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Abstract

Poincaré inequalities are ubiquitous in proba-
bility and analysis and have various applica-
tions in statistics (concentration of measure,
rate of convergence of Markov chains). The
Poincaré constant, for which the inequality
is tight, is related to the typical convergence
rate of diffusions to their equilibrium measure.
In this paper, we show both theoretically and
experimentally that, given sufficiently many
samples of a measure, we can estimate its
Poincaré constant. As a by-product of the esti-
mation of the Poincaré constant, we derive an
algorithm that captures a low dimensional rep-
resentation of the data by finding directions
which are difficult to sample. These direc-
tions are of crucial importance for sampling
or in fields like molecular dynamics, where
they are called reaction coordinates. Their
knowledge can leverage, with a simple con-
ditioning step, computational bottlenecks by
using importance sampling techniques.

1 Introduction

Sampling is a cornerstone of probabilistic modelling, in
particular in the Bayesian framework where statistical
inference is rephrased as the estimation of the poste-
rior distribution given the data [Robert, 2007, Murphy,
2012]: the representation of this distribution through
samples is both flexible, as most interesting quantities
can be computed from them (e.g., various moments
or quantiles), and practical, as there are many sam-
pling algorithms available depending on the various
structural assumptions made on the model. Beyond
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one-dimensional distributions, a large class of these
algorithms are iterative and update samples with a
Markov chain which eventually converges to the desired
distribution, such as Gibbs sampling or Metropolis-
Hastings (or more general Markov chain Monte-Carlo
algorithms [Gamerman and Lopes, 2006, Gilks et al.,
1995, Durmus and Moulines, 2017]) which are adapted
to most situations, or Langevin’s algorithm [Durmus
and Moulines, 2017, Raginsky et al., 2017, Welling and
Teh, 2011, Mandt et al., 2017, Lelièvre and Stoltz, 2016,
Bakry et al., 2014], which is adapted to sampling from
densities in Rd.

While these sampling algorithms are provably converg-
ing in general settings when the number of iterations
tends to infinity, obtaining good explicit convergence
rates has been a central focus of study, and is often
related to the mixing time of the underlying Markov
chain [Meyn and Tweedie, 2012]. In particular, for sam-
pling from positive densities in Rd, the Markov chain
used in Langevin’s algorithm can classically be related
to a diffusion process, thus allowing links with other
communities such as molecular dynamics [Lelièvre and
Stoltz, 2016]. The main objective of molecular dynam-
ics is to infer macroscopic properties of matter from
atomistic models via averages with respect to proba-
bility measures dictated by the principles of statistical
physics. Hence, it relies on high dimensional and highly
multimodal probabilistic models.

When the density is log-concave, sampling can be done
in polynomial time with respect to the dimension [Ma
et al., 2018, Durmus et al., 2017, Durmus and Moulines,
2017]. However, in general, sampling with generic algo-
rithms does not scale well with respect to the dimension.
Furthermore, the multimodality of the objective mea-
sure can trap the iterates of the algorithm in some
regions for long durations: this phenomenon is known
as metastability. To accelerate the sampling procedure,
a common technique in molecular dynamics is to re-
sort to importance sampling strategies where the target
probability measure is biased using the image law of the
process for some low-dimensional function, known as
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“reaction coordinate” or “collective variable”. Biasing by
this low-dimensional probability measure can improve
the convergence rate of the algorithms by several or-
ders of magnitude [Lelièvre et al., 2008, Lelièvre, 2013].
Usually, in molecular dynamics, the choice of a good re-
action coordinate is based on physical intuition on the
model but this approach has limitations, particularly
in the Bayesian context [Chopin et al., 2012]. There
have been efforts to numerically find these reaction
coordinates Gkeka [2019]. Computations of spectral
gaps by approximating directly the diffusion operator
work well in low-dimensional settings but scale poorly
with the dimension. One popular method is based
on diffusion maps [Coifman and Lafon, 2006, Coifman
et al., 2006, Rohrdanz et al., 2011], for which reac-
tion coordinates are built by approximating the entire
infinite-dimensional diffusion operator and selecting its
first eigenvectors.

