since f uses r and f̃ uses r̃ to update their query history on arm i.

Now let us condition on the event that the current state for f̃ is S. Let (ai, bi) 2 S be the query history on
arm i in recorded S. We claim that the probability that r̃ = 1 is EBeta(ai + 1, bi + 1), which is the same as
Pr[r = 1|St = S], proving the lemma.

Suppose that i 62 C, by the construction of f̃ , a real query is made to arm i and r̃ is the observation bit.
Therefore, in this case, the probability that r̃ = 1 is EBeta(ai + 1, bi + 1).

Otherwise, we have that i 2 C. Let q = ai + bi. Let r̃1, r̃2, . . . , r̃q be the q observations (including pretended
ones) for arm i seen by f̃ . We have

P
q

j=1 r̃j = ai. Let q̃ = ãi + b̃i. We have that f̃ has made q̃ real queries on

arm i, and that
P

q̃

j=1 r̃j = ãi. In this case, we have
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h
r̃ = 1|S̃ = S

i

= Ẽ
q
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Beta(ai + 1, bi + 1) = EBeta(ai + 1, bi + 1).

ut

Proof of Lemma 7. We only need to prove that when |ãi � b̃i| >
p

ãi + b̃i · 3 lnM , we have err(ãi, b̃i) <
1

2
p
M
.

Let us assume without loss of generality that ãi � b̃i, and let � = 2ãi

ãi+b̃i
� 1 � 3 lnMp

ãi+b̃i

. We have

err(ãi, b̃i) = Pr[Beta(ãi + 1, b̃i + 1) < .5] (11)

=
�(ãi + b̃i + 1)

�(ãi)�(b̃i)

Z 1
2

0
xãi(1� x)b̃idx

 �(ãi + b̃i + 1)

�(ãi)�(b̃i)

Z 1
2

0
2�(ãi+b̃i)dx (12)



Jian Peng, Yue Qin, Yadi Wei, Yuan Zhou

=
(ãi + b̃i)! · (ãi + b̃i + 1)

ãi!b̃i! · 2(ãi+b̃i+1)
. (13)

Now we use Stirling’s formula (
p
2⇡n(n/e)n  n!  e

p
n(n/e)n for every positive integer n), and have

(13)  (ãi + b̃i + 1) · e
p
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p
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!b̃i
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Note that

 
ãi + b̃i
ãi

!ãi
 
ãi + b̃i

b̃i
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= (1 + �)�ãi(1� �)�b̃i (15)

=
⇣
(1 + �)(1+�)(1� �)(1��)

⌘�(ãi+b̃i)/2
. (16)

Since we have (1+ �)(1+�)(1� �)(1��) � exp(�2) for � 2 [0, 1] (where 00 is defined to be 1), combining (13), (14),
and (16), we have

err(ãi, b̃i)  (ãi + b̃i + 1)1.5 exp(��2(ãi + b̃i)/2)

 (ãi + b̃i + 1)1.5 exp(�(9 lnM)/2)  1

2
p
M

,

where the second inequality is because of � � 3 lnMp
ãi+b̃i

and the last inequality is because of ãi + b̃i  100M ln2 M

and for su�ciently large M . ut

Proof of Lemma 8. Let a and b be the number of 1’s and 0’s after querying i for 100M ln2 M times. If i is

corrupted but not marked when f̃ terminates, then we have |a� b| 
p
a+ b · 3 lnM =

p
100M ln2 M · (3 lnM).

So,

Pr[i corrupted but not marked]
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p
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The last inequality holds because a and b are symmetric (so that we can assume ✓i  1
2 without loss of generality).

Note that a =
P100M ln2

M

j=1 Xj where Xj ’s are i.i.d. samples from B✓i . Using Hoe↵ding’s inequality (Theorem 17)

with E[a]  50M ln2 M � 50
3

p
M ln2 M , we have
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, (18)
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for su�ciently large M . Combining (17) and (18), we have

Pr[i corrupted but not marked]  1

M lnM
+

1

3
p
M

 1

2
p
M

.

ut

C Proof of Lemma 9

We let f̃ be an ✏�2-BQP with query budget Q and val(f̃) � OPT(Q) � ✏ (which is possible by Lemma 2). We
build a policy g as follows. At the beginning, for each arm i, g samples an independent random bit yi 2 {0, 1}
where E yi = 2✏. For each arm i with yi = 1, g samples ✓̃i from the uniform distribution over [0, 1] (i.e., the
prior distribution of ✓i). Now g maintains a state of query history S̃ = {(a1, b1), . . . , (an, bn)} where ai and bi
are initialized to 0 for all i 2 [n]. g now simulates the policy f̃ . Whenever f̃(S̃) decides to query arm i, if yi = 0,
g directly queries the arm and updates the state S̃; otherwise g make a simulated query by sampling a bit from
B
✓̃i

and update the query history using this bit. g also keeps track of the total number of real queries that have

been made. Whenever this number exceeds (1� ✏)Q, g terminates and gives up. When f̃ terminates and decides
the guess for each arm, g does the same thing.

