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Appendix

The Appendix is organized as follows. In Section A we prove Propositions 1 and 2. Section B is devoted to
the analysis of the bias. We study spectral properties of the diffusion operator L to give sufficient and general
conditions for the compactness assumption from Theorem 2 and Proposition 3 to hold. Section C provides
concentration inequalities for the operators involved in Proposition 2. We conclude by Section D that gives
explicit rates of convergence for the bias when µ is a 1-D Gaussian (this result could be easily extended to higher
dimensional Gaussians).

A Proofs of Proposition 1 and 2

Recall that L2
0(µ) is the subspace of L2(µ) of zero mean functions: L2

0(µ) := {f 2 L2(µ),
R
f(x)dµ(x) = 0} and

that we similarly defined H0 := H \ L2
0(µ). Let us also denote by R1 , the set of constant functions.

Proof of Proposition 1. The proof is simply the following reformulation of Equation (1). Under assumption (Ass.
1):

Pµ = sup
f2H1(µ)\R1

R
Rd f(x)2dµ(x)�

�R
Rd f(x)dµ(x)

�2
R
Rd krf(x)k2dµ(x)

= sup
f2H\R1

R
Rd f(x)2dµ(x)�

�R
Rd f(x)dµ(x)

�2
R
Rd krf(x)k2dµ(x)

= sup
f2H0\{0}

R
Rd f(x)2dµ(x)�

�R
Rd f(x)dµ(x)
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R
Rd krf(x)k2dµ(x)

.

We then simply note that
✓Z

Rd

f(x)dµ(x)

◆2

=

✓⌧
f,

Z

Rd

Kxdµ(x)

�

H

◆2

= hf,mi
2
H

= hf, (m⌦m)fiH.

Similarly,
Z

Rd

f(x)2dµ(x) = hf,⌃fiH and
Z

Rd

krf(x)k2dµ(x) = hf,�fiH.

Note here that Ker(�) ⇢ Ker(C). Indeed, if f 2 Ker(�), then hf,�fiH = 0. Hence, µ-almost everywhere,
rf = 0 so that f is constant and Cf = 0. Note also the previous reasoning shows that Ker(�) is the subset of H
made of constant functions, and (Ker(�))? = H \ L2

0(µ) = H0.

Thus we can write,

Pµ = sup
f2H\Ker(�)

hf, (⌃�m⌦m)fiH
hf,�fiH

=
�����1/2C��1/2

��� ,

where we consider ��1 as the inverse of � restricted to (Ker(�))? and thus get Proposition 1.

Proof of Proposition 2. We refer to Lemmas 5 and 6 in Section C for the explicit bounds. We have the following
inequalities:
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Consider an event where the estimates of Lemmas 5, 6 and 7 hold for a given value of � > 0. A simple computation
shows that this event has a probability 1� 3� at least. We study the two terms above separately. First, provided
that n > 15F1(�) log 4Tr�

��
and � 2 (0, k�k] in order to use Lemmas 6 and 7,
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For the second term,
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The leading order term in the estimate of Lemma 6 is of order
⇣

2Kd log(4Tr�/��)
�n

⌘1/2
whereas the leading one in

Lemma 5 is of order 8K log(2/�)
�
p
n

. Hence, the latter is the dominant term in the final estimation.

B Analysis of the bias: convergence of the regularized Poincaré constant to the
true one

We begin this section by proving Proposition 3. We then investigate the compactness condition required in the
assumptions of Proposition 3 by studying the spectral properties of the diffusion operator L. In Proposition 6, we
derive, under some general assumption on the RKHS and usual growth conditions on V , some convergence rate
for the bias term.

B.1 General condition for consistency: proof of Proposition 3

To prove Proposition 3, we first need a general result on operator norm convergence.
Lemma 1. Let H be a Hilbert space and suppose that (An)n>0 is a family of bounded operators such that 8n 2 N,
kAnk 6 1 and 8f 2 H, Anf

n!1
����! Af . Suppose also that B is a compact operator. Then, in operator norm,

AnBA⇤

n

n!1
����! ABA⇤.

Proof. Let " > 0. As B is compact, it can be approximated by a finite rank operator Bn"
=
P

n"

i=1 bihfi, ·igi,
where (fi)i and (gi)i are orthonormal bases, and (bi)i is a sequence of nonnegative numbers with limit zero
(singular values of the operator). More precisely, n" is chosen so that

kB �Bn"
k 6 "

2
.

Moreover, " being fixed, AnBn"
A⇤

n
=
P

n"

i=1 bihAnfi, ·iAngi �!
n1

P
n"

i=1 bihAfi, ·iAgi = ABn"
A⇤ in operator norm,

so that, for n > N", with N" > n" sufficiently large, kAnBn"
A⇤

n
� ABn"

A⇤
k 6 "

2 . Finally, as kAk 6 1, it holds,
for n > N"

kAnBn"
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n
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k 6 kAnBn"
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n
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6 kAnBn"
A⇤

n
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A⇤
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This proves the convergence in operator norm of AnBA⇤

n
to ABA⇤ when n goes to infinity.
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We can now prove Proposition 3.

Proof of Proposition 3. Let � > 0, we want to show that

P
�

µ
= k��1/2

�
C��1/2

�
k �!

�!0
k��1/2C��1/2

k = Pµ.

Actually, with Lemma 1, we will show a stronger result which is the norm convergence of the operator ��1/2
�

C��1/2
�

to ��1/2C��1/2. Indeed, denoting by B = ��1/2C��1/2 and by A� = ��1/2
�

�1/2 both defined on H0, we have
��1/2

�
C��1/2

�
= A�BA⇤

�
with B compact and kA�k 6 1. Furthermore, let (�i)i2N be an orthonormal family of

eigenvectors of the compact operator � associated to eigenvalues (⌫i)i2N. Then we can write, for any f 2 H0,

A�f = ��1/2
�

�1/2f =
1X

i=0

r
⌫i

�+ ⌫i
hf,�iiH �i �!

�!0
f.

Hence by applying Lemma 1, we have the convergence in operator norm of ��1/2
�

C��1/2
�

to ��1/2C��1/2,
hence in particular the convergence of the norms of the operators.

