(Supplementary) Deterministic Decoding for Discrete Data in Variational Autoencoders

Daniil Polykovskiy
Insilico Medicine

Dmitry Vetrov
National Research University Higher School of Economics

A Proof of Theorem 1

We prove the theorem using five lemmas.
Lemma 1. \mathcal{L}_{τ} convergences to \mathcal{L}_{*} pointwise when τ converges to 0 from the right:

$$
\begin{equation*}
\forall(\theta, \phi) \quad \lim _{\tau \rightarrow 0+} \mathcal{L}_{\tau}(\theta, \phi)=\mathcal{L}_{*}(\theta, \phi) \tag{1}
\end{equation*}
$$

Proof. To prove Eq 1 , we first show that our approximation in Eq. 10 from the main paper converges pointwise to $\mathbb{I}[x>0] . \forall x \in \mathbb{R}$:

$$
\begin{equation*}
\lim _{\tau \rightarrow 0+} \sigma_{\tau}(x)=\lim _{\tau \rightarrow 0+} \frac{1}{1+e^{-x / \tau}\left[\frac{1}{\tau}-1\right]}=\mathbb{I}[x>0] \tag{2}
\end{equation*}
$$

If x is negative, both $e^{-x / \tau}$ and $1 / \tau$ converge to $+\infty$, hence $\sigma_{\tau}(x)$ converges to zero. If x is zero, then $\sigma_{\tau}(x)=$ τ which also converges to zero. Finally, for positive x we apply L'Hôpital's rule to compute the limit:

$$
\begin{equation*}
\lim _{\tau \rightarrow 0+} \frac{e^{-x / \tau}}{\tau}=\lim _{\tau \rightarrow 0+} \frac{(1 / \tau)^{\prime}}{\left(e^{x / \tau}\right)^{\prime}}=\lim _{\tau \rightarrow 0+} \frac{e^{-x / \tau}}{x}=1 \tag{3}
\end{equation*}
$$

To prove the theorem, we consider two cases. First, if $(\theta, \phi) \notin \Omega$, then for some x, i, and $x \neq s$,

$$
\begin{equation*}
\mathbb{E}_{z \sim q_{\phi}(z \mid x)} \mathbb{I}\left[\widetilde{\pi}_{x, i, x_{i}}^{\theta}(z) \leq \widetilde{\pi}_{x, i, s}^{\theta}(z)\right]>0 \tag{4}
\end{equation*}
$$

From the equation above follows that for given parameters the model violates indicators with positive probability. For those z, a smoothed indicator function takes values less than τ, so the expectation of its logarithm tends to $-\infty$ when $\tau \rightarrow 0+$.
The second case is $(\theta, \phi) \in \Omega$. Since $\mathcal{L}_{*}(\theta, \phi)>-\infty$, indicators are violated only with probability zero, which will not contribute to the loss neither in \mathcal{L}_{*}, nor in \mathcal{L}_{τ}. For all x, i and s, consider a distribution of a random variable $\delta=\widetilde{\pi}_{x, i, x_{i}}^{\theta}(z)-\widetilde{\pi}_{x, i, s}^{\theta}(z)$ obtained from a distribution $q_{\phi}(z \mid x)$. Let $\delta_{\max } \leq 1$ be the maximal value of δ. We now need to prove that

$$
\begin{equation*}
\lim _{\tau \rightarrow 0+} \mathbb{E}_{\delta \sim p(\delta)} \log \sigma_{\tau}(\delta)=0 \tag{5}
\end{equation*}
$$

