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Abstract

We study the problem of designing estima-
tors when the data has heavy-tails and is
corrupted by outliers. In such an adversar-
ial setup, we aim to design statistically op-
timal estimators for flexible non-parametric
distribution classes such as distributions with
bounded-2k moments and symmetric distri-
butions. Our primary workhorse is a concep-
tually simple reduction from multivariate es-
timation to univariate estimation. Using this
reduction, we design estimators which are op-
timal in both heavy-tailed and contaminated
settings. Our estimators achieve an opti-
mal dimension independent bias in the con-
taminated setting, while also simultaneously
achieving high-probability error guarantees
with optimal sample complexity. These re-
sults provide some of the first such estima-
tors for a broad range of problems includ-
ing Mean Estimation, Sparse Mean Estima-
tion, Covariance Estimation, Sparse Covari-
ance Estimation and Sparse PCA.

1 Introduction

Modern data sets that arise in various branches of sci-
ence and engineering are characterized by their ever
increasing scale and richness. This has been spurred
in part by easier access to computer, internet and var-
ious sensor-based technologies that enable the auto-
mated acquisition of such heterogeneous datasets. On
the flip side, these large and rich data-sets are no
longer carefully curated, are often collected in a de-
centralized, distributed fashion, and consequently are
plagued with the complexities of heterogeneity, adver-
sarial manipulations, and outliers. The analysis of
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these huge datasets is thus fraught with methodologi-
cal challenges.

To understand the fundamental challenges and trade-
offs in handling such “dirty data” is precisely the
premise of the field of robust statistics. Here, the afore-
mentioned complexities are largely formalized under
two different models of robustness: (1) The heavy-
tailed model: In this model the sampling distribu-
tion can have thick tails, for instance, only low-order
moments of the distribution are assumed to be finite;
and (2) The ε-contamination model: Here the
sampling distribution is modeled as a well-behaved dis-
tribution contaminated by an ε fraction of arbitrary
outliers. In each case, classical estimators of the distri-
bution (based for instance on the maximum likelihood
estimator) can behave considerably worse (potentially
arbitrarily worse) than under standard settings where
the data is better behaved, satisfying various regular-
ity properties. In particular, these classical estimators
can be extremely sensitive to the tails of the distribu-
tion or to the outliers and the broad goal in robust
statistics is to construct estimators that improve on
these classical estimators by reducing their sensitivity
to outliers.

Heavy Tailed Model. Concretely, focusing on
the fundamental problem of robust mean estimation,
in the heavy tailed model we observe n samples
x1, . . . , xn drawn independently from a distribution P ,
which is only assumed to have low-order moments fi-
nite (for instance, P only has finite variance). The
goal of past work Catoni (2012); Minsker (2015); Lu-
gosi and Mendelson (2017); Catoni and Giulini (2017)
has been to design an estimator θ̂n of the true mean µ
of P which has a small `2-error with high-probability.
Formally, for a given δ > 0, we would like an estimator
with minimal rδ such that,

P (‖θ̂n − µ‖2 ≤ rδ) ≥ 1− δ. (1)

As a benchmark for estimators in the heavy-tailed
model, we observe that when P is a multivariate nor-
mal distribution (or more generally is a sub-Gaussian



A Robust Univariate Mean Estimator is All You Need

distribution) with mean µ and covariance Σ, it can be
shown (see Hanson and Wright (1971)) that the sam-
ple mean µ̂n = (1/n)

∑
i xi satisfies, with probability

at least 1− δ1,

‖µ̂n − µ‖2 .

√
trace (Σ)

n
+

√
‖Σ‖2 log(1/δ)

n
. (2)

where ‖Σ‖2 denotes the operator norm of the covari-
ance matrix Σ.