B.2 Introduction of the operator L

In all this section we focus on a distribution dµ of the form dµ(x) = e�V (x)dx.

Let us give first a characterization of the function that allows to recover the Poincaré constant, i.e., the function
in H1(µ) that minimizes

R
Rd krf(x)k2

dµ(x)
R
Rd f(x)2dµ(x)�(

R
Rd f(x)dµ(x))2

. We call f⇤ this function. We recall that we denote by

�L the standard Laplacian in Rd: 8f 2 H1(µ), �Lf =
P

d

i=1
@
2
fi

@2xi
. Let us define the operator 8f 2 H1(µ),

Lf = ��Lf + hrV,rfi, which is the opposite of the infinitesimal generator of the dynamics (3). We can verify
that it is symmetric in L2(µ). Indeed by integrations by parts for any 8f, g 2 C1

c
,

hLf, giL2(µ) =

Z
(Lf)(x)g(x)dµ(x)

= �

Z
�Lf(x)g(x)e�V (x)dx+

Z
hrV (x),rf(x)ig(x)e�V (x)dx

=

Z D
rf(x),r

⇣
g(x)e�V (x)

⌘E
dx+

Z
hrV (x),rf(x)ig(x)e�V (x)dx

=

Z
hrf(x),rg(x)ie�V (x)dx�

Z
hrf(x),rV (x)ig(x)e�V (x)dx

+

Z
hrV (x),rf(x)ig(x)e�V (x)dx

=

Z
hrf(x),rg(x)idµ(x).

The last equality being totally symmetric in f and g, we have the symmetry of the operator L: hLf, giL2(µ) =R
hrf,rgidµ = hf, LgiL2(µ) (for the self-adjointness we refer to [Bakry et al., 2014]). Remark that the same

calculation shows that r
⇤ = �div +rV ·, hence L = r

⇤
·r = ��L + hrV,r·i, where r

⇤ is the adjoint of r in
L2(µ).

Let us call ⇡ the orthogonal projector of L2(µ) on constant functions: ⇡f : x 2 Rd
7!
R
fdµ. The problem (4)

then rewrites:

P
�1 = inf

f2(H1(µ)\L
2
0(µ))\{0}

hLf, fiL2(µ)

k(IL2(µ) � ⇡)fk2
, (8)

Until the end of this part, to alleviate the notation we omit to mention that the scalar product is the canonical
one on L2(µ). In the same way, we also denote 1 = IL2(µ).
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B.2.1 Case where dµ has infinite support

Proposition 4 (Properties of the minimizer). If lim
|x|!1

1
4 |rV |

2
�

1
2�

LV = +1, the problem (8) admits a

minimizer in H1(µ) and every minimizer f is an eigenvector of L associated with the eigenvalue P
�1:

Lf = P
�1f. (9)

To prove the existence of a minimizer in H1(µ), we need the following lemmas.
Lemma 2 (Criterion for compact embedding of H1(µ) in L2(µ)). The injection H1(µ) ,! L2(µ) is compact if
and only if the Schrödinger operator ��L + 1

4 |rV |
2
�

1
2�

LV has compact resolvent.

Proof. See [Gansberger, 2010, Proposition 1.3] or [Reed and Simon, 2012, Lemma XIII.65].

Lemma 3 (A sufficient condition). If � 2 C1 and �(x)�! + 1 when |x| ! 1, the Schrödinger operator
��L + � on Rd has compact resolvent.

Proof. See [Helffer and Nier, 2005, Section 3] or [Reed and Simon, 2012, Lemma XIII.67].

Now we can prove Proposition 4.

Proof of Proposition 4. We first prove that (8) admits a minimizer in H1(µ). Indeed, we have,

P
�1 = inf

f2(H1\L
2
0)\{0}

hLf, fiL2(µ)

k(1� ⇡)fk2
= inf

f2(H1\L
2
0)\{0}

J(f), where J(f) :=
krfk2

kfk2
.

Let (fn)n>0 be a sequence of functions in H1
0 (µ) equipped with the natural H1-norm such that (J(fn))n>0

converges to P
�1. As the problem in invariant by rescaling of f , we can assume that 8n > 0, kfnk2L2(µ) = 1.

Hence J(fn) = krfnk2L2(µ) converges (to P
�1). In particular krfnk2L2(µ) is bounded in L2(µ), hence (fn)n>0

is bounded in H1(µ). Since by Lemma 2 and 3 we have a compact injection of H1(µ) in L2(µ), it holds, upon
extracting a subsequence, that there exists f 2 H1(µ) such that

(
fn ! f strongly in L2(µ)

fn * f weakly in H1(µ).

Thanks to the strong L2(µ) convergence, kfk2 = lim
n1

kfnk2 = 1. By the Cauchy-Schwarz inequality and then
taking the limit n ! +1,

krfk2 = lim
n1

hrfn,rfi 6 lim
n1

krfkkrfnk = krfkP�1.

Therefore, krfk 6 P
�1/2 which implies that J(f) 6 P

�1, and so J(f) = P
�1. This shows that f is a minimizer

of J .

Let us next prove the PDE characterization of minimizers. A necessary condition on a minimizer f⇤ of the
problem inff2H1(µ){krfkL2(µ), kfk2 = 1} is to satisfy the following Euler-Lagrange equation: there exists � 2 R
such that:

Lf⇤ + �f⇤ = 0.

Plugging this into (8), we have: P
�1 = hLf⇤, f⇤i = ��hf⇤, f⇤i = ��kf⇤k22 = ��. Finally, the equation satisfied

by f⇤ is:

Lf = ��Lf⇤ + hrV,rf⇤i = P
�1f⇤,

which concludes the proof.
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B.2.2 Case where dµ has compact support

We suppose in this section that dµ has a compact support included in ⌦. Without loss of generality we can take
a set ⌦ with a C1 smooth boundary @⌦. In this case, without changing the result of the variational problem,
we can restrict ourselves to functions that vanish at the boundary, namely the Sobolev space H1

D
(Rd, dµ) =�

f 2 H1(µ) s.t. f|@⌦ = 0
 
. Note that, as V is smooth, H1(µ) � H1(Rd, d�) the usual "flat" space equipped with

d�, the Lebesgue measure. Note also that only in this section the domain of the operator L is H2
\H1

D
.

