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A Proofs

A.1 Proof of Lemma 1

Proof. Let P = N (0, Ip) be the isotropic normal distribution. Let RP (θ) = Ez∼P [`(‖z − θ‖2)], where ` : R 7→ R
is a convex loss, and let θ(P ) = argminθ RP (θ) be the minimizer of the population risk. We assume that ψ(·) =
`′(·) < C is bounded. Note that when the derivative is unbounded, it is easy to argue that the corresponding
risk will be non-robust. We also assumed that this risk is fisher-consistent for the Gaussian-distribution, i.e.
θ(P ) = 0. For notational convenience, let u(t) = ψ(t)

t . Then,

∇RP (θ) = −Ez∼P

ψ(‖z − θ‖2)

‖z − θ‖2︸ ︷︷ ︸
u(‖z−θ‖2)

(z − θ)

 .

As before, let Pε = (1−ε)P +εQ. Then, we are interested in studying θ̂(Pε). To do this, by first order optimality,
we know that θ(Pε) is a solution to the following equation:

(1− ε)∇RP (θ(Pε)) + ε∇RQ(θ(Pε)) = 0

First we calculate the derivative of θ(Pε) w.r.t. ε using the fixed point above. Taking derivative of the above
equation w.r.t. ε

(1− ε)∇2RP (θ(Pε))θ̇(Pε)−∇RP (θ(Pε)) + ε∇2RQ(θ(Pε))θ̇(Pε) +∇RQ(θ(Pε)) = 0 (8)

Under our assumption that ψ is continuous, we get that at ε = 0,

θ̇(Pε)|ε=0 = (−∇2RP (θ(P )))−1∇RQ(θ(P )) (9)

By fisher consistency of ` for N (0, Ip), we have that θ(P ) = 0. Suppose that Q is a point mass distribution with
all mass on θQ. Then, we have that,

∇RQ(0) = −u(‖θQ‖2)θQ

Our next step is to lower bound the operator norm of −∇2RP (θ(P )). To do this we show that for any unit
vector v ∈ Sp−1, vT (−∇2RP (θ(P )))v ≤ C2√

p .

∇2RP (θ) = −Ez∼P
[
u(‖z − θ‖2)Ip +

u′(‖z − θ‖2)

‖z − θ‖2
((z − θ)(z − θ)T )

]
Now, by definition u(t) = ψ(t)/t, so u′(s) = (ψ′(s)− u(s))/s. Plugging this above,

∇2RP (θ) = −Ez∼P
[
u(‖z − θ‖2)(Ip −

(z − θ)(z − θ)T )

‖z − θ‖22
) +

ψ′(‖z − θ‖2)

‖z − θ‖22
(z − θ)(z − θ)T ))

]
Hence, we get that

vT∇2RP (0)v = −Ez∼N(0,Ip)

[
u(‖z‖2)(‖v‖22 − (vT (z/‖z‖2))2) + ψ′(‖z‖2)(vT (z/‖z‖2))2

]
Further for Isotropic Gaussian, ‖z‖2 and z/‖z‖2 are independent random variables. Also, since, z/‖z‖2 is
uniformly distributed on unit sphere, we get that Ez∼N(0,I)[(v

T z/‖z‖2)2)] = ‖v‖22/p.

(vT (−∇2RP (0))v) = Ez∼N(0,Ip) [u(‖z‖2)] (1− 1/p)︸ ︷︷ ︸
T1

+Ez∼N(0,Ip) [ψ′(‖z‖2)] /p︸ ︷︷ ︸
T2
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• Controlling T1

Ez∼N(0,Ip)[u(‖z‖2)] = Ez∼N (0,Ip)

[
ψ(‖z‖2)

‖z‖2

]
≤

√
CE

1

‖z‖22

≤
√
C1√
p− 2

, (10)

where we use that ψ is bounded by constant C. The last inequality is combination of Jensen’s Inequality
and plugging the mean of reciprocal of inverse chi-squared random variable (Bernardo and Smith, 2009).

• Controlling T2. Under our assumption that ψ′(·) exists and is bounded, we get that T2 ≤ C1

p and can be
ignored.

