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A Proof of Theorem 1

We prove the theorem using five lemmas.

Lemma 1. £, convergences to L, pointwise when T
converges to 0 from the right:

Proof. To prove Eql[I} we first show that our approxima-
tion in Eq.10 from the main paper converges pointwise
to Iz > 0]. Vz € R:

=1I[z > 0]
(2)

If « is negative, both e=*/7 and 1/7 converge to 400,
hence o, () converges to zero. If x is zero, then o, (z) =
7 which also converges to zero. Finally, for positive z
we apply L’Hoépital’s rule to compute the limit:

. (@) . 1
im o,(z) = lim
50+ 0+ 1+ e—2/7 [% — 1]

—z/T 1 ! —x/T
m S = T, g (s
70+ T T—0+ (em/'r) T—=0+ T

To prove the theorem, we consider two cases. First, if
(0,9) ¢ Q, then for some z, i, and = # s,

By o) [Tz, (2) < 7o o(2)] > 0. (4)

x,1,S

From the equation above follows that for given pa-
rameters the model violates indicators with positive
probability. For those z, a smoothed indicator func-
tion takes values less than 7, so the expectation of its
logarithm tends to —oo when 7 — 0+.

The second case is (6, ¢) € Q. Since L.(0,¢) > —o0,
indicators are violated only with probability zero, which
will not contribute to the loss neither in L., nor in
L,. For all x, i and s, consider a distribution of a
random variable § = 79 ; | (z)—79 ; (2) obtained from
a distribution gy (z | ). Let dmax < 1 be the maximal
value of §. We now need to prove that

Tl_i)r(r)l_i_ Eéwp(é) 10g Or (5) =0 (5)
For any € > 0, we select dp > 0 such that p(d < dg) < e.
For the next step we will use the fact that o (51/2) =
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0.5, where 0,5 = 7log (% — 1). By selecting 7 small
enough such that 6,/ < do, we split the integration
limit for 0 in expectation into three segments: (0, dy /2],
(01/2,00], (00,0max). A lower bound on logo,(d) in
each segment is given by its value in the left end: log T,
log1/2, logo,(do). Also, since p(d < 0) =0 and J is
continuous on compact support of ¢4 (= | =), density p(J)
is bounded by some constant M. Such estimation gives

us the final lower bound using pointwise convergence
of o,(9):

0> Esp(s) logo-(6) >
M - logT -0y +€-logl/2
—_———
lim; _,o4---=0

+ M - logo:(00) “(dmax —
———

lim, o4 =0

d) —r—0+ €-logl/2.

(6)

We used lim; o4 log 7 - §;/2 = 0 which can be proved
by applying the L’Hopital’s rule twice. O

Proposition 1. For our model, L, is finite if and only
if a sequence-wise reconstruction error rate is zero:

(0,¢) € Qe ATy, ¢) =0 (7)
Lemma 2. Sequence-wise reconstruction error rate

A(Q) is continuous.

Proof. Following equicontinuity in total variation of
¢s(z | ) at ¢ for any x and finiteness of x, for any
€ > 0 there exists § > 0 such that for any = € y and
any ¢’ such that ||¢ — ¢'|| < 3§

/ 10(21) — q (2l2)| dz < e (8)

For parameters ¢ and ¢, we estimate the difference in
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A function values

A6 - @)
= A(3:6) — A5 0) +A 1 6) - M)
<0
< Bppte [ (Golile) = g (1)) 1 [F50(2) # 0] ds
<e E

9)

Symmetrically, A(¢') — A(¢) < €, resulting in A(¢p)
being continuous. O

Lemma 3. Sequence-wise reconstruction error rate
A(gy) converges to zero:

lim A(gn) = A(¢) = 0.

n—-+4oo

(10)

The convergence rate is O(m).

for any € > 0 exists N such that for any n > N:

Lo (O, b0) > Ly, (0,0) > L.(0,0) —e.

from the definition of (0,,,¢.)

(11)

Next, we derive an upper bound on L, (6,, ¢, ) using
the fact that logo,(z) < 0if x > 0, and logo,(z) <
log T, if x <0:

||

‘CTn (9717 ¢n) < Ea:r\/p(w) |:Ez~q¢(z|a:) Z Z IOg Tn*
i=1 s#xz;
1l (2) < 7)) KL | 20(3)]

<0

< [VIL-logry - A@, , bn)-

(12)
Combining Eq. [IT] and Eq. [I2] together we get
|V|L10ng A(%Gn,gbn) Z ﬁ*(e*a¢*) — € (13)
——
<0
Adding the defintion of A(¢), we obtain
0< A(6a) € A, 0n) < 0Dy

— VIL - log(1/7)

The right hand side goes to zero when n goes to
infinity and hence lim, ;o A(Zg,,¢,) = 0 and
lim, 400 A(¢) = 0 with the convergence rate

(’)(m). Since A(gy,) is continuous, A(¢) = 0. O

Lemma 4. L.(0,¢) attains its supremum:

30" € ©,0" € @: L, (0%,0")= sup L.(0,0).
0€0,ped
(15)

Proof. From Lemma A(g) = 0. Hence, for a choice
of 6 from the theorem statement, A(6, ¢) = 0. Equiva-

lently, (6, ¢) € Q.

