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A Proof of Theorem 1

We prove the theorem using five lemmas.
Lemma 1. Lτ convergences to L∗ pointwise when τ
converges to 0 from the right:

∀(θ, φ) lim
τ→0+

Lτ (θ, φ) = L∗(θ, φ) (1)

Proof. To prove Eq.1, we first show that our approxima-
tion in Eq.10 from the main paper converges pointwise
to I [x > 0]. ∀x ∈ R:

lim
τ→0+

στ (x) = lim
τ→0+

1

1 + e−x/τ
[

1
τ − 1

] = I [x > 0]

(2)
If x is negative, both e−x/τ and 1/τ converge to +∞,
hence στ (x) converges to zero. If x is zero, then στ (x) =
τ which also converges to zero. Finally, for positive x
we apply L’Hôpital’s rule to compute the limit:

lim
τ→0+

e−x/τ

τ
= lim
τ→0+

(1/τ)
′(

ex/τ
)′ = lim

τ→0+

e−x/τ

x
= 1 (3)

To prove the theorem, we consider two cases. First, if
(θ, φ) /∈ Ω, then for some x, i, and x 6= s,

Ez∼qφ(z|x)I
[
π̃θx,i,xi(z) ≤ π̃

θ
x,i,s(z)

]
> 0. (4)

From the equation above follows that for given pa-
rameters the model violates indicators with positive
probability. For those z, a smoothed indicator func-
tion takes values less than τ , so the expectation of its
logarithm tends to −∞ when τ → 0+.

The second case is (θ, φ) ∈ Ω. Since L∗(θ, φ) > −∞,
indicators are violated only with probability zero, which
will not contribute to the loss neither in L∗, nor in
Lτ . For all x, i and s, consider a distribution of a
random variable δ = π̃θx,i,xi(z)− π̃θx,i,s(z) obtained from
a distribution qφ(z | x). Let δmax ≤ 1 be the maximal
value of δ. We now need to prove that

lim
τ→0+

Eδ∼p(δ) log στ (δ) = 0 (5)

For any ε > 0, we select δ0 > 0 such that p(δ < δ0) < ε.
For the next step we will use the fact that στ

(
δ1/2

)
=

0.5, where δ1/2 = τ log
(

1
τ − 1

)
. By selecting τ small

enough such that δ1/2 < δ0, we split the integration
limit for δ in expectation into three segments: (0, δ1/2],
(δ1/2, δ0], (δ0, δmax). A lower bound on log στ (δ) in
each segment is given by its value in the left end: log τ ,
log 1/2, log στ (δ0). Also, since p(δ ≤ 0) = 0 and δ is
continuous on compact support of qφ(z | x), density p(δ)
is bounded by some constant M . Such estimation gives
us the final lower bound using pointwise convergence
of στ (δ):

0 ≥ Eδ∼p(δ) log στ (δ) ≥
M · log τ · δ1/2︸ ︷︷ ︸

limτ→0+···=0

+ε · log 1/2

+M · log στ (δ0)︸ ︷︷ ︸
limτ→0+···=0

·(δmax − δ)→τ→0+ ε · log 1/2.

(6)

We used limτ→0+ log τ · δ1/2 = 0 which can be proved
by applying the L’Hôpital’s rule twice.

Proposition 1. For our model, L∗ is finite if and only
if a sequence-wise reconstruction error rate is zero:

(θ, φ) ∈ Ω⇔ ∆(x̃θ, φ) = 0 (7)

Lemma 2. Sequence-wise reconstruction error rate
∆(φ) is continuous.

Proof. Following equicontinuity in total variation of
qφ(z | x) at φ for any x and finiteness of χ, for any
ε > 0 there exists δ > 0 such that for any x ∈ χ and
any φ′ such that ‖φ− φ′‖ < δ

∫
|qφ(z|x)− qφ′(z|x)| dz < ε. (8)

For parameters φ and φ′, we estimate the difference in
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∆ function values

∆(φ)−∆(φ′)

= ∆(x̃∗φ, φ)−∆(x̃∗φ′ , φ)︸ ︷︷ ︸
≤0

+∆(x̃∗φ′ , φ)−∆(x̃∗φ′ , φ′)

≤ Ex∼p(x)

∫
(qφ(z|x)− qφ′(z|x)) I

[
x̃∗φ′(z) 6= x

]
dz︸ ︷︷ ︸

<ε

≤ ε
(9)

Symmetrically, ∆(φ′) − ∆(φ) ≤ ε, resulting in ∆(φ)
being continuous.