Hence, for large p, we get that (vT (−∇2RP (0))v) ≤
√
C1/p. Now, if we put θQ at ∞, and use that ψ(∞) = C1,

we get that,

‖θ̇(Pε)‖2 = ψ(‖θQ‖2)‖∇2RP (0)
θQ
‖θQ‖2

‖2 ≥ C2
√
p
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A.2 Proof of Lemma 2

Proof. Let P = N(0, Ip). Every subset of size (1− ε)n can be thought of as samples from a mixture distribution
defined in (3), where the mixture proportion η, ranges from [0, ε/(1− ε)]. In the asymptotic setting of n 7→ ∞,
the empirical squared loss over each subset corresponds to the population risk with the sampling distribution as
Pη. For a given contamination distribution Q, let RPη (θ) = Ex∼Pη

[
‖x− θ‖22

]
and let θ(Pη)

def
= argminθ RPη (θ),

then subset risk minimization returns,

θ̂SRM = θ(Pη∗) (11)
where η∗ = argmin

η∈[0, ε
1−ε ]

RPη (θ(Pη))

We are interested in bounding the bias of SRM i.e.

sup
Q
‖θ̂SRM − θ∗‖2

To do this, we know that for any contamination distribution Q, the solution of SRM necessarily satisfies the
following conditions.
Condition 1: Local Stationarity. θ(Pη) = argminθ RPη (θ) is the minimizer of the risk with respect to a
mixture distribution iff

∇RPη (θ(Pη)) = (1− η)∇RPθ∗ (θ(Pη))

+ η∇RQ(θ(Pη)) = 0. (12)

Condition 2: Global Fit Optimality. θ̂SRM = θ(Pη∗) is the global minimizer of the population risk over all
mixture distributions iff

RPη∗ (θ(Pη∗)) = (1− η∗)RP0
(θ(Pη∗)) + η∗RQ(θ(Pη∗))

≤ RPη (θ(Pη)) ∀η ∈
[
0,

ε

1− ε

]
(13)

Using Conditions 1 and 2, we next derive the bias of SRM for mean estimation.

We make a few simple observations.

• Observation 1. For any distribution P , we have,

RP (θ) = trace (Σ(P )) + ‖θ − µ(P )‖22

• Observation 2. Condition 1 reduces to,

µ(Pη) = θη = (1− η)µ(P ) + ηµ(Q),

where µ(·) is the Expectation functional.

Lemma 9. Under the mixture model in Equation (3), for the squared error, we have that,

RPη (θη) = trace (Σ(Pη)) = (1− η)trace (Σ(P ∗)) + ηtrace (Σ(Q)) + η(1− η)‖µ(P ∗)− µ(Q)‖22.

Now, from Lemma 9, we know that

RPη (θη) = (1− η)trace (Σ(P )) + ηtrace (Σ(Q)) + η(1− η)‖µ(P )− µ(Q)‖22

As a function of η, RPη (θη) is a concave quadratic function. Hence, it is always minimized at the end points of
the interval [0, ε/(1− ε)], which implies that η∗ ∈ {0, ε

1−ε}.

Hence, we have that,

θ̂SRM =

{
θ ε

1−ε
, if RP ε

1−ε
(θ ε

1−ε
) ≤ RP0

(θ0).

θ∗, otherwise.
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From Lemma 9, RP ε
1−ε

(θ ε
1−ε

) ≤ RP0(θ0) iff(
1− ε

1− ε

)
‖µ(P )− µ(Q)‖22 ≤ trace (Σ(P ))− trace (Σ(Q))

Moreover, from Observation 2, we have that,

‖θ ε
1−ε
− µ(P )‖2 =

ε

1− ε
‖µ(P )− µ(Q)‖2

Combining the above two, we get that,

‖θ̂SRM − µ(P )‖2 =

[
ε

1− ε
‖µ(P )− µ(Q)‖2

]
.1
{
‖µ(P )− µ(Q)‖22 ≤(

1− ε
1− 2ε

)
(trace (Σ(P ))− trace (Σ(Q)))

}
. (14)

Equation 6 follows from it.

A.2.1 Proof of Lemma 9

Proof. We give two alternate proofs of the Lemma.

• Proof 1: This proceeds by expanding on the definition of risk.

RPη (θη) = Ez∼Pη [‖z − θη‖22]

= (1− η)Ez∼P0
[‖z − θη‖22] + ηEz∼Q[‖z − θη‖22] Expectation by conditioning.

= (1− η)
[
trace (Σ(P ∗)) + ‖θη − µ(P ∗)‖22

]
+ η

[
trace (Σ(Q)) + ‖θη − µ(Q)‖22

]
From Observation 1.