It is clear that g queries at most (1� ✏)Q times. Now it su�ces to prove that val(g) � val(f̃)� 3✏.

Lemma 19 When Q � 1200✏�4 ln3 ✏�1, the probability that g exceeds the budget limit and gives up is at most ✏.

Proof of Lemma 19. Let us imagine that g does not terminate even when the number of real queries exceeds
the budget, and finally reaches a final state S̃ = {(a1, b1), . . . , (an, bn)} for f̃ . In the real run of g, the probability
that g gives up exactly

Pr

"
nX

i=1

(1� yi)(ai + bi) > (1� ✏)Q

#
= Ẽ

S

Pr

"
nX

i=1
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��S̃
#
.

One can verify that {y1, y2, . . . , yn} is independent from S̃, and therefore conditioned on S̃, {y1, y2, . . . , yn}
follows the same i.i.d. distribution. Therefore, if we let Xi =

(1�yi)(ai+bi)
400✏�2 ln2 ✏�1 , we have that Xi’s are independent

random variables bounded in [0, 1] (by the definition of ✏�2-BQP) and E
P

n

i=1 Xi =
(1�2✏)Q

400✏�2 ln2 ✏�1 .

By Cherno↵ Bound (Theorem 18), we have
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#
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,

which is at most ✏ when Q � 1200✏�4 ln3 ✏�1.

Finally, the probability that g gives up is

Ẽ
S
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nX
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(1� yi)(ai + bi) > (1� ✏)Q
��S̃
#
 Ẽ

S
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Lemma 20 Let S be a query history state of f̃ . For every realization of y1, y2, . . . , yn, when
P

n

i=1(1� yi)(ai +

bi)  (1� ✏)Q, we have Pr[f̃ reaches S] = Pr[g does not give up and reaches S|y1, y2, . . . , yn].

Proof of Lemma 20. We have

Pr[f̃ reaches S] = Pr[f̃ reaches S|y1, y2, . . . , yn],
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where in the LHS we consider a run of f̃ ; in the RHS we consider a run of g (which also simulates f̃) and we
imagine the run does not terminate even when the number of real queries exceeds the budget. The equality holds
because of the independence between {y1, y2, . . . , yn} and the state of g. Also note that the RHS is equivalent to

Pr[g does not give up and reaches S|y1, y2, . . . , yn]

when
P

n

i=1(1� yi)(ai + bi)  (1� ✏)Q, and therefore the lemma is proved. ut

With Lemma 19 and Lemma 20, we are ready to prove Lemma 9.

Proof of Lemma 9. Recall that it su�ces to prove that val(g) � val(f̃)� 3✏. Given a realization of y1, . . . , yn,
consider a run of f̃ and let S = {(a1, b1), . . . , (an, bn)} be the terminal state reached by f̃ . Here we define S to
be good if

P
n

i=1(1 � yi)(ai + bi)  (1 � ✏)Q. Note that when yi = 1, we do not really query arm i, therefore
val(g) is lower bounded by
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When S is good, if g reaches S, it means g does not give up. According to Lemma 20, for good S,
Pr[f̃ reaches S] = Pr[g reaches S|y1, . . . , yn], thus we can write (19) as

E
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X
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1

n

nX
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(1� err(ai, bi)) Pr[f reaches S]� 2✏

� E
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Pr[g gives up|y1, . . . , yn]� 2✏

= E
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h
val(f̃)� Pr[g gives up|y1, . . . , yn]

i
� 2✏

� val(f̃)� Pr[g gives up]� 2✏

� val(f̃)� 3✏,

where the last inequality holds because of Lemma 19. ut

D Deferred Proof(s) in Section 3.3

Proof of Lemma 10. Given an M -BQP f̃ with query budget Q, we define the policy g̃ as follows. g̃ simulates
f̃ . For each arm i, g̃ also keeps a bu↵er of observations, which is initialized to be empty. Whenever f̃(S) decides
to query arm i, if the arm’s bu↵er is empty, suppose arm i has been queries by f̃ for ⌧j times, g̃ makes (⌧j+1�⌧j)
queries to arm i and add all observations to the bu↵er. Then g̃ extracts one observation from the bu↵er which
is served as the observation of the query made by f̃(S). Whenever f̃ terminates and decides, g̃ also terminates
and decides.

It is straightforward to verify that 1) val(g̃) = val(f̃), 2) g̃ satisfies the two constraints for an M -BQP (since
f̃ is an M -BQP) and the additional constraint for a (�,M)-BBQP. Finally, we verify that g̃ makes at most
(1+�)Q queries. Let qi be the total number of queries made to arm i by f̃ . Let q̃i be the total number of queries
made to arm i by g̃. Once can verify that q̃i  (1 + �)qi. Therefore the total number of queries made by g̃ isP

n

i=1 q̃i 
P

n

i=1(1 + �)qi  (1 + �)Q . ut
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