For any $\epsilon>0$, we select $\delta_{0}>0$ such that $p\left(\delta<\delta_{0}\right)<\epsilon$. For the next step we will use the fact that $\sigma_{\tau}\left(\delta_{1 / 2}\right)=$
0.5 , where $\delta_{1 / 2}=\tau \log \left(\frac{1}{\tau}-1\right)$. By selecting τ small enough such that $\delta_{1 / 2}<\delta_{0}$, we split the integration limit for δ in expectation into three segments: $\left(0, \delta_{1 / 2}\right.$], $\left(\delta_{1 / 2}, \delta_{0}\right],\left(\delta_{0}, \delta_{\max }\right)$. A lower bound on $\log \sigma_{\tau}(\delta)$ in each segment is given by its value in the left end: $\log \tau$, $\log 1 / 2, \log \sigma_{\tau}\left(\delta_{0}\right)$. Also, since $p(\delta \leq 0)=0$ and δ is continuous on compact support of $q_{\phi}(z \mid x)$, density $p(\delta)$ is bounded by some constant M. Such estimation gives us the final lower bound using pointwise convergence of $\sigma_{\tau}(\delta)$:

$$
\begin{align*}
& 0 \geq \mathbb{E}_{\delta \sim p(\delta)} \log \sigma_{\tau}(\delta) \geq \\
& \quad M \cdot \underbrace{\log \tau \cdot \delta_{1 / 2}}_{\lim _{\tau \rightarrow 0+} \cdots=0}+\epsilon \cdot \log 1 / 2 \\
& \quad+M \cdot \underbrace{\log \sigma_{\tau}\left(\delta_{0}\right)}_{\lim _{\tau \rightarrow 0+} \cdots=0} \cdot\left(\delta_{\max }-\delta\right) \rightarrow_{\tau \rightarrow 0+} \epsilon \cdot \log 1 / 2 . \tag{6}
\end{align*}
$$

We used $\lim _{\tau \rightarrow 0+} \log \tau \cdot \delta_{1 / 2}=0$ which can be proved by applying the L'Hôpital's rule twice.

Proposition 1. For our model, \mathcal{L}_{*} is finite if and only if a sequence-wise reconstruction error rate is zero:

$$
\begin{equation*}
(\theta, \phi) \in \Omega \Leftrightarrow \Delta\left(\widetilde{x}_{\theta}, \phi\right)=0 \tag{7}
\end{equation*}
$$

Lemma 2. Sequence-wise reconstruction error rate $\Delta(\phi)$ is continuous.

Proof. Following equicontinuity in total variation of $q_{\phi}(z \mid x)$ at ϕ for any x and finiteness of χ, for any $\epsilon>0$ there exists $\delta>0$ such that for any $x \in \chi$ and any ϕ^{\prime} such that $\left\|\phi-\phi^{\prime}\right\|<\delta$

$$
\begin{equation*}
\int\left|q_{\phi}(z \mid x)-q_{\phi^{\prime}}(z \mid x)\right| d z<\epsilon \tag{8}
\end{equation*}
$$

For parameters ϕ and ϕ^{\prime}, we estimate the difference in
Δ function values

$$
\begin{align*}
\Delta(\phi) & -\Delta\left(\phi^{\prime}\right) \\
& =\underbrace{\Delta\left(\widetilde{x}_{\phi}^{*}, \phi\right)-\Delta\left(\widetilde{x}_{\phi^{\prime}}^{*}, \phi\right)}_{\leq 0}+\Delta\left(\widetilde{x}_{\phi^{\prime}}^{*}, \phi\right)-\Delta\left(\widetilde{x}_{\phi^{\prime}}^{*}, \phi^{\prime}\right) \\
& \leq \mathbb{E}_{x \sim p(x)} \underbrace{\int\left(q_{\phi}(z \mid x)-q_{\phi^{\prime}}(z \mid x)\right) \mathbb{I}\left[\widetilde{x}_{\phi^{\prime}}^{*}(z) \neq x\right] d z}_{<\epsilon} \\
& \leq \epsilon \tag{9}
\end{align*}
$$

Symmetrically, $\Delta\left(\phi^{\prime}\right)-\Delta(\phi) \leq \epsilon$, resulting in $\Delta(\phi)$ being continuous.

