A PTAS for the Bayesian Thresholding Bandit Problem

A Reference on Concentration Inequalities

Theorem 17 (Hoeffding’s Inequality) Let X, Xs,..., X, be independent random variables bounded by the
interval [a,b] : a < X; < b, then we define X = X1 +---+ X,,. We have
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PriX —EX] >t < —— .
(X - BIX] > f < e (-2 )
Theorem 18 (Chernoff Bound) Suppose X1,...,X,, are independent random variables, X; € [0,1]. Let X =
X1+ Xo+ -+ X, and let p = E[X] denote the sum’s expected value. Then for 0 <6 <1,
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Pr(X > (1+d)uj<e = .

B Deferred Proofs in Section 3.1

Proof of Lemma 5.  For simplicity of the exposition, we assume that f is a deterministic policy. The case for
randomized f can be analogously addressed.

Suppose f(S) decides to query arm 4. Let r be observation seen by policy f after the query and let 7 be the
observation (or the pretended observation) seen by policy f. We only need to prove that Pr[r = 1|S; = 5] =
Pr[# = 1]S; = S] since f uses r and f uses 7 to update their query history on arm 4.

Now let us condition on the event that the current state for f is S. Let (a;,b;) € S be the query history on
arm ¢ in recorded S. We claim that the probability that # = 1 is E Beta(a; + 1,b; + 1), which is the same as
Prlr = 1|S; = 5], proving the lemma.

Suppose that i ¢ C, by the construction of f , a real query is made to arm 4 and 7 is the observation bit.
Therefore, in this case, the probability that # = 1 is E Beta(a; + 1,b; + 1).

Otherwise, we have that ¢ € C. Let ¢ = a; + b;. Let 71,72,...,7; be the ¢ observations (including pretended
ones) for arm i seen by f. We have Z?:l 7; = a;. Let ¢ = a; + b;. We have that f has made ¢ real queries on

arm 4, and that Y 7_, 7; = @;. In this case, we have
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EBeta(a; + 1,b; + 1) = EBeta(a; + 1,b; + 1).
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Proof of Lemma 7. We only need to prove that when |a; — l~)l| >V a; + b; - 3In M, we have err(a;, 51) < ﬁ
i i a: > b — 24 _ 1> 3laM
Let us assume without loss of generality that a; > b;, and let ¢ oy 1> Vath We have
err(a;, b;) = Pr[Beta(a; + 1,b; + 1) < .5] (11)
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Now we use Stirling’s formula (v/27n(n/e)” < n! < ey/n(n/e)"™ for every positive integer n), and have
= N -\ bi
7 Vai+b (a;+b a; + b;
(13) < (@ + by +1) - 2 (4T N (14)
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Note that
~ E a; - B E’L
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a; bZ
—(di"l‘gi)/Q
- ((1 )1+ (1 — 5)<175>) . (16)

Since we have (14 )49 (1 —§)(1=9) > exp(62) for 6 € [0,1] (where 0° is defined to be 1), combining (13), (14),
and (16), we have

err(dg, b;) < (a; + by +1)*° exp(—6%(a; + b;)/2)

~ 1
< (@; + b + D exp(—(9In M) /2) < ——,
< (@; +b; + 1) exp(—( )/)_2\/M
where the second inequality is because of § > % and the last inequality is because of a; + b; < 100M In®> M
a;+b;
and for sufficiently large M. a

Proof of Lemma 8.  Let a and b be the number of 1’s and 0’s after querying i for 100M In* M times. If 7 is

corrupted but not marked when f terminates, then we have |a —b| < va + b-3In M = v100M In* M - (31n M).
So,

Pr[i corrupted but not marked]

< Pr[ja —b] < V100M 1In* M - (31n M)]
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The last inequality holds because a and b are symmetric (so that we can assume 6; < % without loss of generality).
2
Note that a = Z;ZOIM M X, where X;’s are i.i.d. samples from By,. Using Hoeffding’s inequality (Theorem 17)

with E[a] < 50M In* M — %\/Mln2 M, we have

Pr {a > 50M In®> M — 15V M In®> M
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for sufficiently large M. Combining (17) and (18), we have

1 1 1
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C Proof of Lemma 9

We let f be an e 2-BQP with query budget Q and val(f) > OPT(Q) — e (which is possible by Lemma 2). We
build a policy g as follows. At the beginning, for each arm i, g samples an independent random bit y; € {0,1}
where Ey; = 2e. For each arm 4 with y; = 1, g samples 6; from the uniform distribution over [0,1] (i.e., the
prior distribution of ;). Now ¢ maintains a state of query history S = {(ay,b1),..., (an,b,)} where a; and b,
are initialized to 0 for all i € [n]. g now simulates the policy f. Whenever f (S) decides to query arm i, if y; = 0,
g directly queries the arm and updates the state S: otherwise g make a simulated query by sampling a bit from
Béi and update the query history using this bit. g also keeps track of the total number of real queries that have

been made. Whenever this number exceeds (1 — €)@, g terminates and gives up. When f terminates and decides
the guess for each arm, g does the same thing.

