A Proofs

A. 1 Proof of Lemma 1

Proof. Let $P=\mathcal{N}\left(0, \mathcal{I}_{p}\right)$ be the isotropic normal distribution. Let $R_{P}(\theta)=\mathbb{E}_{z \sim P}\left[\ell\left(\|z-\theta\|_{2}\right)\right]$, where $\ell: \mathbb{R} \mapsto \mathbb{R}$ is a convex loss, and let $\theta(P)=\operatorname{argmin}_{\theta} R_{P}(\theta)$ be the minimizer of the population risk. We assume that $\psi(\cdot)=$ $\ell^{\prime}(\cdot)<C$ is bounded. Note that when the derivative is unbounded, it is easy to argue that the corresponding risk will be non-robust. We also assumed that this risk is fisher-consistent for the Gaussian-distribution, i.e. $\theta(P)=0$. For notational convenience, let $u(t)=\frac{\psi(t)}{t}$. Then,

$$
\nabla R_{P}(\theta)=-\mathbb{E}_{z \sim P}[\underbrace{\frac{\psi\left(\|z-\theta\|_{2}\right)}{\|z-\theta\|_{2}}}_{u\left(\|z-\theta\|_{2}\right)}(z-\theta)]
$$

As before, let $P_{\epsilon}=(1-\epsilon) P+\epsilon Q$. Then, we are interested in studying $\widehat{\theta}\left(P_{\epsilon}\right)$. To do this, by first order optimality, we know that $\theta\left(P_{\epsilon}\right)$ is a solution to the following equation:

$$
(1-\epsilon) \nabla R_{P}\left(\theta\left(P_{\epsilon}\right)\right)+\epsilon \nabla R_{Q}\left(\theta\left(P_{\epsilon}\right)\right)=0
$$

First we calculate the derivative of $\theta\left(P_{\epsilon}\right)$ w.r.t. ϵ using the fixed point above. Taking derivative of the above equation w.r.t. ϵ

$$
\begin{equation*}
(1-\epsilon) \nabla^{2} R_{P}\left(\theta\left(P_{\epsilon}\right)\right) \dot{\theta}\left(P_{\epsilon}\right)-\nabla R_{P}\left(\theta\left(P_{\epsilon}\right)\right)+\epsilon \nabla^{2} R_{Q}\left(\theta\left(P_{\epsilon}\right)\right) \dot{\theta}\left(P_{\epsilon}\right)+\nabla R_{Q}\left(\theta\left(P_{\epsilon}\right)\right)=0 \tag{8}
\end{equation*}
$$

Under our assumption that ψ is continuous, we get that at $\epsilon=0$,

$$
\begin{equation*}
\dot{\theta}\left(P_{\epsilon}\right)_{\mid \epsilon=0}=\left(-\nabla^{2} R_{P}(\theta(P))\right)^{-1} \nabla R_{Q}(\theta(P)) \tag{9}
\end{equation*}
$$

By fisher consistency of ℓ for $\mathcal{N}\left(0, \mathcal{I}_{p}\right)$, we have that $\theta(P)=0$. Suppose that Q is a point mass distribution with all mass on θ_{Q}. Then, we have that,

$$
\nabla R_{Q}(0)=-u\left(\left\|\theta_{Q}\right\|_{2}\right) \theta_{Q}
$$

Our next step is to lower bound the operator norm of $-\nabla^{2} R_{P}(\theta(P))$. To do this we show that for any unit vector $v \in \mathcal{S}^{p-1}, v^{T}\left(-\nabla^{2} R_{P}(\theta(P))\right) v \leq \frac{C_{2}}{\sqrt{p}}$.

$$
\nabla^{2} R_{P}(\theta)=-\mathbb{E}_{z \sim P}\left[u\left(\|z-\theta\|_{2}\right) \mathcal{I}_{p}+\frac{u^{\prime}\left(\|z-\theta\|_{2}\right)}{\|z-\theta\|_{2}}\left((z-\theta)(z-\theta)^{T}\right)\right]
$$

Now, by definition $u(t)=\psi(t) / t$, so $u^{\prime}(s)=\left(\psi^{\prime}(s)-u(s)\right) / s$. Plugging this above,

$$
\left.\left.\nabla^{2} R_{P}(\theta)=-E_{z \sim P}\left[u\left(\|z-\theta\|_{2}\right)\left(\mathcal{I}_{p}-\frac{\left.(z-\theta)(z-\theta)^{T}\right)}{\|z-\theta\|_{2}^{2}}\right)+\frac{\psi^{\prime}\left(\|z-\theta\|_{2}\right)}{\|z-\theta\|_{2}^{2}}(z-\theta)(z-\theta)^{T}\right)\right)\right]
$$

Hence, we get that

$$
v^{T} \nabla^{2} R_{P}(0) v=-\mathbb{E}_{z \sim N\left(0, I_{p}\right)}\left[u\left(\|z\|_{2}\right)\left(\|v\|_{2}^{2}-\left(v^{T}\left(z /\|z\|_{2}\right)\right)^{2}\right)+\psi^{\prime}\left(\|z\|_{2}\right)\left(v^{T}\left(z /\|z\|_{2}\right)\right)^{2}\right]
$$

Further for Isotropic Gaussian, $\|z\|_{2}$ and $z /\|z\|_{2}$ are independent random variables. Also, since, $z /\|z\|_{2}$ is uniformly distributed on unit sphere, we get that $\left.\mathbb{E}_{z \sim N(0, I)}\left[\left(v^{T} z /\|z\|_{2}\right)^{2}\right)\right]=\|v\|_{2}^{2} / p$.

$$
\left(v^{T}\left(-\nabla^{2} R_{P}(0)\right) v\right)=\underbrace{\mathbb{E}_{z \sim N\left(0, I_{p}\right)}\left[u\left(\|z\|_{2}\right)\right](1-1 / p)}_{\mathbf{T 1}}+\underbrace{\mathbb{E}_{z \sim N\left(0, I_{p}\right)}\left[\psi^{\prime}\left(\|z\|_{2}\right)\right] / p}_{\mathbf{T} 2}
$$

- Controlling T1

$$
\begin{align*}
\mathbb{E}_{z \sim N\left(0, I_{p}\right)}\left[u\left(\|z\|_{2}\right)\right] & =\mathbb{E}_{z \sim \mathcal{N}\left(0, I_{p}\right)}\left[\frac{\psi\left(\|z\|_{2}\right)}{\|z\|_{2}}\right] \\
& \leq \sqrt{C \mathbb{E} \frac{1}{\|z\|_{2}^{2}}} \\
& \leq \frac{\sqrt{C_{1}}}{\sqrt{p-2}} \tag{10}
\end{align*}
$$

where we use that ψ is bounded by constant C. The last inequality is combination of Jensen's Inequality and plugging the mean of reciprocal of inverse chi-squared random variable (Bernardo and Smith, 2009).

- Controlling T2. Under our assumption that $\psi^{\prime}(\cdot)$ exists and is bounded, we get that $T 2 \leq \frac{C_{1}}{p}$ and can be ignored.