Lemma 3. Sequence-wise reconstruction error rate $\Delta\left(\phi_{n}\right)$ converges to zero:

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \Delta\left(\phi_{n}\right)=\Delta(\widetilde{\phi})=0 \tag{10}
\end{equation*}
$$

The convergence rate is $\mathcal{O}\left(\frac{1}{\log \left(1 / \tau_{n}\right)}\right)$.
Proof. Since Ω is not empty, there exists $(\widehat{\theta}, \widehat{\phi}) \in \Omega$. From pointwise convergence of \mathcal{L}_{τ} to \mathcal{L}_{*} at point $(\widehat{\theta}, \widehat{\phi})$, for any $\epsilon>0$ exists N such that for any $n>N$:

$$
\begin{equation*}
\underbrace{\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right) \geq \mathcal{L}_{\tau_{n}}(\widehat{\theta}, \widehat{\phi})}_{\text {from the definition of }\left(\theta_{n}, \phi_{n}\right)} \geq \mathcal{L}_{*}(\widehat{\theta}, \widehat{\phi})-\epsilon . \tag{11}
\end{equation*}
$$

Next, we derive an upper bound on $\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right)$ using the fact that $\log \sigma_{\tau}(x)<0$ if $x>0$, and $\log \sigma_{\tau}(x) \leq$ $\log \tau_{n}$ if $x \leq 0$:

$$
\begin{align*}
\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right) & \leq \mathbb{E}_{x \sim p(x)}\left[\mathbb{E}_{z \sim q_{\phi}(z \mid x)} \sum_{i=1}^{|x|} \sum_{s \neq x_{i}} \log \tau_{n} .\right. \\
& \mathbb{I}\left[\pi_{x, i, x_{i}}(z) \leq \pi_{x, i, s}(z)\right] \underbrace{-\mathcal{K} \mathcal{L} q_{\phi}(z \mid x) p(z)}_{\leq 0}] \\
& \leq|V| L \cdot \log \tau_{n} \cdot \Delta\left(\widetilde{x}_{\theta_{n}}, \phi_{n}\right) . \tag{12}
\end{align*}
$$

Combining Eq. 11 and Eq. 12 together we get

$$
\begin{equation*}
|V| L \cdot \underbrace{\log \tau_{n}}_{<0} \cdot \Delta\left(\widetilde{x}_{\theta_{n}}, \phi_{n}\right) \geq \mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)-\epsilon \tag{13}
\end{equation*}
$$

Adding the defintion of $\Delta(\phi)$, we obtain

$$
\begin{equation*}
0 \leq \Delta\left(\phi_{n}\right) \leq \Delta\left(\widetilde{x}_{\theta_{n}}, \phi_{n}\right) \leq \frac{\epsilon-\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)}{|V| L \cdot \log \left(1 / \tau_{n}\right)} \tag{14}
\end{equation*}
$$

The right hand side goes to zero when n goes to infinity and hence $\lim _{n \rightarrow+\infty} \Delta\left(\widetilde{x}_{\theta_{n}}, \phi_{n}\right)=0$ and $\lim _{n \rightarrow+\infty} \Delta\left(\phi_{n}\right)=0$ with the convergence rate $\mathcal{O}\left(\frac{1}{\log \left(1 / \tau_{n}\right)}\right)$. Since $\Delta\left(\phi_{n}\right)$ is continuous, $\Delta(\widetilde{\phi})=0$.

Lemma 4. $\mathcal{L}_{*}(\theta, \phi)$ attains its supremum:

$$
\begin{equation*}
\exists \theta^{*} \in \Theta, \phi^{*} \in \Phi: \mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)=\sup _{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_{*}(\theta, \phi) . \tag{15}
\end{equation*}
$$

Proof. From Lemma $3, \Delta(\widetilde{\phi})=0$. Hence, for a choice of $\widetilde{\theta}$ from the theorem statement, $\Delta(\widetilde{\theta}, \widetilde{\phi})=0$. Equivalently, $(\widetilde{\theta}, \widetilde{\phi}) \in \Omega$.