Proposition 5 (Properties of the minimizer in the compact support case). The problem (8) admits a minimizer
in H1

D
and every minimizer f satisfies the partial differential equation:

Lf = P
�1f. (10)

Proof. The proof is exactly the same than the one of Proposition 4 since H1
D

can be compactly injected in L2

without any additional assumption on V .

Let us take in this section H = Hd(Rd, d�), which is the RKHS associated to the kernel k(x, x0) = e�kx�x
0
k.

As f⇤ satisfies (10), from regularity properties of elliptic PDEs, we infer that f⇤ is C1(⌦). By the Whitney
extension theorem [Whitney, 1934], we can extend f⇤ defined on ⌦ to a smooth and compactly supported function
in ⌦0

� ⌦ of Rd. Hence f⇤ 2 C1

c
(Rd) ⇢ H.

Proposition 6. Consider a minimizer f⇤ of (8). Then

P
�1 6 P

�1
�

6 P
�1 + �

kf⇤k2H
kf⇤k2L2(µ)

. (11)

Proof. First note that f⇤ has mean zero with respect to dµ. Indeed,
R
fdµ = P

�1
R
Lfdµ = 0, by the fact that

dµ is the stationary distribution of the dynamics.

For � > 0,

P
�1 6 P

�1
�

= inf
f2H\R1

R
Rd krf(x)k2dµ(x) + �kfk2

HR
Rd f(x)2dµ(x)�

�R
Rd f(x)dµ(x)

�2

6
R
Rd krf⇤(x)k2dµ(x) + �kf⇤k2HR

Rd f⇤(x)2dµ(x)
= P

�1 + �
kf⇤k2H
kf⇤k2L2(µ)

,

which provides the result.

C Technical inequalities

C.1 Concentration inequalities

We first begin by recalling some concentration inequalities for sums of random vectors and operators.
Proposition 7 (Bernstein’s inequality for sums of random vectors). Let z1, . . . , zn be a sequence of independent
identically and distributed random elements of a separable Hilbert space H. Assume that Ekz1k < +1 and note
µ = Ez1. Let �, L > 0 such that,

8p > 2, E kz1 � µkp
H

6 1

2
p!�2Lp�2.

Then, for any � 2 (0, 1],
�����
1

n

nX

i=1

zi � µ

�����
H

6 2L log(2/�)

n
+

r
2�2 log(2/�)

n
, (12)

with probability at least 1� �.

Proof. This is a restatement of Theorem 3.3.4 of [Yurinsky, 1995].
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Proposition 8 (Bernstein’s inequality for sums of random operators). Let H be a separable Hilbert space and let
X1, . . . , Xn be a sequence of independent and identically distributed self-adjoint random operators on H. Assume
that E(Xi) = 0 and that there exist T > 0 and S a positive trace-class operator such that kXik 6 T almost surely
and EX2

i
4 S for any i 2 {1, . . . , n}. Then, for any � 2 (0, 1], the following inequality holds:

�����
1

n

nX

i=1

Xi

����� 6 2T�

3n
+

r
2kSk�

n
, (13)

with probability at least 1� � and where � = log 2TrS
kSk�

.

Proof. The theorem is a restatement of Theorem 7.3.1 of [Tropp, 2012] generalized to the separable Hilbert space
case by means of the technique in Section 4 of [Stanislav, 2017].

C.2 Operator bounds

Lemma 4. Under assumptions (Ass. 2) and (Ass. 3), ⌃, C and � are trace-class operators.

Proof. We only prove the result for �, the proof for ⌃ and C being similar. Consider an orthonormal basis
(�i)i2N of H. Then, as � is a positive self adjoint operator,

Tr � =
1X

i=1

h��i,�ii =
1X

i=1

Eµ

2

4
dX

j=1

h@jKx,�ii
2

3

5 = Eµ

2

4
1X

i=1

dX

j=1

h@jKx,�ii
2

3

5

= Eµ

2

4
dX

j=1

k@jKxk
2

3

5 6 Kd.

Hence, � is a trace-class operator.

The following quantities are useful for the estimates in this section:

N1(�) = sup
x2supp(µ)

�����1/2
�

Kx

���
2

H

, and F1(�) = sup
x2supp(µ)

�����1/2
�

rKx

���
2

H

.

Note that under assumption (Ass. 3), N1(�) 6 K

�
and F1(�) 6 Kd

�
. Note also that under refined assumptions

on the spectrum of �, we could have a better dependence of the latter bounds with respect to �. Let us now
state three useful lemmas to bound the norms of the operators that appear during the proof of Proposition 2.

Lemma 5. For any � > 0 and any � 2 (0, 1],

�����1/2
�

( bC � C)��1/2
�

��� 6
4N1(�) log 2Tr⌃

P�
µ��

3n
+

2

4
2 P

�

µ
N1(�) log 2Tr⌃

P�
µ��

n

3

5
1/2

+ 8N1(�)

0

@ log( 2
�
)

n
+

s
log( 2

�
)

n

1

A

+ 16N1(�)

0

@ log( 2
�
)

n
+

s
log( 2

�
)

n

1

A
2

,

with probability at least 1� �.
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Proof of Lemma 5. We apply some concentration inequality to the operator ��1/2
�

bC��1/2
�

whose mean is exactly
��1/2

�
C��1/2

�
. The calculation is the following:
�����1/2

�
( bC � C)��1/2

�

��� =
�����1/2

�
bC��1/2

�
���1/2

�
C��1/2

�

���

6
�����1/2

�
b⌃��1/2

�
���1/2

�
⌃��1/2

�

���

+
�����1/2

�
(bm⌦ bm)��1/2

�
���1/2

�
(m⌦m)��1/2

�

���

=

�����
1

n

nX

i=1

h
(��1/2

�
Kxi)⌦ (��1/2

�
Kxi)���1/2

�
⌃��1/2

�

i�����

+
���(��1/2

�
bm)⌦ (��1/2

�
bm)� (��1/2

�
m)⌦ (��1/2

�
m)
��� .

We estimate the two terms separately.