Hence, for large p, we get that $\left(v^{T}\left(-\nabla^{2} R_{P}(0)\right) v\right) \leq \sqrt{C_{1} / p}$. Now, if we put θ_{Q} at ∞, and use that $\psi(\infty)=C_{1}$, we get that,

$$
\left\|\dot{\theta}\left(P_{\epsilon}\right)\right\|_{2}=\psi\left(\left\|\theta_{Q}\right\|_{2}\right)\left\|\nabla^{2} R_{P}(0) \frac{\theta_{Q}}{\left\|\theta_{Q}\right\|_{2}}\right\|_{2} \geq C_{2} \sqrt{p}
$$

A. 2 Proof of Lemma 2

Proof. Let $P=N\left(0, \mathcal{I}_{p}\right)$. Every subset of size $(1-\epsilon) n$ can be thought of as samples from a mixture distribution defined in (3), where the mixture proportion η, ranges from $[0, \epsilon /(1-\epsilon)]$. In the asymptotic setting of $n \mapsto \infty$, the empirical squared loss over each subset corresponds to the population risk with the sampling distribution as P_{η}. For a given contamination distribution Q, let $R_{P_{\eta}}(\theta)=\mathbb{E}_{x \sim P_{\eta}}\left[\|x-\theta\|_{2}^{2}\right]$ and let $\theta\left(P_{\eta}\right) \stackrel{\text { def }}{=} \operatorname{argmin}_{\theta} R_{P_{\eta}}(\theta)$, then subset risk minimization returns,

$$
\begin{align*}
& \hat{\theta}_{\mathrm{SRM}}=\theta\left(P_{\eta^{*}}\right) \tag{11}\\
& \text { where } \eta^{*}=\underset{\eta \in\left[0, \frac{\epsilon}{1-\epsilon}\right]}{\operatorname{argmin}} R_{P_{\eta}}\left(\theta\left(P_{\eta}\right)\right)
\end{align*}
$$

We are interested in bounding the bias of SRM i.e.

$$
\sup _{Q}\left\|\widehat{\theta}_{\mathrm{SRM}}-\theta^{*}\right\|_{2}
$$

To do this, we know that for any contamination distribution Q, the solution of SRM necessarily satisfies the following conditions.
Condition 1: Local Stationarity. $\theta\left(P_{\eta}\right)=\operatorname{argmin}_{\theta} R_{P_{\eta}}(\theta)$ is the minimizer of the risk with respect to a mixture distribution iff

$$
\begin{align*}
\nabla R_{P_{\eta}}\left(\theta\left(P_{\eta}\right)\right) & =(1-\eta) \nabla R_{P_{\theta^{*}}}\left(\theta\left(P_{\eta}\right)\right) \\
& +\eta \nabla R_{Q}\left(\theta\left(P_{\eta}\right)\right)=0 \tag{12}
\end{align*}
$$

Condition 2: Global Fit Optimality. $\widehat{\theta}_{\mathrm{SRM}}=\theta\left(P_{\eta^{*}}\right)$ is the global minimizer of the population risk over all mixture distributions iff

$$
\begin{align*}
R_{P_{\eta^{*}}}\left(\theta\left(P_{\eta^{*}}\right)\right) & =\left(1-\eta^{*}\right) R_{P_{0}}\left(\theta\left(P_{\eta^{*}}\right)\right)+\eta^{*} R_{Q}\left(\theta\left(P_{\eta^{*}}\right)\right) \\
& \leq R_{P_{\eta}}\left(\theta\left(P_{\eta}\right)\right) \quad \forall \eta \in\left[0, \frac{\epsilon}{1-\epsilon}\right] \tag{13}
\end{align*}
$$

Using Conditions 1 and 2, we next derive the bias of SRM for mean estimation.
We make a few simple observations.

- Observation 1. For any distribution P, we have,

$$
R_{P}(\theta)=\operatorname{trace}(\Sigma(P))+\|\theta-\mu(P)\|_{2}^{2}
$$

- Observation 2. Condition 1 reduces to,

$$
\mu\left(P_{\eta}\right)=\theta_{\eta}=(1-\eta) \mu(P)+\eta \mu(Q),
$$

where $\mu(\cdot)$ is the Expectation functional.
Lemma 9. Under the mixture model in Equation (3), for the squared error, we have that,

$$
R_{P_{\eta}}\left(\theta_{\eta}\right)=\operatorname{trace}\left(\Sigma\left(P_{\eta}\right)\right)=(1-\eta) \operatorname{trace}\left(\Sigma\left(P^{*}\right)\right)+\eta \operatorname{trace}(\Sigma(Q))+\eta(1-\eta)\left\|\mu\left(P^{*}\right)-\mu(Q)\right\|_{2}^{2}
$$

Now, from Lemma 9, we know that

$$
R_{P_{\eta}}\left(\theta_{\eta}\right)=(1-\eta) \operatorname{trace}(\Sigma(P))+\eta \operatorname{trace}(\Sigma(Q))+\eta(1-\eta)\|\mu(P)-\mu(Q)\|_{2}^{2}
$$

As a function of $\eta, R_{P_{\eta}}\left(\theta_{\eta}\right)$ is a concave quadratic function. Hence, it is always minimized at the end points of the interval $[0, \epsilon /(1-\epsilon)]$, which implies that $\eta^{*} \in\left\{0, \frac{\epsilon}{1-\epsilon}\right\}$.

Hence, we have that,

$$
\widehat{\theta}_{\mathrm{SRM}}=\left\{\begin{array}{ll}
\theta_{\frac{\epsilon}{1-\epsilon}}, & \text { if } R_{P_{\frac{\epsilon}{1-\epsilon}}\left(\theta_{\frac{\epsilon}{1-\epsilon}}\right) \leq R_{P_{0}}\left(\theta_{0}\right)}^{\theta^{*},}
\end{array} \text { otherwise } .\right.
$$

From Lemma $9, R_{P_{\frac{\epsilon}{1-\epsilon}}}\left(\theta_{\frac{\epsilon}{1-\epsilon}}\right) \leq R_{P_{0}}\left(\theta_{0}\right)$ iff

$$
\left(1-\frac{\epsilon}{1-\epsilon}\right)\|\mu(P)-\mu(Q)\|_{2}^{2} \leq \operatorname{trace}(\Sigma(P))-\operatorname{trace}(\Sigma(Q))
$$

Moreover, from Observation 2, we have that,

$$
\left\|\theta_{\frac{\epsilon}{1-\epsilon}}-\mu(P)\right\|_{2}=\frac{\epsilon}{1-\epsilon}\|\mu(P)-\mu(Q)\|_{2}
$$

Combining the above two, we get that,

$$
\begin{array}{r}
\left\|\widehat{\theta}_{\mathrm{SRM}}-\mu(P)\right\|_{2}=\left[\frac{\epsilon}{1-\epsilon}\|\mu(P)-\mu(Q)\|_{2}\right] . \mathbf{1}\left\{\|\mu(P)-\mu(Q)\|_{2}^{2} \leq\right. \\
\left.\left(\frac{1-\epsilon}{1-2 \epsilon}\right)(\operatorname{trace}(\Sigma(P))-\operatorname{trace}(\Sigma(Q)))\right\} . \tag{14}
\end{array}
$$

Equation 6 follows from it.

A.2.1 Proof of Lemma 9

Proof. We give two alternate proofs of the Lemma.

