# (Supplementary) Deterministic Decoding for Discrete Data in Variational Autoencoders

Daniil Polykovskiy Insilico Medicine

## A Proof of Theorem 1

We prove the theorem using five lemmas.

**Lemma 1.**  $\mathcal{L}_{\tau}$  convergences to  $\mathcal{L}_{*}$  pointwise when  $\tau$  converges to 0 from the right:

$$\forall (\theta, \phi) \quad \lim_{\tau \to 0+} \mathcal{L}_{\tau}(\theta, \phi) = \mathcal{L}_{*}(\theta, \phi) \tag{1}$$

*Proof.* To prove Eq.1, we first show that our approximation in Eq.10 from the main paper converges pointwise to  $\mathbb{I}[x > 0]$ .  $\forall x \in \mathbb{R}$ :

$$\lim_{\tau \to 0+} \sigma_{\tau}(x) = \lim_{\tau \to 0+} \frac{1}{1 + e^{-x/\tau} \left[\frac{1}{\tau} - 1\right]} = \mathbb{I}\left[x > 0\right]$$
(2)

If x is negative, both  $e^{-x/\tau}$  and  $1/\tau$  converge to  $+\infty$ , hence  $\sigma_{\tau}(x)$  converges to zero. If x is zero, then  $\sigma_{\tau}(x) = \tau$  which also converges to zero. Finally, for positive x we apply L'Hôpital's rule to compute the limit:

$$\lim_{\tau \to 0+} \frac{e^{-x/\tau}}{\tau} = \lim_{\tau \to 0+} \frac{(1/\tau)'}{(e^{x/\tau})'} = \lim_{\tau \to 0+} \frac{e^{-x/\tau}}{x} = 1 \quad (3)$$

To prove the theorem, we consider two cases. First, if  $(\theta, \phi) \notin \Omega$ , then for some x, i, and  $x \neq s$ ,

$$\mathbb{E}_{z \sim q_{\phi}(z|x)} \mathbb{I}\left[\widetilde{\pi}_{x,i,x_{i}}^{\theta}(z) \leq \widetilde{\pi}_{x,i,s}^{\theta}(z)\right] > 0.$$
(4)

From the equation above follows that for given parameters the model violates indicators with positive probability. For those z, a smoothed indicator function takes values less than  $\tau$ , so the expectation of its logarithm tends to  $-\infty$  when  $\tau \to 0+$ .

The second case is  $(\theta, \phi) \in \Omega$ . Since  $\mathcal{L}_*(\theta, \phi) > -\infty$ , indicators are violated only with probability zero, which will not contribute to the loss neither in  $\mathcal{L}_*$ , nor in  $\mathcal{L}_{\tau}$ . For all x, i and s, consider a distribution of a random variable  $\delta = \tilde{\pi}_{x,i,x_i}^{\theta}(z) - \tilde{\pi}_{x,i,s}^{\theta}(z)$  obtained from a distribution  $q_{\phi}(z \mid x)$ . Let  $\delta_{\max} \leq 1$  be the maximal value of  $\delta$ . We now need to prove that

$$\lim_{\tau \to 0+} \mathbb{E}_{\delta \sim p(\delta)} \log \sigma_{\tau}(\delta) = 0 \tag{5}$$

For any  $\epsilon > 0$ , we select  $\delta_0 > 0$  such that  $p(\delta < \delta_0) < \epsilon$ . For the next step we will use the fact that  $\sigma_{\tau}(\delta_{1/2}) =$ 

