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1 Proximal Operators

1.1 Motivation

We consider the following framework for proximal al-

gorithms, namely a composite minimization problem
min &(z) := f(x) + g(z) (1)
€€

where £ is an n-dimensional Euclidean space. We
make the following assumptions:

e g is a non-degenerate, closed, and convex function
over £

e fis non-degenerate, closed function, with dom(f)
convex, and has L-Lipschitz gradients over the in-
terior of its domain

e dom(g) C int(dom(f))

e the solution set, S, is non-empty.

Solving this composite problem with gradient descent
is not advisable, since ¢ is not necessarily differen-
tiable. The best one can hope for is that g has a
subgradient at x € &, defined as an element v € &
such that

(y €&). (2)

The collection of subgradients of g is called the subd-
ifferential of g, denoted by dg(-). When a function is
differentiable, the subdifferential is a singleton, namely
Of(z) = {Vf(x)}. For an simple example of a subd-
ifferentiable function, one can take the absolute value
function;

9(y) > g(x) + (v,y — )

+1 sign(z) > 0,
- |(z) =14 -1 sign(z) < 0,
[~1,1] z=0.

Since ® is a non-convex problem (because f is poten-
tially not convex), our goal is to iteratively generate a
sequence {z(F)} that converges to 2* € S, where z* is

a stationary point i.e. 0 € 0®(z*). A characterization
of these stationary points is the following fixed-point
representation (we take A > 0):

0€0%(z") < 0 Vf(z*)+ dg(x™)
— " = AV f(z¥) € " + Xdg(z")
— 2" = AVf(z7) € (Id + Adg)(z")
= 2" = (Id+ N\g) ! (2% — A\Vf(z"))

where (Id + A9g)~!(-) =: Prox,,(-) is defined as the
proximal operator of g

1
Prox)y(x) := argmin ¢ {g(u) + ﬁHx - u||§} (A >0).
(3)

The first line in the equivalence chain uses addition
of subdifferentiability, which is guaranteed by our as-
sumptions, and the rest is algebraic manipulation.
Thus, to generate a stationary point, it suffices to find
a fixed point of the sequence generated in the following
manner:

g ) = Prox,, ,(x®) — 1,V f(z M), (4)

where t; > 0 is some step size. The proximal operator
exists for any convex function, but this is not a strict
requirement.

1.2 Moreau Decomposition Theorem

The following is a result that is helpful for deriving
proximal operators of £, norms.

Theorem 1 (Moreau Decomposition Theorem)
Let f: & = RN {400} be closed, proper and convez.
Then for A > 0, the following holds:

Proxyy(x) + AProxy-1+ (x/A) = x,

where f* is the conjugate function to f. While conju-
gate functions are outside the scope of this paper, we
refer the interested reader to (Rockafellar and Wets,
2009) for more information. The following corollary
follows
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Corollary 1 Let f := A||-||,, with f* := dp,, where B,
is the unit ball for the dual norm to p, withp~'4+q¢~! =
1. By the Moreau Decomposition Theorem,

Prozy., (x) = & — AProfg_(z/A).

1.3 Proximal operators for specific /, norms

In lieu of Cororollary 1, if we can perform efficient
projections, then we have our proximal operators.
For the proximal operator of the ¢, norm, we refer
the reader to (Duchi et al., 2008). The runtime
is O(nlogn); we have implemented a batch-wise
version in our public repository. For the 5 norm, we
perform a quick projection onto the 5 norm ball via
normalization. Projections onto the /., norm ball is
straight-forward, which gives the proximal operator
for ¢;.

For the proximal operators for Total Variation
and the ¢y counting function, we refer the reader to
(Beck, 2017) for a complete discussion. We remark
that another interesting, non-differentiable dissimilar-
ity metric is the Ordered-Weighted L1 (OWL) norm,
which also has a proximal operator representation,
see (Zeng and Figueiredo, 2014) for more information.

2 Adversarial Training

We briefly address details of our adversarial training
methodology. On MNIST, we used the network de-
scribed in (Papernot et al., 2015). In terms of ad-
versarial training, we performed 40 steps of Projected
Gradient Descent (PGD), and a constraint radius of
0.3 in the ¢, metric. On CIFARI10, we trained a
ResNeXt-34 (Xie et al., 2016), and used 7 steps of
PGD with radius 8/255 in the o, metric. The re-
maining hyperparameters are the same as those found
in (Madry et al., 2017).
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