- Proof 1: This proceeds by expanding on the definition of risk.

$$
\begin{aligned}
R_{P_{\eta}}\left(\theta_{\eta}\right) & =E_{z \sim P_{\eta}}\left[\left\|z-\theta_{\eta}\right\|_{2}^{2}\right] \\
& =(1-\eta) E_{z \sim P_{0}}\left[\left\|z-\theta_{\eta}\right\|_{2}^{2}\right]+\eta E_{z \sim Q}\left[\left\|z-\theta_{\eta}\right\|_{2}^{2}\right] \quad \text { Expectation by conditioning. } \\
& =(1-\eta)\left[\operatorname{trace}\left(\Sigma\left(P^{*}\right)\right)+\left\|\theta_{\eta}-\mu\left(P^{*}\right)\right\|_{2}^{2}\right] \\
& +\eta\left[\operatorname{trace}(\Sigma(Q))+\left\|\theta_{\eta}-\mu(Q)\right\|_{2}^{2}\right] \quad \text { From Observation 1. }
\end{aligned}
$$

Now, using Observation 2 we get that,

$$
\begin{gathered}
\left\|\theta_{\eta}-\mu(Q)\right\|_{2}=(1-\eta)\left\|\mu\left(P^{*}\right)-\mu(Q)\right\|_{2} \\
\left\|\theta_{\eta}-\mu\left(P^{*}\right)\right\|_{2}=\eta\left\|\mu\left(P^{*}\right)-\mu(Q)\right\|_{2}
\end{gathered}
$$

Plugging this into above, we get,

$$
R_{P_{\eta}}\left(\theta_{\eta}\right)=(1-\eta) \operatorname{trace}\left(\Sigma\left(P^{*}\right)\right)+\eta \operatorname{trace}(\Sigma(Q))+\left\|\mu\left(P^{*}\right)-\mu(Q)\right\|_{2}^{2}\left(\eta^{2}(1-\eta)+(1-\eta)^{2} \eta\right)
$$

which recovers the statement of the Lemma.

- Proof 2: This proceeds by Law of Total Variance, or the Law of Total Cummulants. We know that $R_{P_{\eta}}=$ trace $\left(\Sigma\left(P_{\eta}\right)\right)$. Let $Z \sim P_{\eta}$, and let $Y \sim \operatorname{Bernoulli}(1-\eta)$ be the indicator if the sample is from the true distribution. Then $Z \mid Y=1 \sim P^{*}$, while $Z \mid Y=0 \sim Q$.

$$
\operatorname{trace}\left(\Sigma\left(P_{\eta}\right)\right)=\underbrace{(1-\eta) \operatorname{trace}\left(\Sigma\left(P^{*}\right)\right)+\eta \operatorname{trace}(\Sigma(Q))}_{\operatorname{Var}(E[Z \mid Y])}+\underbrace{\eta(1-\eta)\left\|\mu\left(P^{*}\right)-\mu(Q)\right\|_{2}^{2}}_{E[\operatorname{Var}(Z \mid Y)]}
$$

A. 3 Proof of Lemma 3

Proof. Let $P_{\epsilon}=(1-\epsilon) P^{*}+\epsilon Q$. Let I^{*} be the interval $\mu \pm \frac{\sigma}{\delta_{1}^{\frac{1}{2 k}}}$, where $\mu=\mathbb{E}_{x \sim P^{*}}[x]$. Moreover for notational convenience, let $f_{n}(u, v)=\sqrt{u(1-u)} \sqrt{\frac{\log (2 / v)}{n}}+\frac{2}{3} \frac{\log (2 / v)}{n}$. Let $\hat{I}=[a, b]$ be the interval obtained using \mathcal{Z}_{1}, i.e. the shortest interval containing $n\left(1-\left(\delta_{1}+\epsilon+f_{n}\left(\epsilon+\delta_{1}, \delta_{3}\right)\right)\right)$ points of \mathcal{Z}_{1}. Note that in the algorithm, we have $\delta_{1}=\epsilon$, and $\delta_{3}=\delta / 4$. As a first step, we bound the length of \hat{I} and show that \hat{I} and I^{*} must necessarily intersect.

Claim 1. Let \hat{I} be the shortest interval containing $1-\delta_{4}$ fraction of points, where $\delta_{4}=\left(\delta_{1}+\epsilon\right)+f_{n}\left(\epsilon+\delta_{1}, \delta_{3}\right)$. Further assume that $\delta_{4}<\frac{1}{2}$. Then with probability at least $1-\delta_{3}$,

$$
\text { length }(\hat{I}) \leq \operatorname{length}\left(I^{*}\right) \leq \frac{2 \sigma}{\delta_{1}^{\frac{1}{2 k}}}
$$

Moreover, if $\delta_{4}<\frac{1}{2}$, then $\hat{I} \cap I^{*} \neq \phi$, which implies

$$
|z-\mu| \leq \frac{4 \sigma}{\delta_{1}^{\frac{1}{2 k}}} \forall z \in \hat{I}
$$

Proof. We first show that with probability at least $1-\delta_{3}, I^{*}$ contains at least $n\left(1-\delta_{4}\right)$ points(Claim 5). Hence, since our algorithm chooses the shortest interval (\hat{I}) containing $1-\delta_{4}$ fraction of points, length of \hat{I} is less than length of I^{*}. Next, if δ_{4} is less than $\frac{1}{2}$, then there are two intervals \hat{I} and I^{*} respectively, which contain at least $n / 2$ points. Hence, they must necessarily intersect.

Next, we control the final error of our estimator. Let $|\hat{I}|=\sum_{z \in \mathcal{Z}_{2}} \mathbb{I}\left\{z_{i} \in \hat{I}\right\}$ be the number of points which lie in \hat{I}. Similarly, let $\left|\hat{I}_{Q}\right|$ and $\left|\hat{I}_{P^{*}}\right|$ number of points which lie in \hat{I}, which are distributed according to Q and P^{*} respectively.

$$
\begin{equation*}
\left|\frac{1}{|\hat{I}|} \sum_{x_{i} \in \hat{I}} x_{i}-\mu\right| \leq \underbrace{\left|\frac{1}{|\hat{I}|} \sum_{\substack{x_{i} \in \hat{I} \\ x_{i} \sim Q}}\left(x_{i}-\mu\right)\right|}_{T 1}+\underbrace{\left|\frac{1}{|\hat{I}|} \sum_{\substack{x_{i} \in \hat{I} \\ x_{i} \sim P^{*}}}\left(x_{i}-\mu\right)\right|}_{T 2} \tag{15}
\end{equation*}
$$

Control of T1. To control T1, we can write it as:

$$
\begin{align*}
T 1 & =\left|\frac{1}{|\hat{I}|} \sum_{\substack{x_{i} \in \hat{I} \\
x_{i} \sim Q}}\left(x_{i}-\mu\right)\right| \\
& \leq \underbrace{\left.\frac{\left|\hat{I}_{Q}\right|}{|\hat{I}|} \underbrace{\substack{x_{i} \in \hat{I} \\
x_{i} \sim Q}}_{T 1 b} \right\rvert\,}_{T 1 a} \max _{T \rightarrow 2}\left|x_{i}-\mu\right| \tag{16}
\end{align*}
$$

where \hat{I}_{Q} is the number of points in \hat{I} distributed according to Q. To control T1a, we use Bernsteins inequality. To control T1b, we use Claim 1. The claim below formally controls T1.
Claim 2. Let \hat{I} be the shortest interval containing $n\left(1-\delta_{4}\right)$ of the points, where $\delta_{4}=\left(\delta_{1}+\epsilon\right)+f_{n}\left(\epsilon+\delta_{1}, \delta_{3}\right)$. Further assume that $\delta_{4}<\frac{1}{2}$. Then, with probability at least $1-\delta_{3}-\delta_{5}$, we have that,

$$
\begin{equation*}
T 1 \leq \frac{\left|\hat{I}_{Q}\right|}{|\hat{I}|} \max _{\substack{x_{i} \in \hat{I} \\ x_{i} \sim Q}}\left|x_{i}-\mu\right| \leq \frac{\epsilon+f_{n}\left(\epsilon, \delta_{5}\right)}{1-\delta_{4}} \frac{4 \sigma}{\delta_{1}^{1 / 2 k}} \tag{17}
\end{equation*}
$$