Now, using Observation 2 we get that,

‖θη − µ(Q)‖2 = (1− η)‖µ(P ∗)− µ(Q)‖2

‖θη − µ(P ∗)‖2 = η‖µ(P ∗)− µ(Q)‖2
Plugging this into above, we get,

RPη (θη) = (1− η)trace (Σ(P ∗)) + ηtrace (Σ(Q)) + ‖µ(P ∗)− µ(Q)‖22
(
η2(1− η) + (1− η)2η

)
which recovers the statement of the Lemma.

• Proof 2: This proceeds by Law of Total Variance, or the Law of Total Cummulants. We know that RPη =
trace (Σ(Pη)). Let Z ∼ Pη, and let Y ∼ Bernoulli(1 − η) be the indicator if the sample is from the true
distribution. Then Z|Y = 1 ∼ P ∗, while Z|Y = 0 ∼ Q.

trace (Σ(Pη)) = (1− η)trace (Σ(P ∗)) + ηtrace (Σ(Q))︸ ︷︷ ︸
Var(E[Z|Y ])

+ η(1− η)‖µ(P ∗)− µ(Q)‖22︸ ︷︷ ︸
E[Var(Z|Y )]

.
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A.3 Proof of Lemma 3

Proof. Let Pε = (1 − ε)P ∗ + εQ. Let I∗ be the interval µ ± σ

δ
1
2k
1

, where µ = Ex∼P∗ [x]. Moreover for notational

convenience, let fn(u, v) =
√
u(1− u)

√
log(2/v)

n + 2
3

log(2/v)
n . Let Î = [a, b] be the interval obtained using Z1, i.e.

the shortest interval containing n(1− (δ1 + ε+ fn(ε+ δ1, δ3))) points of Z1. Note that in the algorithm, we have
δ1 = ε, and δ3 = δ/4. As a first step, we bound the length of Î and show that Î and I∗ must necessarily intersect.

Claim 1. Let Î be the shortest interval containing 1− δ4 fraction of points, where δ4 = (δ1 + ε) + fn(ε+ δ1, δ3).
Further assume that δ4 < 1

2 . Then with probability at least 1− δ3,

length(Î) ≤ length(I∗) ≤ 2σ

δ
1
2k
1

,

Moreover, if δ4 < 1
2 , then Î ∩ I

∗ 6= φ, which implies

|z − µ| ≤ 4σ

δ
1
2k
1

∀z ∈ Î

Proof. We first show that with probability at least 1− δ3, I∗ contains at least n(1− δ4) points(Claim 5). Hence,
since our algorithm chooses the shortest interval(Î) containing 1− δ4 fraction of points, length of Î is less than
length of I∗. Next, if δ4 is less than 1

2 , then there are two intervals Î and I∗ respectively, which contain at least
n/2 points. Hence, they must necessarily intersect.

Next, we control the final error of our estimator. Let |Î| =
∑
z∈Z2

I
{
zi ∈ Î

}
be the number of points which lie

in Î. Similarly, let |ÎQ| and |ÎP∗ | number of points which lie in Î, which are distributed according to Q and P ∗
respectively.

∣∣∣∣∣∣ 1

|Î|

∑
xi∈Î

xi − µ

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣

1

|Î|

∑
xi∈Î
xi∼Q

(xi − µ)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T1

+

∣∣∣∣∣∣∣∣
1

|Î|

∑
xi∈Î
xi∼P∗

(xi − µ)

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T2

(15)

Control of T1. To control T1, we can write it as:

T1 =

∣∣∣∣∣∣∣∣
1

|Î|

∑
xi∈Î
xi∼Q

(xi − µ)

∣∣∣∣∣∣∣∣
≤ |ÎQ|
|Î|︸︷︷︸
T1a

max
xi∈Î
xi∼Q

|xi − µ|

︸ ︷︷ ︸
T1b

(16)

where ÎQ is the number of points in Î distributed according to Q. To control T1a, we use Bernsteins inequality.
To control T1b, we use Claim 1. The claim below formally controls T1.