In order to assess or find a reaction coordinate, it is
necessary to understand the convergence rate of diffu-
sion processes. We first introduce in Section 2 Poincaré
inequalities and Poincaré constants that control the
convergence rate of diffusions to their equilibrium. We
then derive in Section 3 a kernel method to estimate it
and optimize over it to find good low dimensional repre-
sentation of the data for sampling in Section 4. Finally
we present in Section 5 synthetic examples for which
our procedure is able to find good reaction coordinates.

Contributions. In this paper, we make the following
contributions:

• We show both theoretically and experimentally
that, given sufficiently many samples of a mea-
sure, we can estimate its Poincaré constant and
thus quantify the rate of convergence of Langevin
dynamics.

• By finding projections whose marginal laws have
the largest Poincaré constant, we derive an algo-
rithm that captures a low dimensional representa-
tion of the data. This knowledge of “difficult to
sample directions” can be then used to accelerate
dynamics to their equilibrium measure.

2 Poincaré Inequalities

2.1 Definition

We introduce in this part the main object of this paper
which is the Poincaré inequality [Bakry et al., 2014].
Let us consider a probability measure dµ on Rd which
has a density with respect to the Lebesgue measure.
Consider H1(µ) the space of functions in L2(µ) (i.e.,
which are square integrable) that also have all their

first order derivatives in L2, that is, H1(µ) = {f 2

L2(µ),
R
Rd f2dµ+

R
Rd krfk2dµ < 1}.

Definition 1 (Poincaré inequality and Poincaré con-
stant). The Poincaré constant of the probability mea-
sure dµ is the smallest constant Pµ such that for all
f 2 H1(µ) the following Poincaré inequality (PI)
holds:

Z

Rd

f(x)2dµ(x)�

✓Z

Rd

f(x)dµ(x)

◆2

6 Pµ

Z

Rd

krf(x)k2dµ(x). (1)

In Definition 1 we took the largest possible and the
most natural functional space H1(µ) for which all terms
make sense, but Poincaré inequalities can be equiva-
lently defined for subspaces of test functions H which
are dense in H1(µ). This will be the case when we de-
rive the estimator of the Poincaré constant in Section
3.
Remark 1 (A probabilistic formulation of the Poincaré
inequality.). Let X be a random variable distributed
according to the probability measure dµ. (PI) can be
reformulated as: for all f 2 H1(µ),

Varµ (f(X)) 6 Pµ Eµ

⇥
krf(X)k2

⇤
. (2)

Poincaré inequalities are hence a way to bound the
variance from above by the so-called Dirichlet energy
E
⇥
krf(X)k2

⇤
(see [Bakry et al., 2014]).

2.2 Consequences of (PI): convergence rate
of diffusions

Poincaré inequalities are ubiquitous in various domains
such as probability, statistics or partial differential
equations (PDEs). For example, in PDEs they play
a crucial role for showing the existence of solutions
of Poisson equations or Sobolev embeddings [Gilbarg
and Trudinger, 2001], and they lead in statistics to
concentration of measure results [Gozlan, 2010]. In
this paper, the property that we are the most inter-
ested in is the convergence rate of diffusions to their
stationary measure dµ. In this section, we consider
a very general class of measures: dµ(x) = e�V (x)dx
(called Gibbs measures with potential V ), which allows
for a clearer explanation. Note that all measures ad-
mitting a positive density can be written like this and
are typical in Bayesian machine learning [Robert, 2007]
or molecular dynamics [Lelièvre and Stoltz, 2016]. Yet,
the formalism of this section can be extended to more
general cases [Bakry et al., 2014].

Let us consider the overdamped Langevin diffusion
in Rd, that is the solution of the following stochastic
differential equation (SDE):

dXt = �rV (Xt)dt+
p

2 dBt, (3)
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where (Bt)t>0 is a d-dimensional Brownian motion.
It is well-known [Bakry et al., 2014] that the law of
(Xt)t>0 converges to the Gibbs measure dµ and that
the Poincaré constant controls the rate of convergence
to equilibrium in L2(µ). Let us denote by Pt(f) the
Markovian semi-group associated with the Langevin
diffusion (Xt)t>0. It is defined in the following way:
Pt(f)(x) = E[f(Xt)|X0 = x]. This semi-group satisfies
the dynamics

d

dt
Pt(f) = LPt(f),

where L� = �L� � rV · r� is a differential opera-
tor called the infinitesimal generator of the Langevin
diffusion (3) (�L denotes the standard Laplacian on
Rd). Note that by integration by parts, the semi-
group (Pt)t>0 is reversible with respect to dµ, that
is: �

R
f(Lg) dµ =

R
rf ·rg dµ = �

R
(Lf)g dµ. Let

us now state a standard convergence theorem (see
e.g. [Bakry et al., 2014, Theorem 2.4.5] ), which proves
that Pµ is the characteristic time of the exponential
convergence of the diffusion to equilibrium in L2(µ).
Theorem 1 (Poincaré and convergence to equilibrium).
With the notation above, the following statements are
equivalent:

(i) µ satisfies a Poincaré inequality with constant Pµ;

(ii) For all f smooth and compactly supported,
Varµ(Pt(f)) 6 e�2t/PµVarµ(f) for all t > 0.

Proof. The proof is standard. Note that upon replacing
f by f �

R
fdµ, one can assume that

R
fdµ = 0. Then,

for all t > 0,

d

dt
Varµ(Pt(f)) =

d

dt

Z
(Pt(f))

2dµ

= 2

Z
Pt(f)(LPt(f))dµ

= �2

Z
krPt(f)k

2dµ (⇤)

Let us assume (i). With equation (⇤), we have

d

dt
Varµ(Pt(f)) = �2

Z
krPt(f)k

2dµ

6 �2P�1
µ

Z
(Pt(f))

2dµ

= �2P�1
µ

Varµ(Pt(f)).

The proof is then completed by using Grönwall’s in-
equality.

Let us assume (ii). We write, for t > 0,

(Varµ(Pt(f))�Varµ(f))

t
6 (e�2t/Pµ � 1)Varµ(f)

t
.

By letting t go to 0 and using equation (⇤),

2P�1
µ

Varµ(f) 6
d

dt
Varµ(Pt(f))t=0 = 2

Z
krfk2dµ,

which shows the converse implication.

Remark 2. Let f be a centered eigenvector of �L with
eigenvalue � 6= 0. By the Poincaré inequality,

Z
f2dµ 6 Pµ

Z
krfk2dµ = Pµ

Z
f(�Lf)dµ

= �Pµ

Z
f2dµ,

from which we deduce that every non-zero eigenvalue of
�L is larger that 1/Pµ. The best Poincaré constant is
thus the inverse of the smallest non zero eigenvalue of
�L. The finiteness of the Poincaré constant is therefore
equivalent to a spectral gap property of �L. Similarly,
a discrete space Markov chain with transition matrix
P converges at a rate determined by the spectral gap of
I � P .

There have been efforts in the past to estimate spectral
gaps of Markov chains [Hsu et al., 2015, Levin and
Peres, 2016, Qin et al., 2019, Wolfer and Kontorovich,
2019, Combes and Touati, 2019] but these have been
done with samples from trajectories of the dynamics.
The main difference here is that the estimation will
only rely on samples from the stationary measure.

Poincaré constant and sampling. In high dimen-
sional settings (in Bayesian machine learning [Robert,
2007]) or molecular dynamics [Lelièvre and Stoltz, 2016]
where d can be large – from 100 to 107), one of the
standard techniques to sample dµ(x) = e�V (x)dx is to
build a Markov chain by discretizing in time the over-
damped Langevin diffusion (3) whose law converges
to dµ. According to Theorem 1, the typical time to
wait to reach equilibrium is Pµ. Hence, the larger the
Poincaré constant of a probability measure dµ is, the
more difficult the sampling of dµ is. Note also that V
need not be convex for the Markov chain to converge.

2.3 Examples

Gaussian distribution. For the Gaussian mea-
sure on Rd of mean 0 and variance 1: dµ(x) =

1
(2⇡)d/2

e�kxk
2
/2dx, it holds for all f smooth and com-

pactly supported,

Varµ(f) 6
Z

Rd

krfk2dµ,

and one can show that Pµ = 1 is the optimal Poincaré
constant (see [Chernoff, 1981]). More generally, for
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a Gaussian measure with covariance matrix ⌃, the
Poincaré constant is the spectral radius of ⌃.

Other examples of analytically known Poincaré con-
stant are 1/d for the uniform measure on the unit
sphere in dimension d [Ledoux, 2014] and 4 for the ex-
ponential measure on the real line [Bakry et al., 2014].
There also exist various criteria to ensure the existence
of (PI). We will not give an exhaustive list as our
aim is rather to emphasize the link between sampling
and optimization. Let us however finish this part with
particularly important results.