Note that since $\Delta(\phi) \geq 0$ is continuous on a compact set, $\Phi_{0}=\{\phi \mid \Delta(\phi)=0\}$ is a compact set. Also, $\mathcal{L}_{*}(\theta, \phi)$ is constant with respect to θ on Ω. From the theorem statement, for any ϕ such that $\Delta(\phi)=0$, there exists $\theta(\phi)$ such that $(\theta(\phi), \phi) \in \Omega$. Combining all statements together,

$$
\begin{equation*}
\sup _{\phi \in \Phi_{0}} \mathcal{L}_{*}(\theta(\phi), \phi)=\sup _{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_{*}(\theta, \phi) \tag{16}
\end{equation*}
$$

In Ω, \mathcal{L}_{*} is a continuous function: $\forall(\theta, \phi) \in \Omega$,

$$
\begin{equation*}
\mathcal{L}_{*}(\theta, \phi)=-\mathcal{K} \mathcal{L}(\phi)=-\mathbb{E}_{x \sim p(x)} \mathcal{K} \mathcal{L}\left(q_{\phi}(z \mid x) \| p(z)\right) \tag{17}
\end{equation*}
$$

Hence, continuous function $\mathcal{L}_{*}(\theta(\phi), \phi)$ attains its supremum on a compact set Φ at some point $\left(\theta^{*}, \phi^{*}\right)$, where $\theta^{*}=\theta\left(\phi^{*}\right)$.

Lemma 5. Parameters $(\widetilde{\theta}, \widetilde{\phi})$ from theorem statement are optimal:

$$
\begin{equation*}
\mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})=\sup _{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_{*}(\theta, \phi) . \tag{18}
\end{equation*}
$$

Proof. Assume that $\mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})<\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)$. Since $(\widetilde{\theta}, \widetilde{\phi}) \in \Omega$ and $\left(\theta^{*}, \phi^{*}\right) \in \Omega, \mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})=-\mathcal{K} \mathcal{L}(\widetilde{\phi})$ and $\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)=-\mathcal{K} \mathcal{L}\left(\phi^{*}\right)$. As a result, from our assumption, $\mathcal{K} \mathcal{L}\left(\phi^{*}\right)<\mathcal{K} \mathcal{L}(\widetilde{\phi})$.

From continuity of $\mathcal{K} \mathcal{L}(\phi)$ divergence, for any $\epsilon>0$, exists $\delta>0$ such that if $\|\widetilde{\phi}-\phi\|<\delta$,

$$
\begin{equation*}
\mathcal{K} \mathcal{L}(\phi)>\mathcal{K} \mathcal{L}(\widetilde{\phi})-\epsilon=\mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})-\epsilon \tag{19}
\end{equation*}
$$

From the convergence of ϕ_{n} to $\widetilde{\phi}$ and convergence of τ_{n} to zero, there exists N_{1} such that for any $n>N_{1}$, $\left\|\widetilde{\phi}-\phi_{n}\right\|<\delta$.
From pointwise convergence of $\mathcal{L}_{\tau_{n}}$ at point $\left(\theta^{*}, \phi^{*}\right)$ to $\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)$, for any $\epsilon>0$, exists N_{2} such that for all $n>N_{2}, \mathcal{L}_{\tau_{n}}\left(\theta^{*}, \phi^{*}\right)>\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)-\epsilon$. Also, $\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right) \leq-\mathcal{K} \mathcal{L}\left(\phi_{n}\right)$ from the definition of $\mathcal{L}_{\tau_{n}}$ as a negative $\mathcal{K} \mathcal{L}$ divergence plus some non-positive penalty for reconstruction error.