It is clear that g queries at most (1 — €)@ times. Now it suffices to prove that val(g) > val(f) — 3e.

Lemma 19 When Q > 1200e*1n® =1, the probability that g exceeds the budget limit and gives up is at most €.

Proof of Lemma 19.  Let us imagine that g does not terminate even when the number of real queries exceeds
the budget, and finally reaches a final state S = {(a1,b1), ..., (an,bs)} for f. In the real run of g, the probability
that g gives up exactly

n

Z(l — yl)(az + bl) > (1 — E)Q‘| = [SEPI‘

i=1

Pr

Z(l —yi)(a; +b;) > (1 - e)Q’S‘] )

i=1

One can verify that {y1,y2,...,yn} is independent from S, and therefore conditioned on S, {y1,92,- -, Yn}
_ (—yi)(ait+bi)

follows the same i.i.d. distribution. Therefore, if we let X; = J5525 7=, we have that X;’s are independent
random variables bounded in [0, 1] (by the definition of e 2-BQP) and EY ;| X; = ﬁ.
By Chernoff Bound (Theorem 18), we have

Pr li(lyi)(aﬁbi) > (16)Q|§] —Pr [iX > (16)69;5‘] <exp< ¢ (12@@)

i=1 i=1 400e~2In” e T3 400e21n !
which is at most € when Q > 1200e41In® e~ 1.

Finally, the probability that g gives up is

EPI‘ [i(l — yi)(ai + bl) > (1 - E)Q‘S

S i=1

<Ee=c¢e.
S
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Lemma 20 Let S be a query history state of f. For every realization of y1,9ys, . .., yn, when Yo (T —yi)(a; +
b)) < (1 —€)Q, we have Pr[f reaches S| = Pr[g does not give up and reaches S|yi,ya, ..., Yn]-

Proof of Lemma 20. We have

Pr[f reaches S] = Pr[f reaches S|y1, 2, - - ., Ynl,
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where in the LHS we consider a run of f; in the RHS we consider a run of g (which also simulates f) and we
imagine the run does not terminate even when the number of real queries exceeds the budget. The equality holds
because of the independence between {y1, 42, ..., yn} and the state of g. Also note that the RHS is equivalent to

Pr[g does not give up and reaches S|y1,ya, .- -, Yn]

when > (1 —y;)(a; + b;) < (1 — €)Q, and therefore the lemma is proved. 0
With Lemma 19 and Lemma 20, we are ready to prove Lemma 9.

Proof of Lemma 9.  Recall that it suffices to prove that val(g) > val(f) — 3e. Given a realization of y, ..., Yn,
consider a run of f and let S = {(a1,b1),...,(an,by)} be the terminal state reached by f. Here we define S to
be good if Y"1 (1 — y;)(a; + b;) < (1 —€)Q. Note that when y; = 1, we do not really query arm ¢, therefore
val(g) is lower bounded by

1 n n
]E Z n <Z(1 —err(ag, b;)) — Zyl> - Prlg reaches S|yi,. .., yn]

" good S i=1 i=1
y Z Z (1 —err(ay, b)) - Prlg reaches S|y1,...,yn] — y Zyz
o s T Loy
= Z — Z 1 —err(a;, b)) - Pr[g reaches S|y, ..., yn] — 2e. (19)
Y1, y gaod s "

When S is good, if g reaches S, it means g does not give up. According to Lemma 20, for good S,
Pr[f reaches S] = Pr[g reaches Slyi, ..., yn], thus we can write (19) as

Z Z (1 —err(a;, b;)) Pr[f reaches S| — 2¢

> E Z Z (1 —err(a;, b;)) Pr[f reaches S] — E  Prlg gives uplyi,...,yn] — 2¢

yn terminal S YireYn

= E {val(f) — Prg gives up|y1, ..., yn]| — 2¢

Yi5--Yn
> val(f) — Pr[g gives up] — 2¢
> val(f) — 3e,

where the last inequality holds because of Lemma 19. a

D Deferred Proof(s) in Section 3.3

Proof of Lemma 10.  Given an M-BQP f with query budget Q, we define the policy § as follows. _g simulates
f For each arm ¢, g also keeps a buffer of observations, which is initialized to be empty. Whenever f (S) decides
to query arm i, if the arm’s buffer is empty, suppose arm i has been queries by f for 7; times, g makes (741 —7;)
queries to arm 7 and add all observations to the buffer. Then g extracts one observation from the buffer which
is served as the observation of the query made by f (S). Whenever f terminates and decides, g also terminates
and decides.

It is straightforward to verify that 1) val(g) = val(f), 2) § satisfies the two constraints for an M-BQP (since
f is an M-BQP) and the additional constraint for a (v, M)-BBQP. F inally, we verify that g makes at most
(1+7)Q queries. Let ¢; be the total number of queries made to arm 4 by f. Let ¢; be the total number of queries
made to arm 4 by §. Once can verify that ¢; < (14 7)g¢;. Therefore the total number of queries made by g is

S G <Y (l+7)a < (1+9)Q . 0
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