A measure of non-convexity. Let dµ(x) =
e�V (x)dx. It has been shown in the past decades that
the “more convex” V is, the smaller the Poincaré con-
stant is. Indeed, if V is ⇢-strongly convex, then the
Bakry-Emery criterion [Bakry et al., 2014] tells us that
Pµ 6 1/⇢. If V is only convex, it has been shown
that dµ satisfies also a (PI) (with a possibly very large
Poincaré constant) [Ravindran et al., 1995, Bobkov,
1999]. Finally, the case where V is non-convex is ex-
plored in detail in a one-dimensional setting and it is
shown that for potentials V with an energy barrier
of height h between two wells, the Poincaré constant
explodes exponentially with respect the height h [Menz
and Schlichting, 2014]. In that spirit, the Poincaré
constant of dµ(x) = e�V (x)dx can be a quantitative
way to quantify how multimodal the distribution dµ
is and hence how non-convex the potential V is [Jain
and Kar, 2017, Raginsky et al., 2017].

3 Statistical Estimation of the
Poincaré Constant

The aim of this section is to provide an estimator of the
Poincaré constant of a measure µ when we only have
access to n samples of it, and to study its convergence
properties. More precisely, given n independent and
identically distributed (i.i.d.) samples (x1, . . . , xn) of
the probability measure dµ, our goal is to estimate Pµ.
We will denote this estimator (function of (x1, . . . , xn))
by the standard notation bPµ.

3.1 Reformulation of the problem in a
reproducing kernel Hilbert Space

Definition and first properties. Let us suppose
here that the space of test functions of the (PI), H, is
a reproducing kernel Hilbert space (RKHS) associated
with a kernel K on Rd [Schölkopf and Smola, 2002,
Shawe-Taylor and Cristianini, 2004]. This has two
important consequences:

1. H is the linear function space H =
span{K(·, x), x 2 Rd

}, and in particular,

for all x 2 Rd, the function y 7! K(y, x) is an
element of H that we will denote by Kx.

2. The reproducing property: 8f 2 H and 8x 2 Rd,
f(x) = hf,K(·, x)iH. In other words, function
evaluations are equal to dot products with canoni-
cal elements of the RKHS.

We make the following mild assumptions on the RKHS:
Ass. 1. The RKHS H is dense in H1(µ).

Note that this is the case for most of the usual kernels:
Gaussian, exponential [Micchelli et al., 2006]. As (PI)
involves derivatives of test functions, we will also need
some regularity properties of the RKHS. Indeed, to
represent rf in our RKHS we need a partial derivative
reproducing property of the kernel space.
Ass. 2. K is a Mercer kernel and K 2 C2(Rd

⇥Rd).

Let us denote by @i = @xi the partial derivative oper-
ator with respect to the i-th component of x. It has
been shown [Zhou, 2008] that under assumption (Ass.
2), 8i 2 J1, dK, @iKx 2 H and that a partial derivative
reproducing property holds true: 8f 2 H and 8x 2 Rd,
@if(x) = h@iKx, fiH. Hence, thanks to assumption
(Ass. 2), rf is easily represented in the RKHS. We
also need some boundedness properties of the kernel.
Ass. 3. K is a kernel such that 8x 2 Rd, K(x, x) 6
K and1

krKxk
2 6 Kd, where krKxk

2 :=P
d

i=1h@iKx, @iKxi =
P

d

i=1
@
2
K

@xi@yi (x, x) (see calcula-
tions below), x and y standing respectively for the first
and the second variables of (x, y) 7! K(x, y).

The equality mentioned in the expression of krKxk
2

arises from the following computation: @iKy(x) =
h@iKy,Kxi = @yiK(x, y) and we can write that
for all x, y 2 Rd, h@iKx, @iKyi = @xi (@iKy(x)) =
@xi@yiK(x, y). Note that, for example, the Gaussian
kernel satisfies (Ass. 1), (Ass. 2), (Ass. 3).