The bound is referred to as a sub-Gaussian-style er-
ror bound. However, for heavy tailed distributions,
as for instance showed in Catoni (2012), the sam-
ple mean only satisfies the sub-optimal bound rδ =
Ω(
√
d/nδ). Somewhat surprisingly, recent work Lu-

gosi and Mendelson (2017) showed that the sub-
Gaussian error bound is achievable while only assum-
ing that P has finite variance, but by a carefully de-
signed estimator. In the univariate setting, the classi-
cal median-of-means estimator Alon et al. (1996); Ne-
mirovski and Yudin (1983); Jerrum et al. (1986) and
Catoni’s M-estimator Catoni (2012) achieve this sur-
prising result but designing such estimators in the mul-
tivariate setting has proved challenging. Estimators
that achieve truly sub-Gaussian bounds, but which are
computationally intractable, were proposed recently
by Lugosi and Mendelson (2017) and subsequently
Catoni and Giulini (2017). Hopkins (2018) and Cher-
apanamjeri et al. (2019) developed a sum-of-squares
based relaxation of Lugosi and Mendelson (2017)’s es-
timator, thereby giving a polynomial time algorithm
which achieves optimal rates.

Huber’s ε-Contamination Model. In this setting,
instead of observing samples directly from the true dis-
tribution P , we observe samples drawn from Pε, which
for an arbitrary distribution Q is defined as a mixture
model,

Pε = (1− ε)P + εQ. (3)

The distribution Q allows one to model arbitrary out-
liers, which may correspond to gross corruptions, or
subtle deviations from the true model. There has
been a lot of classical work studying estimators in
the ε-contamination model under the umbrella of ro-
bust statistics (see for instance Hampel et al. (1986)
and references therein). However, most of the estima-
tors come that come with strong guarantees are com-
putationally intractable Tukey (1975), while others
are statistically sub-optimal heuristics Hastings et al.
(1947). Recently, there has been substantial progress
Diakonikolas et al. (2016); Lai et al. (2016); Kothari

1Here and throughout our paper we use the notation .
to denote an inequality with universal constants dropped
for conciseness.

et al. (2018); Charikar et al. (2017); Diakonikolas et al.
(2017); Balakrishnan et al. (2017); Prasad et al. (2018);
Diakonikolas et al. (2018) designing provably robust
which are computationally tractable while achieving
near-optimal contamination dependence (i.e. depen-
dence on the fraction of outliers ε) for computing
means and covariances. In the Huber model, using
information-theoretic lower bounds Chen et al. (2016);
Lai et al. (2016); Hopkins and Li (2018), it can be
shown that any estimator must suffer a non-zero bias
(the asymptotic error as the number of samples go to
infinity). For example, for the class of distributions
with bounded variance, Σ - σ2Ip, the bias of any es-
timator is lower bounded by Ω(σ

√
ε). Surprisingly, the

optimal bias that can be achieved is often independent
of the data dimension. In other words, in many in-
teresting cases optimally robust estimators in Huber’s
model can tolerate a constant fraction ε of outliers,
independent of the dimension.

While the aforementioned recent estimators for mean
estimation under Huber contamination have a poly-
nomial computational complexity, their correspond-
ing sample complexities are only known to be polyno-
mial in the dimension p. For example, Kothari et al.
(2018) and Hopkins and Li (2018) designed estima-
tors which achieve optimal bias for distributions with
certifiably bounded 2k-moments, but their statistical
sample complexity scales as O(pk). Steinhardt et al.
(2017) studied mean estimation and presented an es-
timator which has a sample complexity of Ω

(
p1.5

)
.

Despite their apparent similarity, developments of es-
timators that are robust in each of these models, have
remained relatively independent. Focusing on mean
estimation we notice subtle differences, in the heavy-
tailed model our target is the mean of the sampling
distribution whereas in the Huber model our target is
the mean of the decontaminated sampling distribution
P . Beyond this distinction, it is also important to note
that as highlighted above the natural focus in heavy-
tailed mean estimation is on achieving strong, high-
probability error guarantees, while in Huber’s model
the focus has been on achieving dimension indepen-
dent bias.