# Dmitry Vetrov

National Research University Higher School of Economics

0.5, where  $\delta_{1/2} = \tau \log \left(\frac{1}{\tau} - 1\right)$ . By selecting  $\tau$  small enough such that  $\delta_{1/2} < \delta_0$ , we split the integration limit for  $\delta$  in expectation into three segments:  $(0, \delta_{1/2}]$ ,  $(\delta_{1/2}, \delta_0]$ ,  $(\delta_0, \delta_{\max})$ . A lower bound on  $\log \sigma_\tau(\delta)$  in each segment is given by its value in the left end:  $\log \tau$ ,  $\log 1/2$ ,  $\log \sigma_\tau(\delta_0)$ . Also, since  $p(\delta \leq 0) = 0$  and  $\delta$  is continuous on compact support of  $q_{\phi}(z \mid x)$ , density  $p(\delta)$ is bounded by some constant M. Such estimation gives us the final lower bound using pointwise convergence of  $\sigma_\tau(\delta)$ :

$$0 \geq \mathbb{E}_{\delta \sim p(\delta)} \log \sigma_{\tau}(\delta) \geq M \cdot \underbrace{\log \tau \cdot \delta_{1/2}}_{\lim_{\tau \to 0^+} \cdots = 0} + \epsilon \cdot \log 1/2 + \epsilon \cdot \log 1/2 + M \cdot \underbrace{\log \sigma_{\tau}(\delta_0)}_{\lim_{\tau \to 0^+} \cdots = 0} \cdot (\delta_{\max} - \delta) \to_{\tau \to 0^+} \epsilon \cdot \log 1/2.$$
(6)

We used  $\lim_{\tau\to 0+} \log \tau \cdot \delta_{1/2} = 0$  which can be proved by applying the L'Hôpital's rule twice.

**Proposition 1.** For our model,  $\mathcal{L}_*$  is finite if and only if a sequence-wise reconstruction error rate is zero:

$$(\theta, \phi) \in \Omega \Leftrightarrow \Delta(\widetilde{x}_{\theta}, \phi) = 0 \tag{7}$$

**Lemma 2.** Sequence-wise reconstruction error rate  $\Delta(\phi)$  is continuous.

*Proof.* Following equicontinuity in total variation of  $q_{\phi}(z \mid x)$  at  $\phi$  for any x and finiteness of  $\chi$ , for any  $\epsilon > 0$  there exists  $\delta > 0$  such that for any  $x \in \chi$  and any  $\phi'$  such that  $\|\phi - \phi'\| < \delta$ 

$$\int |q_{\phi}(z|x) - q_{\phi'}(z|x)| \, dz < \epsilon.$$
(8)

For parameters  $\phi$  and  $\phi'$ , we estimate the difference in

 $\Delta$  function values

$$\Delta(\phi) - \Delta(\phi') = \underbrace{\Delta(\widetilde{x}_{\phi}^*, \phi) - \Delta(\widetilde{x}_{\phi'}^*, \phi)}_{\leq 0} + \Delta(\widetilde{x}_{\phi'}^*, \phi) - \Delta(\widetilde{x}_{\phi'}^*, \phi') \\ \leq \mathbb{E}_{x \sim p(x)} \underbrace{\int (q_{\phi}(z|x) - q_{\phi'}(z|x)) \mathbb{I}\left[\widetilde{x}_{\phi'}^*(z) \neq x\right] dz}_{<\epsilon} \\ \leq \epsilon$$
(9)

Symmetrically,  $\Delta(\phi') - \Delta(\phi) \leq \epsilon$ , resulting in  $\Delta(\phi)$  being continuous.

**Lemma 3.** Sequence-wise reconstruction error rate  $\Delta(\phi_n)$  converges to zero:

$$\lim_{n \to +\infty} \Delta(\phi_n) = \Delta(\widetilde{\phi}) = 0.$$
 (10)

The convergence rate is  $\mathcal{O}(\frac{1}{\log(1/\tau_n)})$ .