A spectral point of view. Let us define the follow-
ing operators from H to H:

⌃ = E [Kx ⌦Kx] , � = E [rKx ⌦d rKx] ,

and their empirical counterparts,

b⌃ =
1

n

nX

i=1

Kxi ⌦Kxi , b� =
1

n

nX

i=1

rKxi ⌦d rKxi ,

where ⌦ is the standard tensor product: 8f, g, h 2 H,
(f ⌦ g)(h) = hg, hi

H
f and ⌦d is defined as follows:

8f, g 2 H
d and h 2 H, (f ⌦d g)(h) =

P
d

i=1hgi, hiHfi.
1The subscript d in Kd accounts for the fact that this

quantity is expected to scale linearly with d (as is the case
for the Gaussian kernel).
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Proposition 1 (Spectral characterization of the
Poincaré constant). Suppose that assumptions (Ass.
1), (Ass. 2), (Ass. 3) hold true. Then the Poincaré
constant Pµ is the maximum of the following Rayleigh
ratio:

Pµ = sup
f2H\Ker(�)

hf, Cf iH

hf,�fiH
=

�����1/2C��1/2
��� , (4)

with k · k the operator norm on H and C = ⌃ �m ⌦

m where m =
R
Rd Kxdµ(x) 2 H is the covariance

operator, considering ��1 as the inverse of � restricted
to (Ker(�))?.

Note that C and � are symmetric positive semi-definite
trace-class operators (see Appendix C.2). Note also
that Ker(�) is the set of constant functions, which sug-
gests introducing H0 := (Ker(�))? = H\L2

0(µ), where
L2
0(µ) is the space of L2(µ) functions with mean zero

with respect to µ. Finally note that Ker(�) ⇢ Ker(C)
(see Section A of the Appendix). With the characteri-
zation provided by Proposition 1, we can easily define
an estimator of the Poincaré constant bPµ, following
standard regularization techniques from kernel meth-
ods [Schölkopf and Smola, 2002, Shawe-Taylor and
Cristianini, 2004, Fukumizu et al., 2007].

Definition 2. The estimator bPn,�

µ
of the Poincaré

constant is the following:

bPn,�

µ
:= sup

f2H\Ker(�)

hf, bCf iH

hf, (b�+ �I)fiH

=
���b��1/2

�
bC b��1/2

�

��� , (5)

with bC = b⌃� bm⌦ bm and where bm = 1
n

P
n

i=1 Kxi . bC is
the empirical covariance operator and b�� = b� + �I
is a regularized empirical version of the operator �
restricted to (Ker(�))? as in Proposition 1.

Note that regularization is necessary as the nullspace
of b� is no longer included in the nullspace of bC so
that the Poincaré constant estimates blows up when
� ! 0. The problem in Equation (5) has a natural
interpretation in terms of Poincaré inequality as it
corresponds to a regularized (PI) for the empirical
measure bµn = 1

n

P
n

i=1 �xi associated with the i.i.d.
samples x1, . . . , xn from dµ. To alleviate the notation,
we will simply denote the estimator by bPµ until the
end of the paper.

3.2 Statistical consistency of the estimator

We show that, under some assumptions and by choosing
carefully � as a function of n, the estimator bPµ is
statistically consistent, i.e., almost surely:

bPµ

n!1
����! Pµ.

As we regularized our problem, we prove the conver-
gence in two steps: first, the convergence of bPµ to the
regularized problem P

�

µ
= sup

f2H\{0}
hf,Cf i

hf,(�+�I)fi =

k��1/2
�

C��1/2
�

k, which corresponds to controlling the
statistical error associated with the estimator bPµ (vari-
ance); second, the convergence of P�

µ
to Pµ as � goes

to zero which corresponds to the bias associated with
the estimator bPµ. The next result states the statistical
consistency of the estimator when � is a sequence going
to zero as n goes to infinity (typically as an inverse
power of n).
Theorem 2 (Statistical consistency). Assume that
(Ass. 1), (Ass. 2), (Ass. 3) hold true and that the
operator ��1/2C��1/2 is compact on H. Let (�n)n2N
be a sequence of positive numbers such that �n ! 0
and �n

p
n ! +1. Then, almost surely,

bPµ

n!1
����! Pµ.

As already mentioned, the proof is divided into two
steps: the analysis of the statistical error for which we
have an explicit rate of convergence in probability (see
Proposition 2 below) and which requires n�1/2/�n ! 0,
and the analysis of the bias for which we need �n ! 0
and the compactness condition (see Proposition 3). No-
tice that the compactness assumption in Proposition 3
and Theorem 2 is stronger than (PI). Indeed, it can
be shown that satisfying (PI) is equivalent to having
the operator ��1/2C��1/2 bounded whereas to have
convergence of the bias we need compactness. Note also
that �n = n�1/4 matches the two conditions stated in
Theorem 2 and is the optimal balance between the rate
of convergence of the statistical error (of order 1

�
p
n
,

see Proposition 2) and of the bias we obtain in some
cases (of order �, see Section B of the Appendix). Note
that the rates of convergence do not depend on the
dimension d of the problem which is a usual strength
of kernel methods and differ from local methods like
diffusion maps Coifman and Lafon [2006], Hein et al.
[2007].