Claim 2. Let Î be the shortest interval containing n(1− δ4) of the points, where δ4 = (δ1 + ε) + fn(ε+ δ1, δ3).
Further assume that δ4 < 1

2 . Then, with probability at least 1− δ3 − δ5, we have that,

T1 ≤ |ÎQ|
|Î|

max
xi∈Î
xi∼Q

|xi − µ| ≤
ε+ fn(ε, δ5)

1− δ4
4σ

δ
1/2k
1

(17)
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Proof. Using Bernstein’s bound, we know that wp at least 1− δ5,

|ÎQ| ≤ n(ε+
√
ε(1− ε)

√
log(1/δ5)

n
+

2

3

log(1/δ5)

n
),

This follows from the fact that number of points drawn from Q which lie in Î is less than the total number of
points drawn according to Q. In Claim 1, we showed that when δ4 < 1

2 , then, with probability at least 1 − δ3,
we get that Î ∩ I∗ 6= φ, i.e. the intervals intersect, and that length(Î) < length(I∗). Hence, we get,

max
xi∈Î
xi∼Q

|xi − µ| ≤
4σ

δ
1/2k
1

Control of T2. To control T2, we write it as

T2 =

∣∣∣∣∣∣∣∣
|ÎP∗ |
|Î|

 1

|ÎP∗ |

∑
xi∈Î
xi∼P∗

(xi − µ)


∣∣∣∣∣∣∣∣ (18)

≤ |ÎP
∗ |
|Î|

∣∣∣∣∣∣∣∣(
1

|ÎP∗ |

∑
xi∈Î
xi∼P∗

xi)− E[x|x ∈ Î , x ∼ P ∗]

∣∣∣∣∣∣∣∣︸ ︷︷ ︸
T2a

+
|ÎP∗ |
|Î|

∣∣∣E[x|x ∈ Î , x ∼ P ∗]− µ
∣∣∣︸ ︷︷ ︸

T2b

(19)

• Control of T2a: To bound the distance between the mean of the points from P ∗ within Î and E[x|x ∼
P ∗, x ∈ Î], we will use Bernsteins bound(Lemma 10) for bounded random variables. We know that the
random variables are in a bounded interval b = length(Î) ≤ σ

δ
1
2k

, and that conditional variance of the random

variables, when conditioned on them lying in Î is controlled using Lemma 13. In particular, Lemma 13 shows
that for any event E, which occurs with probability P (E) ≥ 1

2 ,

Ex∼P∗ [(x− E[x|x ∈ E])2|x ∈ E] ≤ σ2/P (E).

Using these arguments, we get that with probability at least 1− δ7,

T2a ≤

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP∗ |
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP∗ |
, (20)

where P ∗(Î) is the probability that a random variable drawn according to P ∗ lies in Î.

• Control of T2b: To control T2b, we use the general mean shift lemma (Lemma 12), which controls how
far the mean can move when conditioned on an event. We get that,

T2b ≤ 2σ(P ∗(Î)c)1−1/(2k) (21)

Combining the bounds in (20) and (21), we get

T2 ≤ 2σ(P ∗(Î)c)1−1/(2k) +

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP∗ |
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP∗ |
(22)

Combining the upper bound on T1 in (17) with (22), we get that with probability at least 1− δ3 − δ5 − δ6 − δ7

T1 + T2 ≤ ε+ fn(ε, δ5)

1− δ4
4σ

δ
1/2k
1

+ 2σ(P ∗(Î)c)1−1/(2k) +

√
2σ2(log(3/δ7))

P ∗(Î)|ÎP∗ |
+

2σ

δ
1/2k
1

log(3/δ7)

|ÎP∗ |
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We rearrange terms and use our assumption that ε is small enough that ÎP∗ ≥ n/2. We also plugin the upper
bound on (P ∗(Î)c)1−1/(2k) from Claim 3 and set δ1 = ε, and δ5 = δ6 = δ3 = δ7 = δ/4. Hence, we get that with
probability at least 1− δ

T1 + T2 ≤ C1σε
1−1/2k + C2σ(

log n

n
)1− 1

2k + C3σ

√
log(1/δ)

n
+ C4σ

log(1/δ)

nε
1
2k

(23)

Since, we ensure that ε = max(ε, log(1/δ
n ) hence, log(1/δ)

nε
1
2k
≤ ε1− 1

2k . Note that our assumption of δ4 < 1
2 boils down

to ε being small enough such that 2ε +
√
ε log(4/δ)

n + log(4/δ)
n < 1

2 . Hence, we recover the final statement of the
theorem.