Proof. Using Bernstein's bound, we know that wp at least $1-\delta_{5}$,

$$
\left|\hat{I}_{Q}\right| \leq n\left(\epsilon+\sqrt{\epsilon(1-\epsilon)} \sqrt{\frac{\log \left(1 / \delta_{5}\right)}{n}}+\frac{2}{3} \frac{\log \left(1 / \delta_{5}\right)}{n}\right)
$$

This follows from the fact that number of points drawn from Q which lie in \hat{I} is less than the total number of points drawn according to Q . In Claim 1, we showed that when $\delta_{4}<\frac{1}{2}$, then, with probability at least $1-\delta_{3}$, we get that $\hat{I} \cap I^{*} \neq \phi$, i.e. the intervals intersect, and that length $(\hat{I})<l e n g t h\left(I^{*}\right)$. Hence, we get,

$$
\max _{\substack{x_{i} \in \hat{I} \\ x_{i} \sim Q}}\left|x_{i}-\mu\right| \leq \frac{4 \sigma}{\delta_{1}^{1 / 2 k}}
$$

Control of T2. To control T2, we write it as

$$
\begin{align*}
T 2 & =\left|\frac{\left|\hat{I}_{P^{*}}\right|}{|\hat{I}|}\left[\frac{1}{\left|\hat{I}_{P^{*}}\right|} \sum_{\substack{x_{i} \in \hat{I} \\
x_{i} \sim P^{*}}}\left(x_{i}-\mu\right)\right]\right| \tag{18}\\
& \leq \frac{\left|\hat{I}_{P^{*}}\right|}{|\hat{I}|} \left\lvert\, \underbrace{\left.\left(\frac{1}{\left|\hat{I}_{P^{*}}\right|} \sum_{\substack{x_{i} \in \hat{I} \\
x_{i} \sim P^{*}}} x_{i}\right)-E\left[x \mid x \in \hat{I}, x \sim P^{*}\right] \right\rvert\,+\frac{\left|\hat{I}_{P^{*}}\right|}{|\hat{I}|} \underbrace{\left|E\left[x \mid x \in \hat{I}, x \sim P^{*}\right]-\mu\right|}_{T 2 b}}_{T 2 a}\right. \tag{19}
\end{align*}
$$

- Control of T2a: To bound the distance between the mean of the points from P^{*} within \widehat{I} and $E[x \mid x \sim$ $\left.P^{*}, x \in \hat{I}\right]$, we will use Bernsteins bound(Lemma 10) for bounded random variables. We know that the random variables are in a bounded interval $b=\operatorname{length}(\widehat{I}) \leq \frac{\sigma}{\delta \frac{1}{2 k}}$, and that conditional variance of the random variables, when conditioned on them lying in \hat{I} is controlled using Lemma 13. In particular, Lemma 13 shows that for any event E, which occurs with probability $P(E) \geq \frac{1}{2}$,

$$
E_{x \sim P^{*}}\left[(x-E[x \mid x \in E])^{2} \mid x \in E\right] \leq \sigma^{2} / P(E)
$$

Using these arguments, we get that with probability at least $1-\delta_{7}$,

$$
\begin{equation*}
T 2 a \leq \sqrt{\frac{2 \sigma^{2}\left(\log \left(3 / \delta_{7}\right)\right)}{P^{*}(\hat{I})\left|\hat{I}_{P^{*}}\right|}}+\frac{2 \sigma}{\delta_{1}^{1 / 2 k}} \frac{\log \left(3 / \delta_{7}\right)}{\left|\hat{I}_{P^{*}}\right|} \tag{20}
\end{equation*}
$$

where $P^{*}(\hat{I})$ is the probability that a random variable drawn according to P^{*} lies in \hat{I}.

- Control of T2b: To control $T 2 b$, we use the general mean shift lemma (Lemma 12), which controls how far the mean can move when conditioned on an event. We get that,

$$
\begin{equation*}
T 2 b \leq 2 \sigma\left(P^{*}(\hat{I})^{c}\right)^{1-1 /(2 k)} \tag{21}
\end{equation*}
$$

Combining the bounds in (20) and (21), we get

$$
\begin{equation*}
T 2 \leq 2 \sigma\left(P^{*}(\hat{I})^{c}\right)^{1-1 /(2 k)}+\sqrt{\frac{2 \sigma^{2}\left(\log \left(3 / \delta_{7}\right)\right)}{P^{*}(\hat{I})\left|\hat{I}_{P^{*}}\right|}}+\frac{2 \sigma}{\delta_{1}^{1 / 2 k}} \frac{\log \left(3 / \delta_{7}\right)}{\left|\hat{I}_{P^{*}}\right|} \tag{22}
\end{equation*}
$$

Combining the upper bound on T 1 in (17) with (22), we get that with probability at least $1-\delta_{3}-\delta_{5}-\delta_{6}-\delta_{7}$

$$
T 1+T 2 \leq \frac{\epsilon+f_{n}\left(\epsilon, \delta_{5}\right)}{1-\delta_{4}} \frac{4 \sigma}{\delta_{1}^{1 / 2 k}}+2 \sigma\left(P^{*}(\hat{I})^{c}\right)^{1-1 /(2 k)}+\sqrt{\frac{2 \sigma^{2}\left(\log \left(3 / \delta_{7}\right)\right)}{P^{*}(\hat{I})\left|\hat{I}_{P^{*}}\right|}}+\frac{2 \sigma}{\delta_{1}^{1 / 2 k}} \frac{\log \left(3 / \delta_{7}\right)}{\left|\hat{I}_{P^{*}}\right|}
$$

We rearrange terms and use our assumption that ϵ is small enough that $\hat{I}_{P^{*}} \geq n / 2$. We also plugin the upper bound on $\left(P^{*}(\hat{I})^{c}\right)^{1-1 /(2 k)}$ from Claim 3 and set $\delta_{1}=\epsilon$, and $\delta_{5}=\delta_{6}=\delta_{3}=\delta_{7}=\delta / 4$. Hence, we get that with probability at least $1-\delta$

$$
\begin{equation*}
T 1+T 2 \leq C_{1} \sigma \epsilon^{1-1 / 2 k}+C_{2} \sigma\left(\frac{\log n}{n}\right)^{1-\frac{1}{2 k}}+C_{3} \sigma \sqrt{\frac{\log (1 / \delta)}{n}}+C_{4} \sigma \frac{\log (1 / \delta)}{n \epsilon^{\frac{1}{2 k}}} \tag{23}
\end{equation*}
$$

Since, we ensure that $\epsilon=\max \left(\epsilon, \frac{\log (1 / \delta}{n}\right)$ hence, $\frac{\log (1 / \delta)}{n \epsilon^{\frac{1}{2 k}}} \leq \epsilon^{1-\frac{1}{2 k}}$. Note that our assumption of $\delta_{4}<\frac{1}{2}$ boils down to ϵ being small enough such that $2 \epsilon+\sqrt{\epsilon \frac{\log (4 / \delta)}{n}}+\frac{\log (4 / \delta)}{n}<\frac{1}{2}$. Hence, we recover the final statement of the theorem.

