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1 Proximal Operators

1.1 Motivation

We consider the following framework for proximal al-
gorithms, namely a composite minimization problem

min
x∈E

Φ(x) := f(x) + g(x) (1)

where E is an n-dimensional Euclidean space. We
make the following assumptions:

• g is a non-degenerate, closed, and convex function
over E

• f is non-degenerate, closed function, with dom(f)
convex, and has L-Lipschitz gradients over the in-
terior of its domain

• dom(g) ⊆ int(dom(f))

• the solution set, S, is non-empty.

Solving this composite problem with gradient descent
is not advisable, since g is not necessarily differen-
tiable. The best one can hope for is that g has a
subgradient at x ∈ E , defined as an element v ∈ E
such that

g(y) ≥ g(x) + 〈v, y − x〉 (y ∈ E). (2)

The collection of subgradients of g is called the subd-
ifferential of g, denoted by ∂g(·). When a function is
differentiable, the subdifferential is a singleton, namely
∂f(x) = {∇f(x)}. For an simple example of a subd-
ifferentiable function, one can take the absolute value
function;

∂| · |(x) =


+1 sign(x) > 0,

−1 sign(x) < 0,

[−1, 1] x = 0.

Since Φ is a non-convex problem (because f is poten-
tially not convex), our goal is to iteratively generate a
sequence {x(k)} that converges to x∗ ∈ S, where x∗ is

a stationary point i.e. 0 ∈ ∂Φ(x∗). A characterization
of these stationary points is the following fixed-point
representation (we take λ > 0):

0 ∈ ∂Φ(x∗) ⇐⇒ 0 ∈ ∇f(x∗) + ∂g(x∗)

⇐⇒ x∗ − λ∇f(x∗) ∈ x∗ + λ∂g(x∗)

⇐⇒ x∗ − λ∇f(x∗) ∈ (Id + λ∂g)(x∗)

⇐⇒ x∗ = (Id + λ∂g)−1 (x∗ − λ∇f(x∗))

where (Id + λ∂g)−1(·) =: Proxλg(·) is defined as the
proximal operator of g

Proxλg(x) := argminu∈E

{
g(u) +

1

2λ
‖x− u‖22

}
(λ > 0).

(3)

The first line in the equivalence chain uses addition
of subdifferentiability, which is guaranteed by our as-
sumptions, and the rest is algebraic manipulation.
Thus, to generate a stationary point, it suffices to find
a fixed point of the sequence generated in the following
manner:

x(k+1) = Proxtkg(x
(k) − tk∇f(x(k))), (4)

where tk > 0 is some step size. The proximal operator
exists for any convex function, but this is not a strict
requirement.

1.2 Moreau Decomposition Theorem

The following is a result that is helpful for deriving
proximal operators of `p norms.

Theorem 1 (Moreau Decomposition Theorem)
Let f : E → R ∩ {+∞} be closed, proper and convex.
Then for λ > 0, the following holds:

Proxλf (x) + λProxλ−1f∗(x/λ) = x,

where f∗ is the conjugate function to f . While conju-
gate functions are outside the scope of this paper, we
refer the interested reader to (Rockafellar and Wets,
2009) for more information. The following corollary
follows



Suppl. materials: generating adversarial images under non-smooth dissimiliarity

Corollary 1 Let f := λ‖·‖p, with f∗ := δBq , where Bq
is the unit ball for the dual norm to p, with p−1+q−1 =
1. By the Moreau Decomposition Theorem,

Proxλ‖·‖p(x) = x− λProjBq
(x/λ).

1.3 Proximal operators for specific `p norms

In lieu of Cororollary 1, if we can perform efficient
projections, then we have our proximal operators.
For the proximal operator of the `∞ norm, we refer
the reader to (Duchi et al., 2008). The runtime
is O(n log n); we have implemented a batch-wise
version in our public repository. For the `2 norm, we
perform a quick projection onto the `2 norm ball via
normalization. Projections onto the `∞ norm ball is
straight-forward, which gives the proximal operator
for `1.

For the proximal operators for Total Variation
and the `0 counting function, we refer the reader to
(Beck, 2017) for a complete discussion. We remark
that another interesting, non-differentiable dissimilar-
ity metric is the Ordered-Weighted L1 (OWL) norm,
which also has a proximal operator representation,
see (Zeng and Figueiredo, 2014) for more information.

2 Adversarial Training

We briefly address details of our adversarial training
methodology. On MNIST, we used the network de-
scribed in (Papernot et al., 2015). In terms of ad-
versarial training, we performed 40 steps of Projected
Gradient Descent (PGD), and a constraint radius of
0.3 in the `∞ metric. On CIFAR10, we trained a
ResNeXt-34 (Xie et al., 2016), and used 7 steps of
PGD with radius 8/255 in the `∞ metric. The re-
maining hyperparameters are the same as those found
in (Madry et al., 2017).
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