Note that since A(¢) > 0 is continuous on a compact
set, ®g = {¢ | A(p) = 0} is a compact set. Also,
L.(0, ¢) is constant with respect to € on Q. From the
theorem statement, for any ¢ such that A(¢) = 0,
there exists 0(¢) such that (8(¢),$) € Q. Combining
all statements together,

sup L.(0(¢), ) =

PEDg

sup L.(0,9)
0€O,pcd

(16)

In Q, L, is a continuous function: ¥(6, ¢) € Q,

£(0,6) = L) = Bempio KL aleh) 1)
17
Hence, continuous function L.(6(¢),¢) attains its
supremum on a compact set ® at some point (6*, ¢*),
where 6* = 0(¢%). 0

Lemma 5. Parameters (6, ) from theorem statement
are optimal:

sup  L£.(0,0).
0€0,pcP

(18)

Proof. Assume that L£.(0,¢) < L.(0*,¢%). Since
(6,¢) € Q and (8%,¢*) € Q, L.(0,¢) = —KL(¢) and
L.(0%,0%) = —KL(¢*). As a result, from our assump-
tion, KL(¢*) < KL($).

From continuity of KL(¢) divergence, for any € > 0,
exists § > 0 such that if ||¢ — ¢|| <,

KL(9) > KL($) —e=L.(0,6) —c  (19)

From the convergence of ¢,, to a and convergence of
T, to zero, there exists N; such that for any n > Nj,

16— ¢nll < 0.

From pointwise convergence of £, at point (6*,¢*)
to L.(0%,¢*), for any ¢ > 0, exists Ny such that
for all n > Na, L. (0%,0") > L.(0%,¢") —e. Also,
L (0n,dn) < —KL(¢py) from the definition of L.,
as a negative KL divergence plus some non-positive
penalty for reconstruction error.

Taking n > max(Ny, N2), we get the final chain of
inequalities:

‘CTn (07u¢n) < —Kﬁ(qﬁn) < _IC[,(QZS) +€
= L,(0,0) + € < Lr, (07,67) — e+ ¢

= E‘rn (9*7 (rb*)
(20)
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Hence, L., (0, ¢n) < L, (0*,¢"), which contradicts
(0, Pn) € Argmax of L, . As a result, L.(0,¢) =
(0% 6"). o

B Implementation details

For all experiments, we provide configuration files in
a human-readable format in the supplementary code.
Here we provide the same information for convenience.

B.1 Synthetic data

Encoder and decoder were GRUs with 2 layers of 128
neurons. The latent size was 2; embedding dimension
was 8. We trained the model for 100 epochs with Adam
optimizer with an initial learning rate 5- 10~3, which
halved every 20 epochs. The batch size was 512. We
fine-tuned the model for 10 epochs after training by
fixing the encoder and learning only the decoder. For
a proposed model with a uniform prior and a uniform
proposal, we increased KL weight § linearly from 0 to
0.1 during 100 epochs. For the Gaussian and tricube
proposals, we increased KL weight § linearly from 0
to 1 during 100 epochs. For all three experiments, we
pretrained the autoencoder for the first two epochs with
B = 0. We annealed the temperature from 107! to
103 during 100 epochs of training in a log-linear scale.
For a tricube proposal, we annealed the temperature
to 1072,

B.2 Binary MNIST

We binarized the dataset by thresholding original
MNIST pixels with a value of 0.3. We used a fully con-
nected neural network with layer sizes 784 — 256 —
128 — 32 — 2 with LeakyReLU activation functions.
We trained the model for 150 epochs with a starting
learning rate 5 - 1072 that halved every 20 epochs. We
used a batch size 512 and clipped the gradient with
value 10. We increased 8 from 107> to 0.005 for VAE
and 0.05 for DD-VAE. We decreased the temperature
in a log scale from 0.01 to 0.0001.

B.3 MOSES

We used a 2-layer GRU network with a hidden size
of 512. Embedding size was 64, the latent space was
64-dimensional. We used a tricube proposal and a
Gaussian prior. We pretrained a model with a fixed
B for 20 epochs and then linearly increased [ for 180
epochs. We halved the learning rate after pretraining.
For DD-VAE models, we decreased the temperature
in a log scale from 0.2 to 0.1. We linearly increased
B divergence from 0.0005 to 0.01 for VAE models and
from 0.0015 to 0.02.

B.4 ZINC

We used a 1-layer GRU network with a hidden size
of 1024. Embedding size was 64, the latent space was
64-dimensional. We used a tricube proposal and a
Gaussian prior. We trained a model for 200 epochs
with a starting learning rate 5- 10~* that halved every
50 epochs. We increased divergence weight 3 from 1073
to 0.02 linearly during the first 50 epochs for DD-VAE
models, from 107 to 5-10~* for VAE model, and from
107% to 8-10~* for VAE model with a tricube proposal.
We decreased the temperature log-linearly from 1073
to 10~* during the first 100 epochs for DD-VAE models.
With such parameters we achieved a comparable train
sequence-wise reconstruction accuracy of 95%.

C MOSES distribution learning

In Figure [} we report detailed results for the experi-
ment from Section 4.3.

D Best molecules found for ZINC

In Figure 2] Figure [3] Figure [d] and Figure [§] we show
the best molecules found with Bayesian optimization
during 10-fold cross validation.
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Figure 1: Distribution learning with deterministic de-
coding on MOSES dataset: FCD/Test (lower is better)
and SNN/Test (higher is better). Solid line: mean,
shades: std over multiple runs.
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Figure 2: DD-VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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Figure 3: DD-VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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Figure 4: VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross
validation and their scores.
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Figure 5: VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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