A.3.1 Auxillary Proofs

Claim 3. Let \hat{I} be the shorted interval containing $n\left(1-\delta_{4}\right)$ points from \mathcal{Z}_{1}. Let $P^{*}(\hat{I})$ is the probability that a random variable drawn according to P^{*} lies in \hat{I}. Then, there exists universal constants $C_{1}, C_{2}>0$ such that wp at least $1-\delta_{6}$, we have that

$$
\begin{equation*}
\left(P^{*}(\hat{I})^{c}\right)^{1-\frac{1}{2 k}} \leq C_{1} \epsilon^{1-\frac{1}{2 k}}+C_{2} \delta_{1}^{1-\frac{1}{2 k}}+C_{3}\left(\frac{\log n}{n}\right)^{1-\frac{1}{2 k}}+C_{4}\left(\frac{\log \left(1 / \delta_{6}\right)}{n}\right)^{1-\frac{1}{2 k}}+C_{5}\left(\frac{\log \left(1 / \delta_{3}\right)}{n}\right)^{1-\frac{1}{2 k}} \tag{24}
\end{equation*}
$$

Proof. Note that \hat{I} is obtained by choosing the shortest interval containing $n\left(1-\delta_{4}\right)$ points from \mathcal{Z}_{1}. We first bound $P_{n}^{*}(\hat{I})$, i.e. the empirical probability of samples distributed according to P^{*} which lie in \hat{I}. To do this, note that in \mathcal{Z}_{1}, number of points drawn from Q which lie in \hat{I}, say \hat{n}_{Q} is less than the total number of points drawn according to Q . Using Bernstein's bound, we know that wp at least $1-\delta_{6}$,

$$
\left|\hat{n}_{Q}\right| \leq n\left(\epsilon+\sqrt{\epsilon(1-\epsilon)} \sqrt{\frac{\log \left(1 / \delta_{6}\right)}{n}}+\frac{2}{3} \frac{\log \left(1 / \delta_{6}\right)}{n}\right)
$$

Let $\hat{n}_{P^{*}}$ be the number of points in \mathcal{Z}_{1}, which are drawn from P^{*} and which lie in \hat{I}. Since $\left|\hat{n}_{Q}\right|+\left|\hat{n}_{P^{*}}\right|=|\hat{I}|=$ $n\left(1-\delta_{4}\right)$, hence the above implies that with probability at least $1-\delta_{6}$,

$$
\left|\hat{n}_{P^{*}}\right| \geq n\left(1-\delta_{4}\right)-n\left(\epsilon+\sqrt{\epsilon(1-\epsilon)} \sqrt{\frac{\log \left(1 / \delta_{6}\right)}{n}}+\frac{2}{3} \frac{\log \left(1 / \delta_{6}\right)}{n}\right)
$$

Note that $P_{n}^{*}(\hat{I})=\frac{\left|\hat{n}_{P^{*}}\right|}{\sum_{i} \mathbb{I}\left\{x_{i} \sim P^{*}\right\}}$. Hence, we get that,

$$
\begin{align*}
P_{n}^{*}(\hat{I}) & \geq \frac{\left|\hat{n}_{P^{*}}\right|}{n} \\
& \geq 1-\left(\epsilon+\delta_{4}\right)-f_{n}\left(\epsilon, \delta_{6}\right) \tag{25}
\end{align*}
$$

This implies that,

$$
\begin{align*}
P_{n}^{*}(\hat{I})^{c} & \leq\left(\epsilon+\delta_{4}\right)+f_{n}\left(\epsilon, \delta_{6}\right) \\
& \leq 2 \epsilon+\delta_{1}+f_{n}\left(\epsilon, \delta_{6}\right)+f_{n}\left(\epsilon+\delta_{1}, \delta_{3}\right) \\
& \leq 4 \epsilon+2 \delta_{1}+C_{1} \frac{\log \left(1 / \delta_{6}\right)}{n}+C_{2} \frac{\log \left(1 / \delta_{3}\right)}{n} \tag{26}
\end{align*}
$$

To finally bound the probability of a sample drawn from P^{*} to lie in \hat{I}, we use the relative deviations VC bound(Lemma 11), which gives us,

$$
\begin{equation*}
P^{*}(\hat{I})^{c} \leq \underbrace{P_{n}^{*}(\hat{I})^{c}}_{A_{1}}+4 \sqrt{\left(\frac{P_{n}^{*}(\hat{I})^{c} \log \mathcal{S}[2 n]}{n}\right)+\left(\frac{P_{n}^{*}(\hat{I})^{c} \log \left(4 / \delta_{6}\right)}{n}\right)}+\frac{\log \mathcal{S}[2 n]}{n}+\frac{\log \left(4 / \delta_{6}\right)}{n} \tag{27}
\end{equation*}
$$

where $\mathcal{S}[2 n]=O\left(n^{2}\right)$. Using that $\sqrt{a b} \leq a+b, \forall a, b \geq 0$, we get that,

$$
\begin{equation*}
P^{*}(\hat{I})^{c} \leq C_{1} P_{n}^{*}(\hat{I})^{c}+C_{2}\left(\frac{\log \mathcal{S}[2 n]}{n}+\frac{\log \left(4 / \delta_{6}\right)}{n}\right) \tag{28}
\end{equation*}
$$

Hence, we get that,

$$
\begin{equation*}
\left(P^{*}(\hat{I})^{c}\right)^{1-\frac{1}{2 k}} \leq C_{1} \epsilon^{1-\frac{1}{2 k}}+C_{2} \delta_{1}^{1-\frac{1}{2 k}}+C_{3}\left(\frac{\log n}{n}\right)^{1-\frac{1}{2 k}}+C_{4}\left(\frac{\log \left(1 / \delta_{6}\right)}{n}\right)^{1-\frac{1}{2 k}}+C_{5}\left(\frac{\log \left(1 / \delta_{3}\right)}{n}\right)^{1-\frac{1}{2 k}} \tag{29}
\end{equation*}
$$

Claim 4. Let $P^{*}\left(I^{*}\right)$ be the probability that a sample drawn according from P_{ϵ} is distributed according to P^{*} and lies in I^{*}.

$$
P^{*}\left(I^{*}\right) \geq(1-\epsilon)\left(1-\delta_{1}\right)=1-\left(\epsilon+\delta_{1}-\epsilon \delta_{1}\right) \geq 1-\underbrace{\left(\epsilon+\delta_{1}\right)}_{\delta_{2}}=1-\delta_{2}
$$

Proof. For any $x \sim P_{\epsilon}$, define, $z_{i}=1$ if $x \sim P^{*}$. Now, for any $x \sim P^{*}$, we know that, by chebyshevs we know that,

$$
P(|x-\mu| \geq t)=P\left((x-\mu)^{2 k} \geq t^{2 k}\right) \leq E\left[(x-\mu)^{2 k}\right] / t^{2 k} \leq C_{2 k} \sigma^{2 k} / t^{2 k}
$$