Proof. Since  $\Omega$  is not empty, there exists  $(\hat{\theta}, \hat{\phi}) \in \Omega$ . From pointwise convergence of  $\mathcal{L}_{\tau}$  to  $\mathcal{L}_{*}$  at point  $(\hat{\theta}, \hat{\phi})$ , for any  $\epsilon > 0$  exists N such that for any n > N:

$$\underbrace{\mathcal{L}_{\tau_n}(\theta_n, \phi_n) \ge \mathcal{L}_{\tau_n}(\widehat{\theta}, \widehat{\phi})}_{\text{from the definition of } (\theta_n, \phi_n)} \ge \mathcal{L}_*(\widehat{\theta}, \widehat{\phi}) - \epsilon.$$
(11)

Next, we derive an upper bound on  $\mathcal{L}_{\tau_n}(\theta_n, \phi_n)$  using the fact that  $\log \sigma_{\tau}(x) < 0$  if x > 0, and  $\log \sigma_{\tau}(x) \le \log \tau_n$  if  $x \le 0$ :

$$\mathcal{L}_{\tau_n}(\theta_n, \phi_n) \leq \mathbb{E}_{x \sim p(x)} \left[ \mathbb{E}_{z \sim q_\phi(z|x)} \sum_{i=1}^{|x|} \sum_{s \neq x_i} \log \tau_n \cdot \mathbb{I}\left[ \pi_{x,i,x_i}(z) \leq \pi_{x,i,s}(z) \right] \underbrace{-\mathcal{KL}q_\phi(z \mid x)p(z)}_{\leq 0} \right]$$
$$\leq |V|L \cdot \log \tau_n \cdot \Delta(\widetilde{x}_{\theta_n}, \phi_n). \tag{12}$$

Combining Eq. 11 and Eq. 12 together we get

$$|V|L \cdot \underbrace{\log \tau_n}_{<0} \cdot \Delta(\widetilde{x}_{\theta_n}, \phi_n) \ge \mathcal{L}_*(\theta^*, \phi^*) - \epsilon \qquad (13)$$

Adding the definition of  $\Delta(\phi)$ , we obtain

$$0 \le \Delta(\phi_n) \le \Delta(\widetilde{x}_{\theta_n}, \phi_n) \le \frac{\epsilon - \mathcal{L}_*(\theta^*, \phi^*)}{|V| L \cdot \log(1/\tau_n)} \quad (14)$$

The right hand side goes to zero when n goes to infinity and hence  $\lim_{n\to+\infty} \Delta(\tilde{x}_{\theta_n}, \phi_n) = 0$  and  $\lim_{n\to+\infty} \Delta(\phi_n) = 0$  with the convergence rate  $\mathcal{O}(\frac{1}{\log(1/\tau_n)})$ . Since  $\Delta(\phi_n)$  is continuous,  $\Delta(\tilde{\phi}) = 0$ .  $\Box$ 

**Lemma 4.**  $\mathcal{L}_*(\theta, \phi)$  attains its supremum:

$$\exists \theta^* \in \Theta, \phi^* \in \Phi : \mathcal{L}_*(\theta^*, \phi^*) = \sup_{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_*(\theta, \phi).$$
(15)

*Proof.* From Lemma 3,  $\Delta(\tilde{\phi}) = 0$ . Hence, for a choice of  $\tilde{\theta}$  from the theorem statement,  $\Delta(\tilde{\theta}, \tilde{\phi}) = 0$ . Equivalently,  $(\tilde{\theta}, \tilde{\phi}) \in \Omega$ .

Note that since  $\Delta(\phi) \geq 0$  is continuous on a compact set,  $\Phi_0 = \{\phi \mid \Delta(\phi) = 0\}$  is a compact set. Also,  $\mathcal{L}_*(\theta, \phi)$  is constant with respect to  $\theta$  on  $\Omega$ . From the theorem statement, for any  $\phi$  such that  $\Delta(\phi) = 0$ , there exists  $\theta(\phi)$  such that  $(\theta(\phi), \phi) \in \Omega$ . Combining all statements together,

$$\sup_{\phi \in \Phi_0} \mathcal{L}_*(\theta(\phi), \phi) = \sup_{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_*(\theta, \phi)$$
(16)

In  $\Omega$ ,  $\mathcal{L}_*$  is a continuous function:  $\forall (\theta, \phi) \in \Omega$ ,

$$\mathcal{L}_*(\theta, \phi) = -\mathcal{K}\mathcal{L}(\phi) = -\mathbb{E}_{x \sim p(x)}\mathcal{K}\mathcal{L}\left(q_\phi(z|x) \| p(z)\right)$$
(17)

Hence, continuous function  $\mathcal{L}_*(\theta(\phi), \phi)$  attains its supremum on a compact set  $\Phi$  at some point  $(\theta^*, \phi^*)$ , where  $\theta^* = \theta(\phi^*)$ .