A.3.1 Auxillary Proofs

Claim 3. Let Î be the shorted interval containing n(1− δ4) points from Z1. Let P ∗(Î) is the probability that a
random variable drawn according to P ∗ lies in Î. Then, there exists universal constants C1, C2 > 0 such that wp
at least 1− δ6, we have that

(P ∗(Î)c)1− 1
2k ≤ C1ε

1− 1
2k + C2δ

1− 1
2k

1 + C3(
log n

n
)1− 1

2k + C4(
log(1/δ6)

n
)1− 1

2k + C5(
log(1/δ3)

n
)1− 1

2k (24)

Proof. Note that Î is obtained by choosing the shortest interval containing n(1 − δ4) points from Z1. We first
bound P ∗n(Î), i.e. the empirical probability of samples distributed according to P ∗ which lie in Î. To do this,
note that in Z1, number of points drawn from Q which lie in Î, say n̂Q is less than the total number of points
drawn according to Q. Using Bernstein’s bound, we know that wp at least 1− δ6,

|n̂Q| ≤ n(ε+
√
ε(1− ε)

√
log(1/δ6)

n
+

2

3

log(1/δ6)

n
)

Let n̂P∗ be the number of points in Z1, which are drawn from P ∗ and which lie in Î. Since |n̂Q|+ |n̂P∗ | = |Î| =
n(1− δ4), hence the above implies that with probability at least 1− δ6,

|n̂P∗ | ≥ n(1− δ4)− n(ε+
√
ε(1− ε)

√
log(1/δ6)

n
+

2

3

log(1/δ6)

n
),

Note that P ∗n(Î) = |n̂P∗ |∑
i I{xi∼P∗} . Hence, we get that,

P ∗n(Î) ≥ |n̂P
∗ |

n
≥ 1− (ε+ δ4)− fn(ε, δ6) (25)

This implies that,

P ∗n(Î)c ≤ (ε+ δ4) + fn(ε, δ6)

≤ 2ε+ δ1 + fn(ε, δ6) + fn(ε+ δ1, δ3)

≤ 4ε+ 2δ1 + C1
log(1/δ6)

n
+ C2

log(1/δ3)

n
(26)

To finally bound the probability of a sample drawn from P ∗ to lie in Î, we use the relative deviations VC
bound(Lemma 11), which gives us,

P ∗(Î)c ≤ P ∗n(Î)c︸ ︷︷ ︸
A1

+4

√
(
P ∗n(Î)c logS[2n]

n
) + (

P ∗n(Î)c log(4/δ6)

n
) +

logS[2n]

n
+

log(4/δ6)

n
(27)
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where S[2n] = O(n2). Using that
√
ab ≤ a+ b,∀a, b ≥ 0, we get that,

P ∗(Î)c ≤ C1P
∗
n(Î)c + C2(

logS[2n]

n
+

log(4/δ6)

n
) (28)

Hence, we get that,

(P ∗(Î)c)1− 1
2k ≤ C1ε

1− 1
2k + C2δ

1− 1
2k

1 + C3(
log n

n
)1− 1

2k + C4(
log(1/δ6)

n
)1− 1

2k + C5(
log(1/δ3)

n
)1− 1

2k (29)

Claim 4. Let P ∗(I∗) be the probability that a sample drawn according from Pε is distributed according to P ∗
and lies in I∗.

P ∗(I∗) ≥ (1− ε)(1− δ1) = 1− (ε+ δ1 − εδ1) ≥ 1− (ε+ δ1)︸ ︷︷ ︸
δ2

= 1− δ2

Proof. For any x ∼ Pε, define, zi = 1 if x ∼ P ∗. Now, for any x ∼ P ∗, we know that, by chebyshevs we know
that,

P (|x− µ| ≥ t) = P ((x− µ)2k ≥ t2k) ≤ E[(x− µ)2k]/t2k ≤ C2kσ
2k/t2k

Hence, we get that wp at least 1− δ1, x ∈ µ± σ/(δ1)1/2k

The following claim lower bounds the empirical fraction of samples which are distributed according to P ∗ and
lie in I∗, when n samples are drawn from Pε.
Claim 5. Let P ∗n(I∗) be the empirical fraction of points which are distributed according to P ∗ and lie in I∗,
when n samples are drawn from Pε. Then, with probability at least 1− δ3,

P ∗n(I∗) ≥ 1− (δ2 +
√

(δ2(1− δ2))

√
log(1/δ3)

n
+

2

3

log(1/δ3)

n
)︸ ︷︷ ︸

δ4=(δ1+ε)+fn(ε+δ1,δ3)

,

Proof. This follows from Bernstein’s inequality(Lemma 10).