For the statistical error term, it is possible to quan-
tify the rate of convergence of the estimator to the
regularized Poincaré constant as shown below.
Proposition 2 (Analysis of the statistical error). Sup-
pose that (Ass. 1), (Ass. 2), (Ass. 3) hold true.
For any � 2 (0, 1/3), and � > 0 such that � 6 k�k

and any integer n > 15Kd
�

log 4Tr�
��

, with probability at
least 1� 3�,

��� bPµ � P
�

µ

��� 6 8K

�
p
n
log(2/�) + o

✓
1

�
p
n

◆
. (6)

Note that in Proposition 2 we are only interested in the
regime where �

p
n is large. Lemmas 5 and 6 of the Ap-

pendix give explicit and sharper bounds under refined
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hypotheses on the spectra of C and �. Recall also that
under assumption (Ass. 3), C and � are trace-class
operators (as proved in the Appendix, Section C.2) so
that k�k and Tr(�) are indeed finite. Finally, remark
that (6) implies the almost sure convergence of the
statistical error by applying the Borel-Cantelli lemma.
Proposition 3 (Analysis of the bias). Assume that
(Ass. 1), (Ass. 2), (Ass. 3) hold true, and that
the bounded operator ��1/2C��1/2 is compact on H.
Then,

lim
�!0

P
�

µ
= P.

As said above the compactness condition (similar to
the one used for convergence proofs of kernel Canonical
Correlation Analysis [Fukumizu et al., 2007]) is stronger
than satisfying (PI). The compactness condition adds
conditions on the spectrum of ��1/2C��1/2: it is
discrete and accumulates at 0. We give more details on
this condition in Section B of the Appendix and derive
explicit rates of convergence under general conditions.
We derive also a rate of convergence for more specific
structures (Gaussian case or under an assumption on
the support of µ) in Sections B and D of the Appendix.

4 Learning a Reaction Coordinate

If the measure µ is multimodal, the Langevin dynam-
ics (3) is trapped for long times in certain regions
(modes) preventing it from efficient space exploration.
This phenomenon is called metastability and is respon-
sible for the slow convergence of the diffusion to its
equilibrium [Lelièvre, 2013, Lelièvre et al., 2008]. Some
efforts in the past decade [Lelièvre, 2015] have focused
on understanding this multimodality by capturing the
behavior of the dynamics at a coarse-grained level,
which often have a low-dimensional nature. The aim of
this section is to take advantage of the estimation of the
Poincaré constant to give a procedure to unravel these
dynamically meaningful slow variables called reaction
coordinate.

4.1 Good Reaction Coordinate

From a numerical viewpoint, a good reaction coor-
dinate can be defined as a low dimensional function
⇠ : Rd

! Rp (p ⌧ d) such that the family of con-
ditional measures (µ(·|⇠(x) = r))

z2Rp are “less multi-
modal” than the measure dµ. This can be fully for-
malized in particular in the context of free energy
techniques such as the adaptive biasing force method,
see for example Lelièvre et al. [2008]. For more details
on mathematical formalizations of metastability, we
also refer to Lelièvre [2013]. The point of view we will
follow in this work is to choose ⇠ in order to maximize

the Poincaré constant of the pushforward distribution
⇠ ⇤ µ. The idea is to capture in ⇠ ⇤ µ the essential
multimodality of the original measure, in the spirit of
the two scale decomposition of Poincaré or logarithmic
Sobolev constant inequalities [Lelièvre, 2009, Menz and
Schlichting, 2014, Otto and Reznikoff, 2007].