Bound on the first term: we use Proposition 8. To do this, we bound for i 2 J1, nK :
���(��1/2

�
Kxi)⌦ (��1/2

�
Kxi)���1/2

�
⌃��1/2

�

��� 6
�����1/2

�
Kxi

���
2

H

+
�����1/2

�
⌃��1/2

�

���

6 2N1(�),

and, for the second order moment,

E
⇣
(��1/2

�
Kxi)⌦ (��1/2

�
Kxi)���1/2

�
⌃��1/2

�

⌘2

= E
�����1/2

�
Kxi

���
2

H

(��1/2
�

Kxi)⌦ (��1/2
�

Kxi)

�
���1/2

�
⌃��1

�
⌃��1/2

�

4 N1(�)��1/2
�

⌃��1/2
�

.

We conclude this first part of the proof by some estimation of the constant � = log
2Tr(⌃��1

� )�����1/2
� ⌃��1/2

�

����
. Using

Tr⌃��1
�

6 ��1Tr⌃, it holds � 6 log 2Tr⌃
P�

µ��
. Therefore,

�����
1

n

nX

i=1

h
(��1/2

�
Kxi)⌦ (��1/2

�
Kxi)���1/2

�
⌃��1/2

�

i�����

6
4N1(�) log 2Tr⌃

P�
µ��

3n
+

2

4
2 P

�

µ
N1(�) log 2Tr⌃

P�
µ��

n

3

5
1/2

.

Bound on the second term. Denote by v = ��1/2
�

m and bv = ��1/2
�

bm. A simple calculation leads to

kbv ⌦ bv � v ⌦ vk 6 kv ⌦ (bv � v)k+ k(bv � v)⌦ vk+ k(bv � v)⌦ (bv � v)k

6 2kvkkbv � vk+ kbv � vk2.

We bound kbv�vk with Proposition 7. It holds: bv�v = ��1/2
�

(bm�m) = 1
n

P
n

i=1 �
�1/2
�

(Kxi�m) = 1
n

P
n

i=1 Zi, with
Zi = ��1/2

�
(Kxi�m). Obviously for any i 2 J1, nK, E(Zi) = 0, and kZik 6 k��1/2

�
Kxik+k��1/2

�
mk 6 2

p
N1(�).

Furthermore,

EkZik
2 = E

D
��1/2

�
(Kxi �m),��1/2

�
(Kxi �m)

E
= E

�����1/2
�

Kxi

���
2
�

�����1/2
�

m
���
2

6 N1(�).

Thus, for p > 2,
EkZik

p 6 E
�
kZik

p�2
kZik

2
�
6 1

2
p!
⇣p

N1(�)
⌘2 ⇣

2
p

N1(�)
⌘p�2

,
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hence, by applying Proposition 7 with L = 2
p
N1(�) and � =

p
N1(�),

kbv � vk 6 4
p
N1(�) log(2/�)

n
+

r
2N1(�) log(2/�)

n

6 4
p
N1(�)

 
log(2/�)

n
+

r
log(2/�)

n

!
.

Finally, as kvk 6
p
N1(�),

kbv ⌦ bv � v ⌦ vk 6 8N1(�)

 
log(2/�)

n
+

r
log(2/�)

n

!

+ 16N1(�)

 
log(2/�)

n
+

r
log(2/�)

n

!2

.

This concludes the proof of Lemma 5.

Lemma 6. For any � 2 (0, k�k ] and any � 2 (0, 1],

�����1/2
�

(b���)��1/2
�

��� 6 4F1(�) log 4Tr�
��

3n
+

s
2 F1(�) log 4Tr�

��

n
,

with probability at least 1� �.

Proof of Lemma 6. As in the proof of Lemma 5, we want to apply some concentration inequality to the operator
��1/2

�
b���1/2

�
, whose mean is exactly ��1/2

�
���1/2

�
. The proof is almost the same as Lemma 5. We start by

writing
�����1/2

�
(b���)��1/2

�

��� =
�����1/2

�
b���1/2

�
���1/2

�
���1/2

�

���

=

�����
1

n

nX

i=1

h
(��1/2

�
rKxi)⌦ (��1/2

�
rKxi)���1/2

�
���1/2

�

i����� .

In order to use Proposition 8, we bound for i 2 J1, nK,
���(��1/2

�
rKxi)⌦ (��1/2

�
rKxi)���1/2

�
���1/2

�

��� 6
�����1/2

�
rKxi

���
2

H

+
�����1/2

�
���1/2

�

���

6 2F1(�),

and, for the second order moment,

E
⇣

(��1/2
�

rKxi)⌦ (��1/2
�

rKxi)���1/2
�

���1/2
�

⌘2�

= E
�����1/2

�
rKxi

���
2

H

(��1/2
�

rKxi)⌦ (��1/2
�

rKxi)

�
���1/2

�
���1

�
���1/2

�

4 F1(�)��1/2
�

���1/2
�

.

We conclude by some estimation of � = log
2Tr(���1

� )

k�
�1
� �k�

. Since Tr(���1
�

) 6 ��1Tr� and for � 6 k�k,
����1

�
�
�� >

1/2, it follow that � 6 log 4Tr�
��

. The conclusion then follows from (13).

Lemma 7 (Bounding operators). For any � > 0, � 2 (0, 1), and n > 15F1(�) log 4Tr�
��

,
���b��1/2

�
�1/2

�

���
2
6 2,

with probability at least 1� �.
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The proof of this result relies on the following lemma (see proof in [Rudi and Rosasco, 2017, Proposition 8]).
Lemma 8. Let H be a separable Hilbert space, A and B two bounded self-adjoint positive linear operators on H

and � > 0. Then
���(A+ �I)�1/2(B + �I)1/2

��� 6 (1� �)�1/2,

with � = �max

�
(B + �I)�1/2(B �A)(B + �I)�1/2

�
< 1, where �max(O) is the largest eigenvalue of the self-adjoint

operator O.

We can now write the proof of Lemma 7.