Lemma 10. [Bernsteins bound,] Let X ∼ P ∗ be a scalar random variable such that |X−E[x]| ≤ b with variance

σ2. Then, given n samples {x1, x2, . . . , xn} ∼ P ∗, the empirical mean, x̄n = 1
n

n∑
i=1

xi is such that,

P (|x̄n − E[x]| > t) ≤ 2 exp(
−nt2

2σ2 + 2bt/3
)

which can be equivalently re-written as. With probability at least 1− δ,

|x̄n − E[x]| ≤
√

2σ2 log(1/δ)

n
+

2b log(1/δ)

3n

Lemma 11. [Relative deviations, (Vapnik and Chervonenkis, 2015)] Let F be a function class consisting of
binary functions f . Then, with probability at least 1− δ,

sup
f∈F
|P (f)− Pn(f)| ≤ 4

√
Pn(f)

log(SF (2n)) + log(4/δ)

n
+ C1

log(SF (2n)) + log(4/δ)

n
,

where SF (n) = sup
z1,z2,...,zn

|{(f(z1), f(z2), . . . , f(zn)) : f ∈ F}| is the growth function, i.e. the maximum number

of ways into which n-points can be classified the function class.
Lemma 12. [General Mean shift, (Steinhardt, 2018)] Suppose that a distribution P ∗ has mean µ and variance
σ2 with bounded 2kth-moments. Then, for any event A which occurs with probability at least 1− ε ≥ 1

2 ,

|µ− E[x|A]| ≤ 2σε1−
1
2k

In particular, for just bounded second moments, we get that |µ− E[x|A]| ≤ 2σ
√
ε.
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Proof. For any event E, Let I {E} denote the indicator variable for E.

|Ex∼P∗ [x|E]− µ]| = |Ex∼P
∗((x− µ)I {E})|
P (E)

≤ E[|x− µ|p]
1
p (E[I {E}q]1/q)
P (E)

, (30)

where p, q > 1 are such that 1/p+ 1/q = 1. Put p = 2k, we get,

|Ex∼P∗ [x|E]− µ]| ≤ σ

(P (E))1/2k

Now, we know that, |E[X|A]− µ| = 1−P (A)
P (A) |E[X|Ac]− µ|. Putting E = Ac, we get,

|E[X|A]− µ| ≤ 1− P (A)

P (A)

σ

(1− P (A))1/2k
≤ 2σε(1−

1
2k ).

Lemma 13. [Conditional Variance Bound] Suppose that a distribution P ∗ has mean µ and variance σ2. Then,
for any event A which occurs with probability at least 1−ε, the variance of the conditional distribution is bounded
as:

(E[(x− E[x|A])2|A]) ≤ σ2

(1− ε)

Proof. Let µA = E[y|A], d = µA − µ. From Lemma 12, we know, d ≤ σ2
√
ε. Observe the following,

E[(y − µA)2|A] = E[(y − µ− d)2|A] = E[((y − µ)2 − 2d(y − µ) + d2)|A] (31)

= E[(y − µ)2|A]− d2 (32)

≤ E[(y − µ)2|A] (33)

≤ σ2

1− ε
, (34)
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A.4 Proof of Lemma 5

Proof. For brevity, let θ̂δ = argmin
θ

sup
u∈N 1/2(Sp−1)

|uT θ − f({uTxi}ni=1, ε,
δ
5p )|, where f is our univariate estimator.

Let θ∗ = E[x] be the true mean. Then, we can write the `2 error in its variational form.

‖θ̂δ − θ∗‖2 = sup
u∈Sp−1

|uT (θ̂δ − θ∗)| (35)

Suppose {yi} is a 1
2 -cover of the net, so there exist a yj such that u = yj + v, where ‖v‖2 ≤ ε.