Hence, we get that wp at least $1-\delta_{1}, x \in \mu \pm \sigma /\left(\delta_{1}\right)^{1 / 2 k}$
The following claim lower bounds the empirical fraction of samples which are distributed according to P^{*} and lie in I^{*}, when n samples are drawn from P_{ϵ}.
Claim 5. Let $P_{n}^{*}\left(I^{*}\right)$ be the empirical fraction of points which are distributed according to P^{*} and lie in I^{*}, when n samples are drawn from P_{ϵ}. Then, with probability at least $1-\delta_{3}$,

$$
P_{n}^{*}\left(I^{*}\right) \geq 1-\underbrace{\left(\delta_{2}+\sqrt{\left(\delta_{2}\left(1-\delta_{2}\right)\right)} \sqrt{\frac{\log \left(1 / \delta_{3}\right)}{n}}+\frac{2}{3} \frac{\log \left(1 / \delta_{3}\right)}{n}\right)}_{\delta_{4}=\left(\delta_{1}+\epsilon\right)+f_{n}\left(\epsilon+\delta_{1}, \delta_{3}\right)}
$$

Proof. This follows from Bernstein's inequality(Lemma 10).
Lemma 10. [Bernsteins bound,] Let $X \sim P^{*}$ be a scalar random variable such that $|X-E[x]| \leq b$ with variance σ^{2}. Then, given n samples $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} \sim P^{*}$, the empirical mean, $\overline{x_{n}}=\frac{1}{n} \sum_{i=1}^{n} x_{i}$ is such that,

$$
P\left(\left|\overline{x_{n}}-E[x]\right|>t\right) \leq 2 \exp \left(\frac{-n t^{2}}{2 \sigma^{2}+2 b t / 3}\right)
$$

which can be equivalently re-written as. With probability at least $1-\delta$,

$$
\left|\overline{x_{n}}-E[x]\right| \leq \sqrt{\frac{2 \sigma^{2} \log (1 / \delta)}{n}}+\frac{2 b \log (1 / \delta)}{3 n}
$$

Lemma 11. [Relative deviations, (Vapnik and Chervonenkis, 2015)] Let \mathcal{F} be a function class consisting of binary functions f. Then, with probability at least $1-\delta$,

$$
\sup _{f \in \mathcal{F}}\left|P(f)-P_{n}(f)\right| \leq 4 \sqrt{P_{n}(f) \frac{\log \left(S_{\mathcal{F}}(2 n)\right)+\log (4 / \delta)}{n}}+C_{1} \frac{\log \left(S_{\mathcal{F}}(2 n)\right)+\log (4 / \delta)}{n}
$$

where $S_{\mathcal{F}}(n)=\sup _{z_{1}, z_{2}, \ldots, z_{n}}\left|\left\{\left(f\left(z_{1}\right), f\left(z_{2}\right), \ldots, f\left(z_{n}\right)\right): f \in \mathcal{F}\right\}\right|$ is the growth function, i.e. the maximum number of ways into which n-points can be classified the function class.
Lemma 12. [General Mean shift, (Steinhardt, 2018)] Suppose that a distribution P^{*} has mean μ and variance σ^{2} with bounded $2 k^{t h}$-moments. Then, for any event A which occurs with probability at least $1-\epsilon \geq \frac{1}{2}$,

$$
|\mu-E[x \mid A]| \leq 2 \sigma \epsilon^{1-\frac{1}{2 k}}
$$

In particular, for just bounded second moments, we get that $|\mu-E[x \mid A]| \leq 2 \sigma \sqrt{\epsilon}$.

Proof. For any event E , Let $\mathbb{I}\{E\}$ denote the indicator variable for E.

$$
\begin{equation*}
\left.\mid E_{x \sim P^{*}}[x \mid E]-\mu\right] \left\lvert\,=\frac{\left|E_{x \sim P^{*}}((x-\mu) \mathbb{I}\{E\})\right|}{P(E)} \leq \frac{E\left[|x-\mu|^{p}\right]^{\frac{1}{p}}\left(E\left[\mathbb{I}\{E\}^{q}\right]^{1 / q}\right)}{P(E)}\right., \tag{30}
\end{equation*}
$$

where $p, q>1$ are such that $1 / p+1 / q=1$. Put $p=2 k$, we get,

$$
\left.\mid E_{x \sim P^{*}}[x \mid E]-\mu\right] \left\lvert\, \leq \frac{\sigma}{(P(E))^{1 / 2 k}}\right.
$$

Now, we know that, $|E[X \mid A]-\mu|=\frac{1-P(A)}{P(A)}\left|E\left[X \mid A^{c}\right]-\mu\right|$. Putting $E=A^{c}$, we get,

$$
|E[X \mid A]-\mu| \leq \frac{1-P(A)}{P(A)} \frac{\sigma}{(1-P(A))^{1 / 2 k}} \leq 2 \sigma \epsilon^{\left(1-\frac{1}{2 k}\right)}
$$

Lemma 13. [Conditional Variance Bound] Suppose that a distribution P^{*} has mean μ and variance σ^{2}. Then, for any event A which occurs with probability at least $1-\epsilon$, the variance of the conditional distribution is bounded as:

$$
\left(E\left[(x-E[x \mid A])^{2} \mid A\right]\right) \leq \frac{\sigma^{2}}{(1-\epsilon)}
$$

Proof. Let $\mu_{A}=E[y \mid A], d=\mu_{A}-\mu$. From Lemma 12, we know, $d \leq \sigma 2 \sqrt{\epsilon}$. Observe the following,

$$
\begin{align*}
E\left[\left(y-\mu_{A}\right)^{2} \mid A\right]=E\left[(y-\mu-d)^{2} \mid A\right] & =E\left[\left((y-\mu)^{2}-2 d(y-\mu)+d^{2}\right) \mid A\right] \tag{31}\\
& =E\left[(y-\mu)^{2} \mid A\right]-d^{2} \tag{32}\\
& \leq E\left[(y-\mu)^{2} \mid A\right] \tag{33}\\
& \leq \frac{\sigma^{2}}{1-\epsilon}, \tag{34}
\end{align*}
$$

A. 4 Proof of Lemma 5

Proof. For brevity, let $\widehat{\theta}_{\delta}=\underset{\theta}{\operatorname{argmin}} \sup _{u \in \mathcal{N}^{1 / 2}\left(\mathcal{S}^{p-1}\right)}\left|u^{T} \theta-\mathrm{f}\left(\left\{u^{T} x_{i}\right\}_{i=1}^{n}, \epsilon, \frac{\delta}{5^{p}}\right)\right|$, where f is our univariate estimator. Let $\theta^{*}=\mathbb{E}[x]$ be the true mean. Then, we can write the ℓ_{2} error in its variational form.

$$
\begin{equation*}
\left\|\widehat{\theta}_{\delta}-\theta^{*}\right\|_{2}=\sup _{u \in \mathcal{S}^{p-1}}\left|u^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right| \tag{35}
\end{equation*}
$$

Suppose $\left\{y_{i}\right\}$ is a $\frac{1}{2}$-cover of the net, so there exist a y_{j} such that $u=y_{j}+v$, where $\|v\|_{2} \leq \epsilon$.

$$
\begin{align*}
& \left\|\widehat{\theta}_{\delta}-\theta^{*}\right\|_{2} \leq \sup _{u \in \mathcal{S}^{p-1}}\left|y_{j}^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right|+\left|v^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right| \\
& \quad \leq \sup _{y_{j} \in \mathcal{N}^{\frac{1}{2}}\left(\mathcal{S}^{p-1}\right)}\left|y_{j}^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right|+\|v\|_{2}\left\|\widehat{\theta}_{\delta}-\theta^{*}\right\|_{2} \\
& \leq 2 \sup _{y_{j} \in \mathcal{N}^{\frac{1}{2}}\left(\mathcal{S}^{p-1}\right)}\left|y_{j}^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right| \\
& \left\|\widehat{\theta}_{\delta}-\theta^{*}\right\|_{2} \leq \tag{36}
\end{align*}
$$