Proof of Lemma 7. Thanks to Lemma 8, we see that
���b��1/2

�
�1/2

�

���
2
6
⇣
1� �max

⇣
��1/2

�
(b���)��1/2

�

⌘⌘�1
,

and as
�����1/2

�
(b���)��1/2

�

��� < 1, we have:

���b��1/2
�

�1/2
�

���
2
6
⇣
1�

�����1/2
�

(b���)��1/2
�

���
⌘�1

.

We can then apply the bound of Lemma 6 to obtain that, if � is such that 4F1(�) log 4Tr�
��

3n +
q

2 F1(�) log 4Tr�
��

n
6 1

2 ,

then
���b��1/2

�
�1/2

�

���
2
6 2 with probability 1� �. The condition on � is satisfied when n > 15F1(�) log 4Tr�

��
.

D Calculation of the bias in the Gaussian case

We can derive a rate of convergence when µ is a one-dimensional Gaussian. Hence, we consider the one-dimensional
distribution dµ as the normal distribution with mean zero and variance 1/(4a). Let b > 0, we consider also the

following approximation P
�1


= inf
f2H

Eµ(f 02) + kfk2
H

varµ(f)
where H is the RKHS associated with the Gaussian kernel

exp(�b(x� y)2). Our goal is to study how P tends to P when  tends to zero.
Proposition 9 (Rate of convergence for the bias in the one-dimensional Gaussian case). If dµ is a one-dimensional
Gaussian of mean zero and variance 1/(4a) there exists A > 0 such that, if � 6 A, it holds

P
�1 6 P

�1
�

6 P
�1(1 +B� ln2(1/�)), (14)

where A and B depend only on the constant a.

We will show it by considering a specific orthonormal basis of L2(µ), where all operators may be expressed simply
in closed form.

D.1 An orthonormal basis of L2(µ) and H

We begin by giving an explicit a basis of L2(µ) which is also a basis of H.
Proposition 10 (Explicit basis). We consider

fi(x) =
⇣ c
a

⌘1/4�
2ii!
��1/2

e�(c�a)x2

Hi

⇣p
2cx
⌘
,

where Hi is the i-th Hermite polynomial, and c =
p
a2 + 2ab. Then,

• (fi)i>0 is an orthonormal basis of L2(µ);

• f̃i = �1/2
i

fi forms an orthonormal basis of H, with �i =
q

2a
a+b+c

⇣
b

a+b+c

⌘i
.
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Proof. We can check that this is indeed an orthonormal basis of L2(µ):

hfk, fmiL2(µ) =

Z

R

1p
2⇡/4a

e�2ax2
⇣ c
a

⌘1/2
e�2(c�a)x2�

2kk!
��1/2�

2mm!
��1/2

Hk(
p

2cx)Hm(
p

2cx)dx

=
p
2c/⇡

�
2kk!

��1/2�
2mm!

��1/2
Z

R
e�2cx2

Hk(
p

2cx)Hm(
p

2cx)dx

= �mk,

using properties of Hermite polynomials. Considering the integral operator T : L2(µ) ! L2(µ), defined as
Tf(y) =

R
R e�b(x�y)2f(x)dµ(x), we have:

Tfk(y) =
⇣ c
a

⌘1/4�
2kk!

��1/2
Z

R
e�(c�a)x2

Hk(
p

2cx)
1p

2⇡/4a
e�2ax2

e�b(x�y)2dx

=
⇣ c
a

⌘1/4�
2kk!

��1/2
e�by

2 1p
2⇡/4a

1
p
2c

Z

R
e�(a+b+c)x2

Hk(
p

2cx)e2bxy
p

2cdx

=
⇣ c
a

⌘1/4�
2kk!

��1/2
e�by

2 1p
2⇡/4a

1
p
2c

Z

R
e�

a+b+c
2c x

2

Hk(x)e
2b

p
2c

xydx.

We consider u such that 1
1�u2 = a+b+c

2c , that is, 1� 2c
a+b+c

= a+b�c

a+b+c
= b

2

(a+b+c)2 = u2, which implies that u = b

a+b+c
;

and then 2u
1�u2 = b

c
.

Thus, using properties of Hermite polynomials (see Section D.4), we get:

Tfk(y) =
⇣ c
a

⌘1/4�
2kk!

��1/2
e�by

2 1p
2⇡/4a

1
p
2c

p
⇡
p
1� u2Hk(

p

2cy) exp

✓
u2

1� u2
2cy2

◆
uk

=
⇣ c
a

⌘1/4�
2kk!

��1/2 1p
2⇡/4a

1
p
2c

p
⇡

p
2c

p
a+ b+ c

Hk(
p

2cy) exp(buy2 � by2)uk

=
⇣ c
a

⌘1/4�
2kk!

��1/2
p
2a

p
a+ b+ c

Hk(
p

2cy) exp
⇣
� by2 + 2cy2

✓
�1 +

1

1� u2

◆⌘
uk

=

p
2a

p
a+ b+ c

⇣ b

a+ b+ c

⌘k
fk(y)

= �kfk(y).

This implies that (f̃i) is an orthonormal basis of H.

We can now rewrite our problem in this basis, which is the purpose of the following lemma:
Lemma 9 (Reformulation of the problem in the basis). Let (↵i)i 2 `2(N). For f =

P
1

i=0 ↵ifi, we have:

• kfk2
H

=
1X

i=0

↵2
i
��1
i

= ↵> Diag(�)�1↵;

• varµ(f(x)) =
1X

i=0

↵2
i
�
� 1X

i=0

⌘i↵i

�2
= ↵>(I � ⌘⌘>)↵;

• Eµf
0(x)2 =

1X

i=0

1X

j=0

↵i↵j(M
>M)ij = ↵>M>M↵,

where ⌘ is the vector of coefficients of 1
L2(µ)

and M the matrix of coordinates of the derivative operator in the
(fi) basis. The problem can be rewritten under the following form:

P
�1


= inf
↵

↵>(M>M + Diag(�)�1)↵

↵>(I � ⌘⌘>)↵
, (15)

where
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• 8k > 0, ⌘2k =
⇣ c
a

⌘1/4r 2a

a+ c

✓
b

a+ b+ c

◆k
p
(2k)!

2kk!
and ⌘2k+1 = 0

• 8i 2 N,
�
M>M

�
ii
=

1

c

�
2i(a2 + c2) + (a� c)2

�
and

�
M>M

�
i,i+2

=
1

c

⇣
(a2 � c2)

p
(i+ 1)(i+ 2)

⌘
.