4.2 Learning a Reaction Coordinate

Optimization problem. Let us assume in this sub-
section that the reaction coordinate is an orthogonal
projection onto a linear subspace of dimension p. Hence
⇠ can be represented by 8x 2 Rd, ⇠(x) = Ax with
A 2 S

p,d where S
p,d = {A 2 Rp⇥d s. t. AA> = Ip} is

the Stiefel manifold [Edelman et al., 1998]. As discussed
in Section 4.1, to find a good reaction coordinate we
look for ⇠ for which the Poincaré constant of the push-
forward measure ⇠ ⇤ µ is the largest. Given n samples,
let us define the matrix X = (x1, . . . , xn)> 2 Rn⇥d. We
denote by bPX the estimator of the Poincaré constant
using the samples (x1, . . . , xn). Hence bPAX> defines an
estimator of the Poincaré constant of the pushforward
measure ⇠ ⇤ µ. Our aim is to find argmax

A2Sp,d

bPAX> .

Random features. One computational issue with
the estimation of the Poincaré constant is that
building bC and b� requires respectively construct-
ing n ⇥ n and nd ⇥ nd matrices. Random fea-
tures [Rahimi and Recht, 2008] avoid this problem
by building explicitly features that approximate a
translation invariant kernel K(x, x0) = K(x � x0).
More precisely, let M be the number of random fea-
tures, (wm)16m6M be random variables independently
and identically distributed according to P(dw) =R
Rd e�iw>

�K(�)d� dw and (bm)16m6M be indepen-
dently and identically distributed according to the uni-
form law on [0, 2⇡], then the feature vector �M (x) =q

2
M

�
cos(w>

1 x+ b1), . . . , cos(w>

M
x+ bM )

�>
2 RM

satisfies K(x, x0) ⇡ �M (x)>�M (x0). Therefore, ran-
dom features allow to approximate bC and b� by M⇥M
matrices bCM and b�M respectively. Finally, when these
matrices are constructed using the projected samples,
i.e.

�
cos(w>

m
Axi + bm)

�
mM; in

, we denote them by
bCM

A
and b�M

A
respectively. Hence, the problem reads

argmax
A2Sp,d

bPAX> = argmax
A2Sp,d

max
v2RM\{0}

F (A, v), (7)

where F (A, v) := v
> bCM

A v

v>(b�M
A +�I)v

.

Algorithm. To solve the non-concave optimization
problem (7), our procedure is to do one step of non-
Euclidean gradient descent to update A (gradient de-
scent in the Stiefel manifold) and one step by solving
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the generalized eigenvalue problem to update v. More
precisely, the algorithm reads:

Result. Best linear Reaction Coordinate: A⇤ 2 S
d,p

A0 random matrix in S
d,p, ⌘t > 0 step-size

for t = 0, . . . , T � 1 do
(i) Solve generalized largest eigenvalue problem
with matrices bCM

At
and b�M

At
to get v⇤(At):

v⇤(At) = argmax
v2RM

v> bCM

A
v

v>(b�M

A
+ �I)v

.

(ii) Do one gradient ascent step:
At+1 = At + ⌘t gradA F (A, v⇤(At)).

end

5 Numerical experiments

We divide our experiments into two parts: the first one
illustrates the convergence of the estimated Poincaré
constant as given by Theorem 2 (see Section 5.1), and
the second one demonstrates the interest of the reaction
coordinates learning procedure described in Section 4.2
(see Section 5.2).

5.1 Estimation of the Poincaré constant

In our experiments we choose the Gaussian Kernel
K(x, x0) = exp (�kx � x0

k
2)? This induces a RKHS

satisfying (Ass. 1), (Ass. 2), (Ass. 3). Estimating
bPµ from n samples (xi)i6n is equivalent to finding the
largest eigenvalue for an operator from H to H. Indeed,
we have

bPµ = k( bZ⇤

n
bZn + �I)�

1
2 bS⇤

n
(I �

1

n
11>)

bSn ( bZ⇤

n
bZn + �I)�

1
2 kH,

where bZn =
P

d

i=1
bZi

n
and bZi

n
is the operator from H

to Rn: 8g 2 H, bZi

n
(g) = 1

p
n

�
hg, @iKxj i

�
16j6n

and
bSn is the operator from H to Rn: 8g 2 H, bSn(g) =
1

p
n

�
hg,Kxj i

�
16j6n

. By the Woodbury operator iden-

tity, (�I + bZ⇤

n
bZn)�1 = 1

�

⇣
I � bZ⇤

n
(�I + bZn

bZ⇤

n
)�1 bZn

⌘
,

and the fact that for any operator kT ⇤Tk = kTT ⇤
k,

we can show that

bPµ =
1

�
k(I �

1

n
11>)(bSn

bS⇤

n
� bSn

bZ⇤

n
( bZn

bZ⇤

n
+ �I)�1

bZn
bS⇤

n
)(I �

1

n
11>)k2,

which is now the largest eigenvalue of a n⇥ n matrix
built as the product of matrices involving the kernel
K and its derivatives. Note for the above calculation
that we used that

�
I � 1

n
11>

�2
=

�
I � 1

n
11>

�
.