For a fixed u, the distribution $u^{T} P$ has mean $u^{T} \theta^{*}$, where θ^{*} is the mean of the multivariate distribution P. Hence, we get that, for a confidence level $\tilde{\delta}$, when the univariate estimator is applied to the projection of the data long u, it returns a real number such that, with probability at least $1-\tilde{\delta}$

$$
\left|f\left(u^{T} P_{n} ; \epsilon ; \tilde{\delta}\right)-u^{T} \theta^{*}\right| \leq C_{1} \omega_{f}\left(\epsilon, u^{T} P, \tilde{\delta}\right)
$$

Taking a union bound over the elements of the cover, and using the fact that $\left|\mathcal{N}^{1 / 2}\left(\mathcal{S}^{p-1}\right)\right| \leq 5^{p}$ (Wainwright, 2019), we substitute $\tilde{\delta}=\delta /\left(5^{p}\right)$ and recover the statement of the Lemma.

A. 5 Proof of Lemma 6

Proof. Let $\widehat{\theta}_{\delta}=\underset{\theta \in \Theta_{s}}{\operatorname{argmin}} \sup _{u \in \mathcal{N}_{2 s}^{1 / 2}\left(\mathcal{S}^{p-1}\right)}\left|u^{T} \theta-\mathrm{f}\left(\left\{u^{T} x_{i}\right\}_{i=1}^{n}, \epsilon, \frac{\delta}{(6 e p / s)^{s}}\right)\right|$, where $f(\cdot)$ is our univariate estimator. Observe that since $\widehat{\theta}_{\delta}$ and the true mean θ^{*} are both s-sparse. Hence, the error vector $\widehat{\theta}-\theta^{*}$ is atmost $2 s$-sparse. Then, we can write the ℓ_{2} error in its variational form,

$$
\begin{equation*}
\left\|\widehat{\theta}_{\delta}-\theta^{*}\right\|_{2}=\sup _{u \in \mathcal{S}^{p-1} \cap \mathcal{B}_{2 s}}\left|u^{T}\left(\widehat{\theta}_{\delta}-\theta^{*}\right)\right| \tag{39}
\end{equation*}
$$

where $\mathcal{S}^{p-1} \cap \mathcal{B}_{2 s}$ is the set of unit vectors which are $2 s$-sparse. The remaining of the proof follows along the lines of proof of Lemma 5 , coupled with the fact that the cardinality of the half-cover of an $2 s$-sparse ball, i.e. $\left|\mathcal{N}^{\frac{1}{2}}\left(\mathcal{S}^{p-1}\right)\right| \leq\left(\frac{6 e p}{s}\right)^{s}$ (Vershynin, 2009).

A. 6 Proof of Lemma 7

Let $\widehat{\Theta}_{\mathrm{f}}=\operatorname{argmin}_{\Theta \in \mathcal{F}} \sup _{u \in \mathcal{N}^{1 / 4}\left(\mathcal{S}^{p-1}\right)}\left|u^{T} \Theta u-f\left(\left\{\left(u^{T} z_{i}\right)^{2}\right\}_{i=1}^{n}, 2 \epsilon, \frac{\delta}{g^{p} p}\right)\right|$, where f is a univariate estimator, and z_{i} are the pseudo-samples obtained by $z_{i}=\left(x_{i+n / 2}-x_{i}\right) / \sqrt{2}$. We begin by first using one-step discretization,

$$
\begin{aligned}
\left\|\widehat{\Theta}_{\mathrm{f}}-\Sigma(P)\right\|_{2} & =\sup _{u \in \mathcal{S}^{p-1}}\left|u^{T}\left(\widehat{\Theta}_{\mathrm{f}}-\Sigma(P)\right) u\right| \\
& \leq \frac{1}{1-2 \gamma} \sup _{y \in \mathcal{N}^{\gamma}}\left|y^{T}\left(\widehat{\Theta}_{\mathrm{IM}}-\Sigma(P)\right) y\right|,
\end{aligned}
$$

where \mathcal{N}^{γ} is the γ-cover of the unit sphere. We set $\gamma=1 / 4$.

$$
\begin{align*}
\left\|\widehat{\Theta}_{\mathrm{f}}-\Sigma(P)\right\|_{2} & \leq 2 \sup _{u \in \mathcal{N}^{1 / 4}}\left|u^{T}\left(\widehat{\Theta}_{\mathrm{f}}-\Sigma(P)\right) u\right| \tag{40}\\
& \left.\left.\leq 2\left[\sup _{u \in \mathcal{N}^{1 / 4}} \left\lvert\, u^{T} \widehat{\Theta}_{\mathrm{IM}} u-f\left(\left\{\left(u^{T} z_{i}\right)^{2}\right\}_{i=1}^{n}, 2 \epsilon, \frac{\delta}{9^{p}}\right)\right.\right)\left|+\sup _{u \in \mathcal{N}^{1 / 4}}\right| u^{T} \Sigma(P) u-f\left(\left\{\left(u^{T} z_{i}\right)^{2}\right\}_{i=1}^{n}, 2 \epsilon, \frac{\delta}{9^{p}}\right) \right\rvert\,\right] \tag{41}\\
& \leq 4 \sup _{u \in \mathcal{N}^{1 / 2}}\left|u^{T} \Sigma(P) u-f\left(u^{T} \mathcal{X}_{n}, \epsilon ; \tilde{\delta}\right)\right| \tag{42}
\end{align*}
$$

For a fixed u, for the clean samples in $z_{i},\left(u^{T} z_{i}\right)^{2}$ has mean $u^{T} \Sigma(P) u$, and variance $C_{4}\left(u^{T} \Sigma(P) u\right)^{2}$. Note that the scalar random variables $\left(u^{T} z_{i}\right)^{2}$ have bounded k moments, whenever x_{i} has bounded $2 k$-moments. Hence, for a fixed u, we get that with probability at least $1-\delta$,

$$
\left|f\left(\left\{\left(u^{T} z_{i}\right)^{2}\right\}_{i=1}^{n}, 2 \epsilon, \frac{\delta}{9^{p}}\right)-u^{T} \Sigma(P) u\right| \lesssim \omega_{f}\left(2 \epsilon, u^{T} P^{\otimes 2}, \tilde{\delta}\right)
$$

Taking a union bound over the elements of the cover, and using the fact that $\left|\mathcal{N}^{1 / 4}\left(\mathcal{S}^{p-1}\right)\right| \leq 9^{p}$ (Wainwright, 2019), we substitute $\tilde{\delta}=\delta /\left(9^{p}\right)$ and recover the statement of the Lemma.