Contributions. In this work, we aim to design esti-
mators which are statistically optimally robust in both
models simultaneously, i.e. they achieve a dimension-
independent asymptotic bias in the ε-contamination
model and achieve high probability deviation bounds
similar to (2). Our main workhorse is a conceptually
simple way of reducing multivariate estimation to the
univariate setting. Then, by carefully solving mean
estimation in the univariate setting, we are able to
design optimal estimators for multivariate mean and
covariance estimation for non-parametric distribution
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classes both in the low-dimensional (n ≥ p) and high-
dimensional (n < p) setting. We achieve these rates
for non-parametric distribution classes such as distri-
butions with bounded 2k-moments and the class of
symmetric distributions.

2 Background and Setup

In this section, we formally define two classes of dis-
tributions which we work with in this paper, (1)
Bounded-2k-Moment distributions and (2) Symmetric
Distributions.

Bounded 2k-moment Class. Let x be a random
vector with mean µ and covariance Σ. We say that x
has bounded 2k-moments if for all v ∈ Sp−1, E[(vT (x−
µ))2k] ≤ C2k

(
E[(vT (x− µ))2]

)k. We let Pσ2

2k be the
class of distributions with bounded 2k moments with
covariance matrix Σ . σ2Ip.

Symmetric Distributions. There exist several no-
tions of symmetry for multivariate distributions. We
discuss these notions briefly, but refer the reader to Liu
(1990) for a detailed discussion. A random vector in
Rp is centrally symmetric about θ ∈ Rp, if, x − θ d

=

θ − x, where d
= denotes equal in distribution. Equiv-

alently, this corresponds to uT (x − θ)
d
= uT (θ − x)

for all unit vectors u ∈ Sp−1. Liu (1990) introduced
the broader notion of angular symmetry, where a ran-
dom vector x ∈ Rp is angularly symmetric about θ, if
x−θ
‖x−θ‖2

d
= θ−x
‖x−θ‖2 , or equivalently, x−θ

‖x−θ‖2 is centrally-
symmetric. Central symmetry about θ implies angular
symmetry about θ (see Lemma 2.2 in Liu (1990)).

Halfspace(H)-Symmetry. For any unit vector u ∈
Sp−1, let Hu,t = {x : uTx ≤ t} be a closed halfs-
pace in Rp. Its interior is an open subspace and the
boundary {x : uTx = t} is a hyperplane. Recall that
for any random variable y ∈ R, the median of the
distribution of y (med(y)) is defined to be any num-
ber c such that Pr(y ≤ c) ≥ 0.5, Pr(y ≥ c) ≥ 0.5.
Then, a random vector in Rp is H-symmetric about
θ ∈ Rp if, Pr(x ∈ H) ≥ 1

2 for all closed halfspaces
H with θ on boundary. Note that angular symme-
try about a point θ implies halfspace-symmetry about
it as well (see Lemma 2.4 Liu (1990)). Moreover,
if we have that x is H-symmetric about θ, then (1)
med(uTx) = uT θ, and (2) Pr(uT (x − θ) ≥ 0) ≥ 1

2
for all u ∈ Sp−1 (see Theorem 2.1 Liu (1990)). Note
that till now, our discussion hasn’t required the dis-
tribution to have bounded moments, in particular, it
need not even have bounded first moments (mean).
However, if the distribution has a finite mean, then, it
is easy to see that med(uTx) = E[uTx] = uT θ. Our
last assumption ensures that the median is unique and
hence identifiable. To this end, let Psym be the class

of H-symmetric distributions with unique center of H-
symmetry. Moreover suppose Pt0,κsym ⊂ Psym is the class
of distributions such that for any P ∈ Pt0,κsym the CDF
of the univariate projection(uTP ) given by FuTP in-
creases at least linearly around uT θ. Formally, for all
x1 ∈ [med(uTP ), F−1

uTP
( 1

2 + t0)] we have that

FuTP (x1)− 1

2
≥ 1

κu,P
(x1 −med(uTP ))

(4)

and for all x2 ∈ [F−1
uTP

( 1
2 − t0),med(uTP )], we have

that 1
2 −FuTP (x2) ≥ 1

κu,P
(med(uTP )−x2) for κu,P ≤

κ. A higher κ corresponds to slower rate of increase in
CDF around the median. Note that κ can be thought
of as a measure of variance or dispersion. In partic-
ular, for example, in the case of univariate Gaussian
distribution, i.e. P = N (µ, σ2), κ(P ) = Cσ. Sim-
ilarly for univariate Cauchy distribution with scale
γ, κ(P ) ≈ Cγ. Note that any univariate distribu-
tion P ∈ Psym with density function p(x) such that
min
|t|<t0

p(P−1
F ( 1

2 + t)) > 1
κ also belongs to Pt0,κsym .