**Lemma 5.** Parameters  $(\tilde{\theta}, \tilde{\phi})$  from theorem statement are optimal:

$$\mathcal{L}_*(\widetilde{\theta}, \widetilde{\phi}) = \sup_{\theta \in \Theta, \phi \in \Phi} \mathcal{L}_*(\theta, \phi).$$
(18)

Proof. Assume that  $\mathcal{L}_*(\tilde{\theta}, \tilde{\phi}) < \mathcal{L}_*(\theta^*, \phi^*)$ . Since  $(\tilde{\theta}, \tilde{\phi}) \in \Omega$  and  $(\theta^*, \phi^*) \in \Omega$ ,  $\mathcal{L}_*(\tilde{\theta}, \tilde{\phi}) = -\mathcal{KL}(\tilde{\phi})$  and  $\mathcal{L}_*(\theta^*, \phi^*) = -\mathcal{KL}(\phi^*)$ . As a result, from our assumption,  $\mathcal{KL}(\phi^*) < \mathcal{KL}(\tilde{\phi})$ .

From continuity of  $\mathcal{KL}(\phi)$  divergence, for any  $\epsilon > 0$ , exists  $\delta > 0$  such that if  $\|\widetilde{\phi} - \phi\| < \delta$ ,

$$\mathcal{KL}(\phi) > \mathcal{KL}(\widetilde{\phi}) - \epsilon = \mathcal{L}_*(\widetilde{\theta}, \widetilde{\phi}) - \epsilon$$
(19)

From the convergence of  $\phi_n$  to  $\phi$  and convergence of  $\tau_n$  to zero, there exists  $N_1$  such that for any  $n > N_1$ ,  $\|\tilde{\phi} - \phi_n\| < \delta$ .

From pointwise convergence of  $\mathcal{L}_{\tau_n}$  at point  $(\theta^*, \phi^*)$ to  $\mathcal{L}_*(\theta^*, \phi^*)$ , for any  $\epsilon > 0$ , exists  $N_2$  such that for all  $n > N_2$ ,  $\mathcal{L}_{\tau_n}(\theta^*, \phi^*) > \mathcal{L}_*(\theta^*, \phi^*) - \epsilon$ . Also,  $\mathcal{L}_{\tau_n}(\theta_n, \phi_n) \leq -\mathcal{KL}(\phi_n)$  from the definition of  $\mathcal{L}_{\tau_n}$ as a negative  $\mathcal{KL}$  divergence plus some non-positive penalty for reconstruction error.

Taking  $n > \max(N_1, N_2)$ , we get the final chain of inequalities:

$$\mathcal{L}_{\tau_n}(\theta_n, \phi_n) \leq -\mathcal{K}\mathcal{L}(\phi_n) < -\mathcal{K}\mathcal{L}(\phi) + \epsilon$$
  
=  $\mathcal{L}_*(\widetilde{\theta}, \widetilde{\phi}) + \epsilon < \mathcal{L}_{\tau_n}(\theta^*, \phi^*) - \epsilon + \epsilon$   
=  $\mathcal{L}_{\tau_n}(\theta^*, \phi^*)$  (20)

Hence,  $\mathcal{L}_{\tau_n}(\theta_n, \phi_n) < \mathcal{L}_{\tau_n}(\theta^*, \phi^*)$ , which contradicts  $(\theta_n, \phi_n) \in \operatorname{Arg\,max}$  of  $\mathcal{L}_{\tau_n}$ . As a result,  $\mathcal{L}_*(\widetilde{\theta}, \widetilde{\phi}) = \mathcal{L}_*(\theta^*, \phi^*)$ .