Proof. Covariance operator. Since (fi) is orthonormal for L2(µ), we only need to compute for each i,
⌘i = Eµfi(x), as follows (and using properties of Hermite polynomials):

⌘i = h1, fiiL2(µ) =
⇣ c
a

⌘1/4�
2ii!
��1/2

Z

R
e�(c�a)x2

Hi(
p

2cx)e�2ax2p
2a/⇡dx

=
⇣ c
a

⌘1/4�
2ii!
��1/2p

a/(⇡c)

Z

R
e�

a+c
2c x

2

Hi(x)dx

=
⇣ c
a

⌘1/4�
2ii!
��1/2

r
2a

a+ c

⇣c� a

c+ a

⌘i/2
Hi(0)i

i.

This is only non-zero for i even, and

⌘2k =
⇣ c
a

⌘1/4�
22k(2k)!

��1/2
r

2a

a+ c

⇣c� a

c+ a

⌘k
H2k(0)(�1)k

=
⇣ c
a

⌘1/4�
22k(2k)!

��1/2
r

2a

a+ c

⇣c� a

c+ a

⌘k (2k)!
k!

=
⇣ c
a

⌘1/4r 2a

a+ c

⇣c� a

c+ a

⌘kp(2k)!

2kk!

=
⇣ c
a

⌘1/4r 2a

a+ c

⇣ b

a+ b+ c

⌘kp(2k)!

2kk!
.

Note that we must have
P

1

i=0 ⌘
2
i
= k1k2

L2(µ) = 1, which can indeed be checked —the shrewd reader will recognize
the entire series development of (1� z2)�1/2.

Derivatives. We have, using the recurrence properties of Hermite polynomials:

f 0

i
=

a� c
p
c

p
i+ 1fi+1 +

a+ c
p
c

p

ifi�1,

for i > 0, while for i = 0, f 0

0 = a�c
p
c
f1. Thus, if M is the matrix of coordinates of the derivative operator in the

basis (fi), we have Mi+1,i =
a�c
p
c

p
i+ 1 and Mi�1,i =

a+c
p
c

p
i. This leads to

hf 0

i
, f 0

j
iL2(µ) = (M>M)ij .

We have

(M>M)ii = hf 0

i
, f 0

i
iL2(µ)

=
1

c

⇣
(i+ 1)(a� c)2 + i(a+ c)2

⌘

=
1

c

⇣
2i(a2 + c2) + (a� c)2

⌘
for i > 0,

(M>M)i,i+2 = hf 0

i
, f 0

i+2iL2(µ)

=
1

c

⇣
(a2 � c2)

p
(i+ 1)(i+ 2)

⌘
for i > 0.

Note that we have M⌘ = 0 as these are the coordinates of the derivative of the constant function (this can be
checked directly by computing (M⌘)2k+1 = M2k+1,2k⌘2k +M2k+1,2k+2⌘2k+2).
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D.2 Unregularized solution

Recall that we want to solve P
�1 = inf

f

Eµf 0(x)2

varµ(f(x))
,. The following lemma characterizes the optimal solution

completely.
Lemma 10 (Optimal solution for one dimensional Gaussian). We know that the solution of the Poincaré problem
is P

�1 = 4a which is attained for f⇤(x) = x. The decomposition of f⇤ is the basis (fi)i is given by f⇤ =
X

i>0

⌫ifi,

where 8k > 0, ⌫2k = 0 and ⌫2k+1 =
⇣

c

a

⌘1/4p
a

2c

�
2c
a+c

�3/2� b

a+b+c

�kp(2k+1)!

2kk! .

Proof. We thus need to compute:

⌫i = hf⇤, fiiL2(µ)

=
⇣ c
a

⌘1/4�
2ii!
��1/2

Z

R
e�(c�a)x2

Hi(
p

2cx)e�2ax2p
2a/⇡xdx

=
⇣ c
a

⌘1/4�
2ii!
��1/2p

2a/⇡

Z

R
e�(c+a)x2

Hi(
p

2cx)xdx

=
⇣ c
a

⌘1/4�
2ii!
��1/2p

2a/⇡
1

2c

Z

R
e�

c+a
2c x

2

Hi(x)xdx

=
⇣ c
a

⌘1/4�
2ii!
��1/2p

2a/⇡
1

4c

Z

R
e�

c+a
2c x

2

[Hi+1(x) + 2iHi�1(x)]dx

=
⇣ c
a

⌘1/4�
2ii!
��1/2p

2a/⇡

p
⇡

4c

r
2c

a+ c

⇣�c� a

c+ a

�(i+1)/2
Hi+1(0)i

i+1

+ 2i
�c� a

c+ a

�(i�1)/2
Hi�1(0)i

i�1
⌘
,

which is only non-zero for i odd. We have:

⌫2k+1 =
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
2a/⇡

p
⇡

4c

r
2c

a+ c

⇣�c� a

c+ a

�k+1
H2k+2(0)(�1)k+1

+ 2(2k + 1)
�c� a

c+ a

�k
H2k(0)(�1)k

⌘

=
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
2a/⇡

p
⇡

4c

r
2c

a+ c

⇣�c� a

c+ a

�k+1
H2k+2(0)(�1)k+1

+ 2(2k + 1)
�c� a

c+ a

�k
H2k(0)(�1)k

⌘

=
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
2a/⇡

p
⇡

4c

r
2c

a+ c

�c� a

c+ a

�k
(�1)k

⇣�c� a

c+ a

�
2(2k + 1)H2k(0) + 2(2k + 1)H2k(0)

⌘

=
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
2a/⇡

p
⇡

4c

r
2c

a+ c

�c� a

c+ a

�k
(�1)k2(2k + 1)H2k(0)

2c

c+ a

=
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
a

1

c
p
2

� 2c

a+ c

�3/2�c� a

c+ a

�k
(�1)k(2k + 1)H2k(0)

=
⇣ c
a

⌘1/4�
22k+1(2k + 1)!

��1/2p
a

1

c
p
2

� 2c

a+ c

�3/2�c� a

c+ a

�k
(2k + 1)

(2k)!

k!