‖θ̂δ − θ∗‖2 ≤ sup
u∈Sp−1

|yTj (θ̂δ − θ∗)|+ |vT (θ̂δ − θ∗)|

≤ sup
yj∈N

1
2 (Sp−1)

|yTj (θ̂δ − θ∗)|+ ‖v‖2‖θ̂δ − θ∗‖2

≤ 2 sup
yj∈N

1
2 (Sp−1)

|yTj (θ̂δ − θ∗)|

‖θ̂δ − θ∗‖2 ≤ 2 sup
u∈N 1/2

|uT (θ̂ − θ∗)| (36)

≤ 2

[
sup

u∈N 1/2

|uT θ̂ − f(uTPn, ε; δ̃)|+ sup
u∈N 1/2

|uT θ∗ − f(uTPn, ε; δ̃)|

]
(37)

≤ 4 sup
u∈N 1/2

|uT θ∗ − f(uTPn, ε; δ̃)| (38)

For a fixed u, the distribution uTP has mean uT θ∗, where θ∗ is the mean of the multivariate distribution P .
Hence, we get that, for a confidence level δ̃, when the univariate estimator is applied to the projection of the
data long u, it returns a real number such that, with probability at least 1− δ̃

|f(uTPn; ε; δ̃)− uT θ∗| ≤ C1ωf (ε, uTP, δ̃)

Taking a union bound over the elements of the cover, and using the fact that |N 1/2(Sp−1)| ≤ 5p (Wainwright,
2019), we substitute δ̃ = δ/(5p) and recover the statement of the Lemma.

A.5 Proof of Lemma 6

Proof. Let θ̂δ = argmin
θ∈Θs

sup
u∈N 1/2

2s (Sp−1)

|uT θ − f({uTxi}ni=1, ε,
δ

(6ep/s)s )|, where f(·) is our univariate estimator.

Observe that since θ̂δ and the true mean θ∗ are both s-sparse. Hence, the error vector θ̂−θ∗ is atmost 2s-sparse.
Then, we can write the `2 error in its variational form,

‖θ̂δ − θ∗‖2 = sup
u∈Sp−1∩B2s

|uT (θ̂δ − θ∗)|, (39)

where Sp−1 ∩ B2s is the set of unit vectors which are 2s-sparse. The remaining of the proof follows along the
lines of proof of Lemma 5, coupled with the fact that the cardinality of the half-cover of an 2s-sparse ball, i.e.∣∣∣N 1

2 (Sp−1)
∣∣∣ ≤ ( 6ep

s )s (Vershynin, 2009).
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A.6 Proof of Lemma 7

Let Θ̂f = argminΘ∈F supu∈N 1/4(Sp−1) |uTΘu− f({(uT zi)2}ni=1, 2ε,
δ
9p )|, where f is a univariate estimator, and zi

are the pseudo-samples obtained by zi = (xi+n/2 − xi)/
√

2. We begin by first using one-step discretization,

‖Θ̂f − Σ(P )‖2 = sup
u∈Sp−1

|uT (Θ̂f − Σ(P ))u|

≤ 1

1− 2γ
sup
y∈Nγ

|yT (Θ̂IM − Σ(P ))y|,

where N γ is the γ-cover of the unit sphere. We set γ = 1/4.

‖Θ̂f − Σ(P )‖2 ≤ 2 sup
u∈N 1/4

|uT (Θ̂f − Σ(P ))u| (40)

≤ 2

[
sup

u∈N 1/4

|uT Θ̂IMu− f({(uT zi)2}ni=1, 2ε,
δ

9p
))|+ sup

u∈N 1/4

|uTΣ(P )u− f({(uT zi)2}ni=1, 2ε,
δ

9p
)|

]
(41)

≤ 4 sup
u∈N 1/2

|uTΣ(P )u− f(uTXn, ε; δ̃)| (42)

For a fixed u, for the clean samples in zi, (uT zi)
2 has mean uTΣ(P )u, and variance C4(uTΣ(P )u)2. Note that

the scalar random variables (uT zi)
2 have bounded k moments, whenever xi has bounded 2k-moments. Hence,

for a fixed u, we get that with probability at least 1− δ,

|f({(uT zi)2}ni=1, 2ε,
δ

9p
)− uTΣ(P )u| . ωf (2ε, uTP⊗2, δ̃)

Taking a union bound over the elements of the cover, and using the fact that |N 1/4(Sp−1)| ≤ 9p (Wainwright,
2019), we substitute δ̃ = δ/(9p) and recover the statement of the Lemma.

A.7 Proof of Lemma 8

Let Θ̂f,s = argminΘ∈Fs sup
u∈N 1/4

2s (Sp−1)
|uTΘu− f({(uT zi)2}ni=1, 2ε,

δ
(9ep/s)s )|, where f is a univariate estimator,

and zi are the pseudo-samples obtained by zi = (xi+n/2 − xi)/
√

2.