Taking $n>\max \left(N_{1}, N_{2}\right)$, we get the final chain of inequalities:

$$
\begin{align*}
\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right) & \leq-\mathcal{K} \mathcal{L}\left(\phi_{n}\right)<-\mathcal{K} \mathcal{L}(\widetilde{\phi})+\epsilon \\
& =\mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})+\epsilon<\mathcal{L}_{\tau_{n}}\left(\theta^{*}, \phi^{*}\right)-\epsilon+\epsilon \\
& =\mathcal{L}_{\tau_{n}}\left(\theta^{*}, \phi^{*}\right) \tag{20}
\end{align*}
$$

Hence, $\mathcal{L}_{\tau_{n}}\left(\theta_{n}, \phi_{n}\right)<\mathcal{L}_{\tau_{n}}\left(\theta^{*}, \phi^{*}\right)$, which contradicts $\left(\theta_{n}, \phi_{n}\right) \in \operatorname{Arg} \max$ of $\mathcal{L}_{\tau_{n}}$. As a result, $\mathcal{L}_{*}(\widetilde{\theta}, \widetilde{\phi})=$ $\mathcal{L}_{*}\left(\theta^{*}, \phi^{*}\right)$.

B Implementation details

For all experiments, we provide configuration files in a human-readable format in the supplementary code. Here we provide the same information for convenience.

B. 1 Synthetic data

Encoder and decoder were GRUs with 2 layers of 128 neurons. The latent size was 2 ; embedding dimension was 8 . We trained the model for 100 epochs with Adam optimizer with an initial learning rate $5 \cdot 10^{-3}$, which halved every 20 epochs. The batch size was 512 . We fine-tuned the model for 10 epochs after training by fixing the encoder and learning only the decoder. For a proposed model with a uniform prior and a uniform proposal, we increased $\mathcal{K} \mathcal{L}$ weight β linearly from 0 to 0.1 during 100 epochs. For the Gaussian and tricube proposals, we increased $\mathcal{K} \mathcal{L}$ weight β linearly from 0 to 1 during 100 epochs. For all three experiments, we pretrained the autoencoder for the first two epochs with $\beta=0$. We annealed the temperature from 10^{-1} to 10^{-3} during 100 epochs of training in a log-linear scale. For a tricube proposal, we annealed the temperature to 10^{-2}.

B. 2 Binary MNIST

We binarized the dataset by thresholding original MNIST pixels with a value of 0.3 . We used a fully connected neural network with layer sizes $784 \rightarrow 256 \rightarrow$ $128 \rightarrow 32 \rightarrow 2$ with LeakyReLU activation functions. We trained the model for 150 epochs with a starting learning rate $5 \cdot 10^{-3}$ that halved every 20 epochs. We used a batch size 512 and clipped the gradient with value 10. We increased β from 10^{-5} to 0.005 for VAE and 0.05 for DD-VAE. We decreased the temperature in a log scale from 0.01 to 0.0001 .

B. 3 MOSES

We used a 2-layer GRU network with a hidden size of 512 . Embedding size was 64 , the latent space was 64-dimensional. We used a tricube proposal and a Gaussian prior. We pretrained a model with a fixed β for 20 epochs and then linearly increased β for 180 epochs. We halved the learning rate after pretraining. For DD-VAE models, we decreased the temperature in a \log scale from 0.2 to 0.1 . We linearly increased β divergence from 0.0005 to 0.01 for VAE models and from 0.0015 to 0.02 .

B. 4 ZINC

We used a 1-layer GRU network with a hidden size of 1024 . Embedding size was 64 , the latent space was 64-dimensional. We used a tricube proposal and a Gaussian prior. We trained a model for 200 epochs with a starting learning rate $5 \cdot 10^{-4}$ that halved every 50 epochs. We increased divergence weight β from 10^{-3} to 0.02 linearly during the first 50 epochs for DD-VAE models, from 10^{-4} to $5 \cdot 10^{-4}$ for VAE model, and from 10^{-4} to $8 \cdot 10^{-4}$ for VAE model with a tricube proposal. We decreased the temperature log-linearly from 10^{-3} to 10^{-4} during the first 100 epochs for DD-VAE models. With such parameters we achieved a comparable train sequence-wise reconstruction accuracy of 95%.