We illustrate in Figure 1 the rate of convergence of
the estimated Poincaré constant to 1 for the Gaussian
N (0, 1) as the number of samples n grows. Recall that
in this case the Poincaré constant is equal to 1 (see
Subsection 2.3). We compare our prediction to the
one given by diffusion maps techniques [Coifman and
Lafon, 2006]. For our method, in all the experiments
we set �n = C�

n
, which is smaller than what is given by

Theorem 2, and optimize the constant C� with a grid
search. Following [Hein et al., 2007], to find the correct
bandwidth "n of the kernel involved in diffusion maps,
we performed a similar grid search on the constant
C" for the Diffusion maps with the scaling "n = C"

n1/4 .
Additionally to a faster convergence when n become
large, the kernel-based method is more robust with
respect to the choice of itss hyperparameter, which is
of crucial importance for the quality of diffusion maps.
Note also that we derive an explicit convergence rate
for the bias in the Gaussian case in Section D of the
Appendix. In Figure 1, we also show the growth of
the Poincaré constant for a mixture of Gaussians of
variances 1 as a function of the distance between the
two means of the Gaussians. This is a situation for
which the estimation provides an estimate when, up to
our knowledge, no precise Poincaré constant is known
(even if lower and upper bounds are known [Chafaï and
Malrieu, 2010]).

5.2 Learning a reaction coordinate

We next illustrate the algorithm described in Section 4
to learn a reaction coordinate which, we recall, encodes
directions which are difficult to sample. To perform
the gradient step over the Stiefel manifold we used
Pymanopt [Townsend et al., 2016], a Python library for
manifold optimization derived from Manopt [Boumal
et al., 2014] (Matlab). We show here a synthetic two-
dimensional example example. We first preprocessed
the samples with “whitening”, i.e., making it of vari-
ance 1 in all directions to avoid scaling artifacts. In
both examples, we took M = 200 for the number of
random features and n = 200 for the number of sam-
ples.

We show (Figure 2) one synthetic example for which
our algorithm found a good reaction coordinate. The
samples are taken from a mixture of three Gaussians of
means (0, 0), (1, 1) and (2, 2) and covariance ⌃ = �2I
where � = 0.1. The three means are aligned along a
line which makes an angle ✓ = ⇡/4 with respect to
the x-axis: one expects the algorithm to identify this
direction as the most difficult one to sample (see left
and center plots of Figure 2). With a few restarts, our
algorithm indeed finds the largest Poincaré constant
for a projection onto the line parametrized by ✓ = ⇡/4.
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Figure 1: (Left) Comparison of the convergences of the kernel-based method described in this paper and diffusion maps
in the case of a Gaussian of variance 1 (for each n we took the mean over 50 runs). The dotted lines correspond to
standard deviations of the estimator. (Right) Exponential growth of the Poincaré constant for a mixture of two Gaussians
N (±a

2 ,�
2) as a function of the distance a between the two Gaussians (� = 0.1 and n = 500).

Figure 2: (Top Left) Samples of mixture of three Gaussians. (Top right) Whiten samples of Gaussian mixture on the
left. (Bottom) Plot of the Poincaré constant of the projected samples on a line of angle ✓.

6 Conclusion and Perspectives

In this paper, we have presented an efficient method
to estimate the Poincaré constant of a distribution
from independent samples, paving the way to learn
low-dimensional marginals that are hard to sample
(corresponding to the image measure of so-called re-
action coordinates). While we have focused on linear
projections, learning non-linear projections is impor-
tant in molecular dynamics and it can readily be done
with a well-defined parametrization of the non-linear
function and then applied to real data sets, where this
would lead to accelerated sampling [Lelièvre, 2015]. Fi-
nally, it would be interesting to apply our framework
to Bayesian inference [Chopin et al., 2012] and lever-
age the knowledge of reaction coordinates to accelerate
sampling methods.
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