=
⇣ c
a

⌘1/4pa

2c

� 2c

a+ c

�3/2�c� a

c+ a

�k
p
(2k + 1)!

2kk!

=
⇣ c
a

⌘1/4pa

2c

� 2c

a+ c

�3/2� b

a+ b+ c

�k
p

(2k + 1)!

2kk!
.
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Note that we have:

µ>⌫ = h1, f⇤iL2(µ) = 0

k⌫k2 = kf⇤k
2
L2(µ) =

1

4a
M>M⌫ = 4a⌫.

The first equality if obvious from the odd/even sparsity patterns. The third one can be checked directly. The
second one can probably be checked by another shrewd entire series development.

If we had ⌫> Diag(�)�1⌫ finite, then we would have

P
�1 6 P

�1


6 P
�1
�
1 +  · ⌫> Diag(�)�1⌫

�
,

which would very nice and simple. Unfortunately, this is not true (see below).

D.2.1 Some further properties for ⌫

We have: c�a

c+a
= b

a+b+c
, and the following equivalent

pp

k(2k/e)2k+1

2k
p

k(k/e)k
⇠

k
1/4+k+1/2

kk+1/2 ⇠ k1/4 (up to constants). Thus

|⌫22k+1�
�1
2k+1| 6

⇣ c
a

⌘1/2 a

c2
� 2c

a+ c

�3� b

a+ b+ c

�2k�2k�1

r
a+ b+ c

2a

p

k = ⇥(
p

k)

hence,

2m+1X

k=0

⌫2
k
��1
k

⇠ ⇥(m3/2).

Consequently, ⌫> Diag(�)�1⌫ = +1.

Note that we have the extra recursion

⌫k =
1

p
4c

⇥p
k + 1⌘k+1 +

p

k⌘k�1

⇤
.

D.3 Truncation

We are going to consider a truncated version ↵, of ⌫, with only the first 2m+ 1 elements. That is ↵k = ⌫k for
k 6 2m+ 1 and 0 otherwise.
Lemma 11 (Convergence of the truncation). Consider gm =

P
1

k=0 ↵kfk =
P2m+1

k=0 ⌫kfk, recall that u = b

a+b+c
.

For m > max{� 3
4 lnu

, 1
6c}, we have the following:

(i)
��k↵k2 � 1

4a

�� 6 Lmu2m

(ii) ↵>⌘ = 0

(iii)
��↵>M>M↵� 1

�� 6 Lm2u2m

(iv) ↵> Diag(�)�1↵ 6 Lm3/2,

where L depends only on a, b, c.

Proof. We show successively the four estimations.

(i) Let us calculate k↵k2. We have: k↵k2 � 1
4a = k↵k2 � k⌫k2 =

P
1

k=m+1 ⌫
2
2k+1. Recall that u = b

a+b+c
6 1, by

noting A =
�
c

a

�1/4 p
a

2c

�
2c
a+c

�3/2, we have

k↵k2 �
1

4a
= A2

1X

k=m+1

(2k + 1)!

(2kk!)2
u2k.
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Now by Stirling inequality:

(2k + 1)!

(2kk!)2
u2k 6 e (2k + 1)2k+1+1/2 e�(2k+1)

(
p
2⇡2kkk+1/2e�k)2

u2k

=

p
2

⇡

✓
1 +

1

2k

◆2k+1✓
k +

1

2

◆1/2

u2k.

6 4e

⇡

p

ku2k.

And for m > �
1

4 lnu
,

1X

m+1

p

ku2k 6
Z

1

m

p
xu2xdx

6
Z

1

m

xu2xdx

= u2m (1� 2m lnu)

(2 lnu)2

6 mu2m

ln(1/u)
.

Hence finally:

����k↵k
2
�

1

4a

���� 6
4A2e

⇡ ln(1/u)
mu2m.

(ii) is straightforward because of the odd/even sparsity of ⌫ and ⌘.

(iii) Let us calculate kM↵k2. We have:

kM↵k2 � 1 = kM↵k2 � kM⌫k2

=
X

k,j>m+1

⌫2k+1⌫2j+1

�
M>M

�
2k+1,2j+1

=
1X

k=m+1

⌫22k+1

�
M>M

�
2k+1,2k+1

+ 2
1X

k=m+1

⌫2k+1⌫2k+3

�
M>M

�
2k+1,2k+3

=
A2

c

1X

k=m+1

(2k + 1)!

(2kk!)2
�
2(2k + 1)(a2 + c2) + (a� c)2

�
u2k

�
2A2ab

c

1X

k=m+1

p
(2k + 1)!

(2kk!)

p
(2k + 3)!

(2k+1(k + 1)!)

p
(2k + 2)(2k + 3)u2k+1.

Let us call the two terms um and vm respectively. For the first term, when m > max{� 3
4 lnu

, 1
6c} a calculation as
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in (i) leads to:

|um| 6 24A2e(u2 + c2)

⇡c

Z
1

m

x
p
xu2xdx+

(a� c)2

c

�
k↵k2 � k⌫k2

�

6 24A2e(u2 + c2)

⇡c

Z
1

m

x2u2xdx�
4A2e

⇡ lnu
mu2m

= �
24A2e(u2 + c2)

⇡c

u2m(2m lnu(2m ln(u)� 2) + 2)

8 ln3(u)
�

4A2e

⇡ lnu
mu2m

6 �
12A2e(a2 + c2)

⇡c ln(u)
m2u2m

�
4A2e

⇡ lnu
mu2m

6 �
4A2e

⇡ lnu

✓
3(a2 + c2)

c
m+ 1

◆
mu2m

6 24A2ce

⇡ ln(1/u)
m2u2m.

and for the second term, applying another time Stirling inequality, we get:

p
(2k + 1)!

2kk!

p
(2k + 3)!