C MOSES distribution learning

In Figure 1, we report detailed results for the experiment from Section 4.3.

D Best molecules found for ZINC

In Figure 2, Figure 3, Figure 4, and Figure 5 we show the best molecules found with Bayesian optimization during 10 -fold cross validation.

Figure 1: Distribution learning with deterministic decoding on MOSES dataset: FCD/Test (lower is better) and SNN/Test (higher is better). Solid line: mean, shades: std over multiple runs.

$\mathrm{Q}^{8} 0003$	$\text { ove } 8$	ashor	ovo	0^{2} ges	oto 98
${ }_{5.86}$	5.77	${ }_{5,64}$	${ }_{5} 56$	${ }_{5.38}$	${ }_{5}, 33$
5	$29+0$	02	$S^{3}+x^{0}$	$0,2$	$\theta^{\sin \pi}$
5.05	5.04	5.00	4.99	4.95	4.89
0^{B}	$\mathfrak{S}^{a^{a}} d 8$	$0_{0}^{3}+000$	argoo	asindo	$b^{2}+\sigma$
4.81	4.76	4.72	4.70	4.68	4.66
arbo	020°	$\left.x_{0}^{0}\right\}$	100	0	00^{30}
${ }_{4.56}$	4.55	4.53	${ }_{4.52}$	4.49	${ }_{4.43}$
oraco	$\operatorname{ab}_{a}^{3}+0$	B_{2}^{2}	ama	8^{2}	000
4.41	4.37	${ }_{4} 36$	${ }^{434}$	${ }^{4.34}$	4.33
86	$\begin{aligned} & 9_{n}+0 \\ & b_{0} \end{aligned}$	करुण	0006	8	9×200
${ }_{4} 32$	${ }_{426}$	${ }^{2} 2$	4.20	4.16	${ }_{4} 46$
20, 0^{3}	22	2000	250000	$+2$	ound
4.11	4.06	4.03	${ }^{3.98}$	${ }_{3.98}$	${ }^{3.94}$
$5^{8}+8$	$0_{0}^{9} 2_{0}$	Socors	$\cos ^{2}$	tancos	020
${ }^{3.3}$	3.92	${ }^{3,92}$	${ }^{3.88}$	${ }^{3.35}$	${ }^{3.32}$
$0^{3} 9$	$\operatorname{cog}_{0}^{5} g_{x}$				

Figure 2: DD-VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.

arario arrows \qquad
4.12
4.10
3.99

3.88
$8^{2}=0$
3.80

3.69

3.63
3.59
3.59

3.58

Figure 3: DD-VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10 -fold cross validation and their scores.

4.47
4.43
4.39
4.37
4.36

4.18
4.17
4.15
4.15
4.14
4.13

raronco
Sens
4.12
4.11
4.11
4.11
4.11
4.10

4.08

4.10
4.08
4.07
4.07
4.07

4.05
4.05

Figure 4: VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.

$5^{4 x}$	820		movig		
5.76	5.74	5.67	5.52	5.47	5.37
0^{2}		等合	mios		
5.27	5.24	5.22	5.16	5.13	5.12
muro	Mo	$-2+0$	$0-3$	BCO_{2}	Mrido
5.07	5.06	5.03	5.02	5.01	4.95
$0^{-2}+3^{3}$		aros	majra	Tr	mord
4.90	4.84	4.84	4.82	4.82	4.80
	20	morro	RaO_{2}		
4.77	4.76	4.74	4.72	4.72	4.71
			100	morso	Yrobr
4.70	4.70	4.70	4.69	4.69	4.67
	-100	mo		-20	mygo
4.64	4.64	4.62	4.60	4.58	4.57
$\mathrm{m}^{6} \mathrm{O}$ 4.56	 4.54	moo 4.52	$0^{2}+2$	$y_{2}, 0+0$	
CDC^{2}	mong				

Figure 5: VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.