Lemma 3. Sequence-wise reconstruction error rate
∆(φn) converges to zero:

lim
n→+∞

∆(φn) = ∆(φ̃) = 0. (10)

The convergence rate is O( 1
log(1/τn) ).

Proof. Since Ω is not empty, there exists (θ̂, φ̂) ∈ Ω.
From pointwise convergence of Lτ to L∗ at point (θ̂, φ̂),
for any ε > 0 exists N such that for any n > N :

Lτn(θn, φn) ≥ Lτn(θ̂, φ̂)︸ ︷︷ ︸
from the definition of (θn,φn)

≥ L∗(θ̂, φ̂)− ε. (11)

Next, we derive an upper bound on Lτn(θn, φn) using
the fact that log στ (x) < 0 if x > 0, and log στ (x) ≤
log τn if x ≤ 0:

Lτn(θn, φn) ≤ Ex∼p(x)

[
Ez∼qφ(z|x)

|x|∑
i=1

∑
s6=xi

log τn·

I [πx,i,xi(z) ≤ πx,i,s(z)]−KLqφ(z | x)p(z)︸ ︷︷ ︸
≤0

]
≤ |V |L · log τn ·∆(x̃θn , φn).

(12)

Combining Eq. 11 and Eq. 12 together we get

|V |L · log τn︸ ︷︷ ︸
<0

·∆(x̃θn , φn) ≥ L∗(θ∗, φ∗)− ε (13)

Adding the defintion of ∆(φ), we obtain

0 ≤ ∆(φn) ≤ ∆(x̃θn , φn) ≤ ε− L∗(θ∗, φ∗)
|V |L · log(1/τn)

(14)

The right hand side goes to zero when n goes to
infinity and hence limn→+∞∆(x̃θn , φn) = 0 and
limn→+∞∆(φn) = 0 with the convergence rate
O( 1

log(1/τn) ). Since ∆(φn) is continuous, ∆(φ̃) = 0.

Lemma 4. L∗(θ, φ) attains its supremum:

∃θ∗ ∈ Θ, φ∗ ∈ Φ : L∗(θ∗, φ∗) = sup
θ∈Θ,φ∈Φ

L∗(θ, φ).

(15)

Proof. From Lemma 3, ∆(φ̃) = 0. Hence, for a choice
of θ̃ from the theorem statement, ∆(θ̃, φ̃) = 0. Equiva-
lently, (θ̃, φ̃) ∈ Ω.

Note that since ∆(φ) ≥ 0 is continuous on a compact
set, Φ0 = {φ | ∆(φ) = 0} is a compact set. Also,
L∗(θ, φ) is constant with respect to θ on Ω. From the
theorem statement, for any φ such that ∆(φ) = 0,
there exists θ(φ) such that (θ(φ), φ) ∈ Ω. Combining
all statements together,

sup
φ∈Φ0

L∗(θ(φ), φ) = sup
θ∈Θ,φ∈Φ

L∗(θ, φ) (16)

In Ω, L∗ is a continuous function: ∀(θ, φ) ∈ Ω,

L∗(θ, φ) = −KL(φ) = −Ex∼p(x)KL (qφ(z|x) ‖ p(z))
(17)

Hence, continuous function L∗(θ(φ), φ) attains its
supremum on a compact set Φ at some point (θ∗, φ∗),
where θ∗ = θ(φ∗).

Lemma 5. Parameters (θ̃, φ̃) from theorem statement
are optimal:

L∗(θ̃, φ̃) = sup
θ∈Θ,φ∈Φ

L∗(θ, φ). (18)

Proof. Assume that L∗(θ̃, φ̃) < L∗(θ∗, φ∗). Since
(θ̃, φ̃) ∈ Ω and (θ∗, φ∗) ∈ Ω, L∗(θ̃, φ̃) = −KL(φ̃) and
L∗(θ∗, φ∗) = −KL(φ∗). As a result, from our assump-
tion, KL(φ∗) < KL(φ̃).

From continuity of KL(φ) divergence, for any ε > 0,
exists δ > 0 such that if ‖φ̃− φ‖ < δ,

KL(φ) > KL(φ̃)− ε = L∗(θ̃, φ̃)− ε (19)

From the convergence of φn to φ̃ and convergence of
τn to zero, there exists N1 such that for any n > N1,
‖φ̃− φn‖ < δ.