A. 7 Proof of Lemma 8

Let $\widehat{\Theta}_{\mathrm{f}, \mathrm{s}}=\operatorname{argmin}_{\Theta \in \mathcal{F}_{s}} \sup _{u \in \mathcal{N}_{2 s}^{1 / 4}\left(\mathcal{S}^{p-1}\right)}\left|u^{T} \Theta u-f\left(\left\{\left(u^{T} z_{i}\right)^{2}\right\}_{i=1}^{n}, 2 \epsilon, \frac{\delta}{(9 e p / s)^{s}}\right)\right|$, where f is a univariate estimator, and z_{i} are the pseudo-samples obtained by $z_{i}=\left(x_{i+n / 2}-x_{i}\right) / \sqrt{2}$.
Observe that since $\widehat{\Theta}_{\mathrm{f}, \mathrm{s}}$ and the true covariance $\Sigma(P)$ are both in \mathcal{F}_{s}. Hence, the difference matrix $\widehat{\Theta}_{\mathrm{f}, \mathrm{s}}-\Sigma(P)$ has atmost $2 s$ non-zero off diagonal elements. Hence, we can write that $\left\|\widehat{\Theta}_{\mathrm{f}, \mathrm{s}}-\Sigma(P)\right\|_{2}=\sup _{u \in \mathcal{B}_{2 s} \cap \mathcal{S}^{p-1}} \mid u^{T}\left(\widehat{\Theta}_{\mathrm{IM}}^{(s)}-\right.$ $\Sigma(P)) u \mid$, where $\mathcal{B}_{2 s} \cap \mathcal{S}^{p-1}$ is the set of unit vectors which are atmost $2 s$-sparse. Using the one-step discretization, we get that,

$$
\left\|\widehat{\Theta}_{\mathrm{f}, \mathrm{~s}}-\Sigma(P)\right\|_{2} \leq 2 \sup _{u \in \mathcal{N}^{1 / 4}\left(\mathcal{B}_{2 s} \cap \mathcal{S}^{p-1}\right)}\left|u^{T}\left(\widehat{\Theta}_{\mathrm{f}, \mathrm{~s}}-\Sigma(P)\right) u\right|
$$

The remainder of the proof follows from the proof of Lemma 7 coupled with the fact that the cardinality of the $1 / 4$-cover of an $2 s$-sparse ball $\left|\mathcal{N}^{1 / 4}\left(\mathcal{S}^{p-1}\right)\right| \leq\left(\frac{9 e p}{s}\right)^{s}$ (Vershynin, 2009).

A. 8 Proof of Corollary 5

Proof. From Corollary 4, we know that the with probability at least $1-\delta$ sparse covariance estimator satisfies,

$$
\underbrace{\left\|\widehat{\Theta}_{\mathrm{IM}, \mathrm{~s}}-\Sigma(P)\right\|_{2} \lesssim\|\Sigma(P)\|_{2} \epsilon^{1-1 / k}+\|\Sigma(P)\|_{2} \sqrt{\frac{s \log p}{n}}+\|\Sigma(P)\|_{2} \sqrt{\frac{\log 1 / \delta}{n}}}_{T 1}
$$

Let $\widehat{\Theta}_{\mathrm{IM}, \mathrm{s}}-\Sigma(P)=\Delta$, then, we have that $\|\Delta\|_{2} \leq T 1$. Using Weyl's Inequality, we know that,

$$
\left|\lambda_{r+1}\left(\widehat{\Theta}_{\mathrm{IM}, \mathrm{~s}}\right)-\lambda_{r+1}(\Sigma(P))\right| \leq\|\Delta\|_{2}
$$

We know that $\lambda_{r+1}(\Sigma(P))=1$. Hence, we have that $\lambda_{r+1}\left(\widehat{\Theta}_{\mathrm{IM}, \mathrm{s}}\right) \in 1 \pm T 1$. We also know that $\lambda_{r}(\Sigma(P))=1+\Lambda_{r}$. Hence, we can now lower bound the eigengap, i.e.

$$
\left|\lambda_{r}(\Sigma)-\lambda_{r+1}\left(\widehat{\Theta}_{\mathrm{IM}, \mathrm{~s}}\right)\right| \geq \Lambda_{r}-T 1
$$

Under the assumption that $T 1<\frac{1}{2} \Lambda_{r}$, and using Davis-Kahan Theorem (Davis and Kahan, 1970), we get that,

$$
\left\|V V^{T}-\hat{V} \hat{V}^{T}\right\|_{F} \leq \frac{\left\|\Theta_{\delta}-\Sigma\right\|_{2}}{\Lambda_{r}-T 1} \leq C \frac{T 1}{\Lambda_{r}}
$$

A. 9 Proof of Lemma 4

Note that the proof of this follows from Lemma 6 (Altschuler et al., 2018), but we provide it for completeness. Let F be a CDF and let $Q_{L, F}(p)=\inf \{x \in \mathbb{R}: F(x) \geq p\}$ and $Q_{R, F}(p)=\inf \{x \in \mathbb{R}: F(x)>p\}$ be the left and right quantile functions. Let

$$
R_{F}(t) \geq \max \left\{Q_{R, F}\left(\frac{1}{2}+t\right)-m, m-Q_{L, F}\left(\frac{1}{2}-t\right)\right\}
$$

where m is the median. Then, given n-samples from the mixture model, let $\hat{m}\left(\left\{x_{i}\right\}_{i=1}^{n}\right)$ be the empirical median. Then, we have that with probability at least $1-\delta$,

$$
|\hat{m}-m| \leq R\left(\frac{\epsilon}{2(1-\epsilon)}+\sqrt{\frac{2 \log (2 / \delta)}{n}}\right)
$$

To see this, for each sample x_{i} define an indicator variable $L_{i} \in\{0,1\}$.

$$
L_{i}=\mathbb{I}\left\{x_{i} \sim Q, \text { or }\left(x_{i} \sim P \text { and } x_{i} \geq Q_{R, F}\left(\frac{1}{2(1-\epsilon)}+a\right)\right)\right\}
$$

for $a=\frac{\sqrt{\log (2 / \delta)}}{(1-\epsilon) \sqrt{n}}$. Note that

$$
\begin{aligned}
& \operatorname{Pr}\left(L_{i}=1\right) \leq \epsilon+(1-\epsilon)\left(1-\left(a+\frac{1}{2(1-\epsilon)}\right)\right) \\
& \equiv \frac{1}{2}-(1-\epsilon) a \\
& \hat{m} \geq Q_{R, F}\left(\frac{1}{2(1-\epsilon)}+a\right) \Longrightarrow \sum_{i} L_{i} \geq n / 2
\end{aligned}
$$

Hence, we have that,

$$
\operatorname{Pr}\left(\hat{m}>Q_{R, F}\left(\frac{1}{2(1-\epsilon)}+a\right)\right) \leq \operatorname{Pr}\left(\sum_{i} L_{i} \geq n / 2\right) \leq \exp \left(-2 n(1-\epsilon)^{2} a^{2}\right)=\frac{\delta}{2}
$$

The other side is also symmetric. Hence, we have that with probability at least $1-\delta$,

$$
|\hat{m}-m| \leq R\left(\frac{\epsilon}{2(1-\epsilon)}+a\right)
$$

where $a=\frac{1}{(1-\epsilon)} \sqrt{\frac{\log (2 / \delta)}{n}}$. Note that under our assumption that $P \in \mathcal{P}_{\operatorname{sym}}^{t_{0}, \kappa}$, we have that $R(t) \leq \kappa t$ for all $t \leq t_{0}$. Hence, as long as the contamination level ϵ, and confidence level δ are such that,

$$
\frac{\epsilon}{2(1-\epsilon)}+\frac{1}{(1-\epsilon)} \sqrt{\frac{\log (2 / \delta)}{n}} \leq t_{0}
$$

we have that with probability at least $1-\delta$,

$$
|\hat{m}-m| \lesssim \kappa \epsilon+\kappa \sqrt{\frac{\log (2 / \delta)}{n}}
$$