# **B** Implementation details

For all experiments, we provide configuration files in a human-readable format in the supplementary code. Here we provide the same information for convenience.

## B.1 Synthetic data

Encoder and decoder were GRUs with 2 layers of 128 neurons. The latent size was 2; embedding dimension was 8. We trained the model for 100 epochs with Adam optimizer with an initial learning rate  $5 \cdot 10^{-3}$ , which halved every 20 epochs. The batch size was 512. We fine-tuned the model for 10 epochs after training by fixing the encoder and learning only the decoder. For a proposed model with a uniform prior and a uniform proposal, we increased  $\mathcal{KL}$  weight  $\beta$  linearly from 0 to 0.1 during 100 epochs. For the Gaussian and tricube proposals, we increased  $\mathcal{KL}$  weight  $\beta$  linearly from 0 to 1 during 100 epochs. For all three experiments, we pretrained the autoencoder for the first two epochs with  $\beta = 0$ . We annealed the temperature from  $10^{-1}$  to  $10^{-3}$  during 100 epochs of training in a log-linear scale. For a tricube proposal, we annealed the temperature to  $10^{-2}$ .

#### B.2 Binary MNIST

We binarized the dataset by thresholding original MNIST pixels with a value of 0.3. We used a fully connected neural network with layer sizes  $784 \rightarrow 256 \rightarrow 128 \rightarrow 32 \rightarrow 2$  with LeakyReLU activation functions. We trained the model for 150 epochs with a starting learning rate  $5 \cdot 10^{-3}$  that halved every 20 epochs. We used a batch size 512 and clipped the gradient with value 10. We increased  $\beta$  from  $10^{-5}$  to 0.005 for VAE and 0.05 for DD-VAE. We decreased the temperature in a log scale from 0.01 to 0.0001.

## B.3 MOSES

We used a 2-layer GRU network with a hidden size of 512. Embedding size was 64, the latent space was 64-dimensional. We used a tricube proposal and a Gaussian prior. We pretrained a model with a fixed  $\beta$  for 20 epochs and then linearly increased  $\beta$  for 180 epochs. We halved the learning rate after pretraining. For DD-VAE models, we decreased the temperature in a log scale from 0.2 to 0.1. We linearly increased  $\beta$  divergence from 0.0005 to 0.01 for VAE models and from 0.0015 to 0.02.

## B.4 ZINC

We used a 1-layer GRU network with a hidden size of 1024. Embedding size was 64, the latent space was 64-dimensional. We used a tricube proposal and a Gaussian prior. We trained a model for 200 epochs with a starting learning rate  $5 \cdot 10^{-4}$  that halved every 50 epochs. We increased divergence weight  $\beta$  from  $10^{-3}$  to 0.02 linearly during the first 50 epochs for DD-VAE models, from  $10^{-4}$  to  $5 \cdot 10^{-4}$  for VAE model, and from  $10^{-4}$  to  $8 \cdot 10^{-4}$  for VAE model with a tricube proposal. We decreased the temperature log-linearly from  $10^{-3}$  to  $10^{-4}$  during the first 100 epochs for DD-VAE models. With such parameters we achieved a comparable train sequence-wise reconstruction accuracy of 95%.

# C MOSES distribution learning

In Figure 1, we report detailed results for the experiment from Section 4.3.

# D Best molecules found for ZINC

In Figure 2, Figure 3, Figure 4, and Figure 5 we show the best molecules found with Bayesian optimization during 10-fold cross validation.



Figure 1: Distribution learning with deterministic decoding on MOSES dataset: FCD/Test (lower is better) and SNN/Test (higher is better). Solid line: mean, shades: std over multiple runs.



Figure 2: DD-VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.



Figure 3: DD-VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.



Figure 4: VAE with Tricube proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.



Figure 5: VAE with Gaussian proposal. The best molecules found with Bayesian optimization during 10-fold cross validation and their scores.