From pointwise convergence of Lτn at point (θ∗, φ∗)
to L∗(θ∗, φ∗), for any ε > 0, exists N2 such that
for all n > N2, Lτn(θ∗, φ∗) > L∗(θ∗, φ∗) − ε. Also,
Lτn(θn, φn) ≤ −KL(φn) from the definition of Lτn
as a negative KL divergence plus some non-positive
penalty for reconstruction error.

Taking n > max(N1, N2), we get the final chain of
inequalities:

Lτn(θn, φn) ≤ −KL(φn) < −KL(φ̃) + ε

= L∗(θ̃, φ̃) + ε < Lτn(θ∗, φ∗)− ε+ ε

= Lτn(θ∗, φ∗)

(20)
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Hence, Lτn(θn, φn) < Lτn(θ∗, φ∗), which contradicts
(θn, φn) ∈ Arg max of Lτn . As a result, L∗(θ̃, φ̃) =
L∗(θ∗, φ∗).

B Implementation details

For all experiments, we provide configuration files in
a human-readable format in the supplementary code.
Here we provide the same information for convenience.

B.1 Synthetic data

Encoder and decoder were GRUs with 2 layers of 128
neurons. The latent size was 2; embedding dimension
was 8. We trained the model for 100 epochs with Adam
optimizer with an initial learning rate 5 · 10−3, which
halved every 20 epochs. The batch size was 512. We
fine-tuned the model for 10 epochs after training by
fixing the encoder and learning only the decoder. For
a proposed model with a uniform prior and a uniform
proposal, we increased KL weight β linearly from 0 to
0.1 during 100 epochs. For the Gaussian and tricube
proposals, we increased KL weight β linearly from 0
to 1 during 100 epochs. For all three experiments, we
pretrained the autoencoder for the first two epochs with
β = 0. We annealed the temperature from 10−1 to
10−3 during 100 epochs of training in a log-linear scale.
For a tricube proposal, we annealed the temperature
to 10−2.

B.2 Binary MNIST

We binarized the dataset by thresholding original
MNIST pixels with a value of 0.3. We used a fully con-
nected neural network with layer sizes 784 → 256 →
128 → 32 → 2 with LeakyReLU activation functions.
We trained the model for 150 epochs with a starting
learning rate 5 · 10−3 that halved every 20 epochs. We
used a batch size 512 and clipped the gradient with
value 10. We increased β from 10−5 to 0.005 for VAE
and 0.05 for DD-VAE. We decreased the temperature
in a log scale from 0.01 to 0.0001.

B.3 MOSES

We used a 2-layer GRU network with a hidden size
of 512. Embedding size was 64, the latent space was
64-dimensional. We used a tricube proposal and a
Gaussian prior. We pretrained a model with a fixed
β for 20 epochs and then linearly increased β for 180
epochs. We halved the learning rate after pretraining.
For DD-VAE models, we decreased the temperature
in a log scale from 0.2 to 0.1. We linearly increased
β divergence from 0.0005 to 0.01 for VAE models and
from 0.0015 to 0.02.

B.4 ZINC

We used a 1-layer GRU network with a hidden size
of 1024. Embedding size was 64, the latent space was
64-dimensional. We used a tricube proposal and a
Gaussian prior. We trained a model for 200 epochs
with a starting learning rate 5 · 10−4 that halved every
50 epochs. We increased divergence weight β from 10−3

to 0.02 linearly during the first 50 epochs for DD-VAE
models, from 10−4 to 5 ·10−4 for VAE model, and from
10−4 to 8 ·10−4 for VAE model with a tricube proposal.
We decreased the temperature log-linearly from 10−3

to 10−4 during the first 100 epochs for DD-VAE models.
With such parameters we achieved a comparable train
sequence-wise reconstruction accuracy of 95%.

C MOSES distribution learning

In Figure 1, we report detailed results for the experi-
ment from Section 4.3.

D Best molecules found for ZINC

In Figure 2, Figure 3, Figure 4, and Figure 5 we show
the best molecules found with Bayesian optimization
during 10-fold cross validation.
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Figure 1: Distribution learning with deterministic de-
coding on MOSES dataset: FCD/Test (lower is better)
and SNN/Test (higher is better). Solid line: mean,
shades: std over multiple runs.
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Figure 2: DD-VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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Figure 3: DD-VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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Figure 4: VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross
validation and their scores.
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Figure 5: VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold
cross validation and their scores.
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