Observe that since Θ̂f,s and the true covariance Σ(P ) are both in Fs. Hence, the difference matrix Θ̂f,s−Σ(P ) has
atmost 2s non-zero off diagonal elements. Hence, we can write that ‖Θ̂f,s −Σ(P )‖2 = supu∈B2s∩Sp−1 |uT (Θ̂

(s)
IM −

Σ(P ))u|, where B2s∩Sp−1 is the set of unit vectors which are atmost 2s-sparse. Using the one-step discretization,
we get that,

‖Θ̂f,s − Σ(P )‖2 ≤ 2 sup
u∈N 1/4(B2s∩Sp−1)

|uT (Θ̂f,s − Σ(P ))u|

The remainder of the proof follows from the proof of Lemma 7 coupled with the fact that the cardinality of the
1/4-cover of an 2s-sparse ball

∣∣N 1/4(Sp−1)
∣∣ ≤ ( 9ep

s )s (Vershynin, 2009).

A.8 Proof of Corollary 5

Proof. From Corollary 4, we know that the with probability at least 1− δ sparse covariance estimator satisfies,

‖Θ̂IM,s − Σ(P )‖2 . ‖Σ(P )‖2ε1−1/k + ‖Σ(P )‖2

√
s log p

n
+ ‖Σ(P )‖2

√
log 1/δ

n︸ ︷︷ ︸
T1

Let Θ̂IM,s − Σ(P ) = ∆, then, we have that ‖∆‖2 ≤ T1. Using Weyl’s Inequality, we know that,

|λr+1(Θ̂IM,s)− λr+1(Σ(P ))| ≤ ‖∆‖2
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We know that λr+1(Σ(P )) = 1. Hence, we have that λr+1(Θ̂IM,s) ∈ 1±T1. We also know that λr(Σ(P )) = 1+Λr.
Hence, we can now lower bound the eigengap, i.e.

|λr(Σ)− λr+1(Θ̂IM,s)| ≥ Λr − T1

Under the assumption that T1 < 1
2Λr, and using Davis-Kahan Theorem (Davis and Kahan, 1970), we get that,

‖V V T − V̂ V̂ T ‖F ≤
‖Θδ − Σ‖2
Λr − T1

≤ CT1

Λr

A.9 Proof of Lemma 4

Note that the proof of this follows from Lemma 6 (Altschuler et al., 2018), but we provide it for completeness.
Let F be a CDF and let QL,F (p) = inf{x ∈ R : F (x) ≥ p} and QR,F (p) = inf{x ∈ R : F (x) > p} be the left and
right quantile functions. Let

RF (t) ≥ max{QR,F (
1

2
+ t)−m,m−QL,F (

1

2
− t)},

where m is the median. Then, given n-samples from the mixture model, let m̂({xi}ni=1) be the empirical median.
Then, we have that with probability at least 1− δ,

|m̂−m| ≤ R(
ε

2(1− ε)
+

√
2 log(2/δ)

n
).

To see this, for each sample xi define an indicator variable Li ∈ {0, 1}.

Li = I
{
xi ∼ Q, or(xi ∼ P and xi ≥ QR,F (

1

2(1− ε)
+ a))

}
,

for a =

√
log(2/δ)

(1−ε)
√
n
. Note that

Pr(Li = 1) ≤ ε+ (1− ε)(1− (a+
1

2(1− ε)
))

≡ 1

2
− (1− ε)a

m̂ ≥ QR,F (
1

2(1− ε)
+ a) =⇒

∑
i

Li ≥ n/2

Hence, we have that,

Pr(m̂ > QR,F (
1

2(1− ε)
+ a)) ≤ Pr(

∑
i

Li ≥ n/2) ≤ exp(−2n(1− ε)2a2) =
δ

2

The other side is also symmetric. Hence, we have that with probability at least 1− δ,

|m̂−m| ≤ R(
ε

2(1− ε)
+ a),

where a = 1
(1−ε)

√
log(2/δ)

n . Note that under our assumption that P ∈ Pt0,κsym , we have that R(t) ≤ κt for all t ≤ t0.
Hence, as long as the contamination level ε, and confidence level δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
log(2/δ)

n
≤ t0,

we have that with probability at least 1− δ,

|m̂−m| . κε+ κ

√
log(2/δ)

n