2k+1(k + 1)!
u2k+1 6 e1/2 (2k + 1)k+3/4 e�(k+1/2)

p
2⇡2kkk+1/2e�k

e1/2 (2k + 3)k+7/4 e�(k+3/2)

p
2⇡2k+1(k + 1)k+3/2e�(k+1)

u2k+1

6 (2k + 1)k+3/4

p
2⇡2kkk+1/2

(2k + 3)k+7/4

p
2⇡2k+1(k + 1)k+3/2

u2k+1

=

p
2

⇡

�
1 + 1

2k

�k+3/4 �
1 + 3

2k

�k+7/4

�
1 + 1

k

�k+3/2

p

ku2k+1

6
p
2

⇡

�
1 + 3

2k

�2k �
1 + 3

2k

�5/2
�
1 + 1

k

�k �
1 + 1

k

�3/2
p

ku2k+1

6
p
2

⇡

✓
1 +

3

2k

◆2k ✓
1 +

3

2k

◆5/2 p
ku2k+1

6 15e3

⇡

p

ku2k+1.

Hence, as
X

k>m+1

p

ku2k+1 6 �
mu2m+1

lnu
, we have |vm| 6 30A2abe3

⇡c ln(1/u)
mu2m.

(iv) Let us calculate ↵> Diag(�)�1↵. We have:
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↵> Diag(�)�1↵ =
mX

k=0

⌫22k+1�
�1
2k+1

= A2

r
bu

2a

mX

k=0

(2k + 1)!

(2kk!)2
u2ku�(2k+1)

= A2

r
b

2au

mX

k=0

(2k + 1)!

(2kk!)2

6 4A2e
p
b

⇡
p
2au

mX

k=0

p

k

6 8A2e
p
b

⇡
p
2au

m3/2.

(Final constant.) By taking L = max

(
4A2e

⇡ ln(1/u)
,
48A2ce

⇡ ln(1/u)
,
60A2abe3

⇡c ln(1/u)
,
8A2e

p
b

⇡
p
2au

)
, we have proven the lemma.

We can now state the principal result of this section:
Proposition 11 (Rate of convergence for the bias). If  6 min{a2, 1/5, u1/(3c)

} and such that ln(1/) 6 ln(1/u)
2aL ,

then

P
�1 6 P

�1


6 P
�1

✓
1 +

L

2 ln2(1/u)
 ln2(1/)

◆
. (16)

Proof. The first inequality P
�1 6 P

�1


is obvious. On the other side,

P
�1


= inf
�

�>(M>M + Diag(�)�1)�

�>(I � ⌘⌘>)�
6 ↵>(M>M + Diag(�)�1)↵

↵>(I � ⌘⌘>)↵
,

With the estimates of Lemma 11, we have for mu2m < 1
4aL :

P
�1


6 1 + Lm2u2m + Lm3/2

1
4a � Lmu2m

6 P
�1(1 + Lm2u2m + Lm3/2).

Let us take m = ln(1/)
2 ln(1/u) .Then

P
�1


6 P
�1(1 + L

ln2(1/)

4 ln2(1/u)
+ L

ln3/2(1/)

23/2 ln3/2(1/u)
)

6 P
�1

✓
1 + L

ln2(1/)

2 ln2(1/u)

◆
,

as soon as  6 a2. Note also that the condition mu2m < 1
4aL can be rewritten in terms of m as  ln(1/) < ln(1/u)

2aL .
The other conditions of Lemma 11 are  6 e�3/2

⇠ 0.22 and  6 u1/(3c)

D.4 Facts about Hermite polynomials

Orthogonality. We have: Z

R
e�x

2

Hk(x)Hm(x) = 2kk!
p
⇡�km.
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Recurrence relations. We have:
H 0

i
(x) = 2iHi�1(x),

and
Hi+1(x) = 2xHi(x)� 2iHi�1(x).

Mehler’s formula. We have:
1X

k=0

Hk(x)e�x
2
/2Hk(y)e�y

2
/2

2kk!
p
⇡

uk =
1
p
⇡

1
p
1� u2

exp
⇣ 2u

1 + u
xy �

u2

1� u2
(x� y)2 �

x2

2
�

y2

2

⌘
.

This implies that the functions x 7!
1

p
⇡

1
p
1�u2 exp

⇣
2u
1+u

xy� u
2

1�u2 (x�y)2� x
2

2 �
y
2

2

⌘
has coefficients Hk(y)e

�y2/2

p
2kk!

p
⇡

uk

in the orthonormal basis (x 7!
Hk(x)e

�x2/2

p
2kk!

p
⇡

) of L2(dx).

Thus
Z

R

1
p
⇡

1
p
1� u2

exp
⇣ 2u

1 + u
xy �

u2

1� u2
(x� y)2 �

x2

2
�

y2

2

⌘Hk(x)e�x
2
/2

p
2kk!

p
⇡

dx =
Hk(y)e�y

2
/2

p
2kk!

p
⇡

uk,

that is Z

R
exp

⇣ 2u

1 + u
xy �

u2

1� u2
(x� y)2 � x2

⌘
Hk(x)dx =

p
⇡
p
1� u2Hk(y)u

k.

This implies:

Z

R
exp

⇣ 2u

1� u2
xy �

x2

1� u2

⌘
Hk(x)dx =

p
⇡
p

1� u2Hk(y) exp(
u2

1� u2
y2)uk

For y = 0, we get Z

R
exp

⇣
�

x2

1� u2

⌘
Hk(x)dx =

p
⇡
p
1� u2Hk(0)u

k.

Another consequence is that

1X

k=0

Hk(x)Hk(y)

2kk!
p
⇡

uk =
1
p
⇡

1
p
1� u2

exp
⇣2u(1� u) + 2u2

1� u2
xy �

u2

1� u2
(x2 + y2)

⌘

=
1
p
⇡

1
p
1� u2

exp
⇣ 2u

1� u2
xy �

u

1� u2
(x2 + y2) +

u

1 + u
(x2 + y2)

⌘

=
1
p
⇡

1
p
1� u2

exp
⇣
�

u

1� u2
(x� y)2

⌘
exp

⇣ u

1 + u
(x2 + y2)

⌘

=
1
p
⇡

p
u

p
1� u2

exp
⇣
�

u

1� u2
(x� y)2

⌘ 1
p
u
exp

⇣ u

1 + u
(x2 + y2)

⌘
.

Thus, when u tends to 1, as a function of x, this tends to a Dirac at y times ey
2

.
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