3 Some Candidate Multivariate
Estimators

In this section, we study some natural candidate esti-
mators, to see if they achieve an optimal asymptotic
bias in the ε-contamination model. We assume that
the true distribution is a multivariate isotropic gaus-
sian, P = N (0, Ip). Observe that it lies in both Pσ2

2k

and Pt0,κsym for σ2 = 1, and κ = O(1), hence our results
for both distribution classes.

Convex M-estimation. M-estimators were orig-
inally proposed by Huber Huber (1965), and were
shown to be robust in one dimension. Subsequent
research in 1970s showed that M-estimators perform
poorly for multivariate data Maronna (1976). In par-
ticular, Donoho and Gasko (1992) showed that when
the data is p-dimensional, the breakdown point of M-
estimators scales inversely with the dimension. Lai
et al. (2016) and Diakonikolas et al. (2016) derived
similar negative results for the specific case of geomet-
ric median. We further extend this observation, and
show that even at a very small contamination level,i.e.
ε 7→ 0, the bias of certain convex M-estimators which
are Fisher-consistent for N (0, Ip) will necessarily scale
polynomially in the dimension.
Lemma 1. Let P = N (0, Ip) and consider the convex
risk RP (θ) = Ez∼P [`(‖z − θ‖2)] where ` : R 7→ R be
any twice differentiable Fisher-consistent convex loss,
i.e. θ(P ) = argminθ RP (θ) = 0. Then, there exists a
corruption Q such that lim

ε 7→0
‖θ(Pε)‖2 ≥ ε

√
p.

Recall that when the true distribution P = N (0, Ip),
then, the lower bound on estimation in the Huber
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Model is Θ(ε) Chen et al. (2015). Our explicit
dimension-dependent lower bound on the bias of M-
estimators shows their sub-optimality.

Subset Search. Having ruled out convex estimation
to a certain extent, we next turn our attention to non-
convex methods. Perhaps the most simple non-convex
method is simple search. Intuitively, the squared loss
measures the fit between a parameter θ and samples
Z, and if all samples don’t come from the same distri-
bution(i.e. have outliers), then the corresponding fit
should be bad. To capture this intuition algorithmi-
cally, one can (1) consider all subsets of size b(1− ε)nc,
(2) minimize the squared loss over these subsets, and
then (3) return the estimator corresponding to the sub-
set with least squared loss or best fit. To be precise,
given n samples from Pε

S∗
def
= argmin

S s.t. |S|=(1−ε)n
min
θ

1

(1− ε)n
∑
xi∈S

‖xi − θ‖22

θ̂SRM
def
= min

θ

1

(1− ε)n
∑
xi∈S∗

‖xi − θ‖22 (5)

Our next result studies the asymptotic performance of
this estimator.
Lemma 2. Let P = N (0, Ip), then as n 7→ ∞, we
have that

sup
Q
‖θ̂SRM − Ex∼P [x]‖2 =

ε√
(1− ε)(1− 2ε)

√
p. (6)

The above result shows that, while subset-search has
a finite dimension-independent breakdown point(0.5),
the bias of this estimator necessarily scales with the
dimension √p.

4 Optimal Univariate Estimation

In the previous section, we studied some natural can-
didate estimators and showed that they don’t achieve
the optimal asymptotic bias in ε-contamination model
for multivariate mean estimation. In this section, we
take a step back, and study univariate estimation.
4.1 Bounded 2k-moments

We study the interval estimator which was initially
proposed by Lai et al. (2016). The estimator, pre-
sented in Algorithm 1, proceeds by using half of the
samples to identify the shortest interval containing at
least (1 − ε)n fraction of the points, and then the re-
maining half of the points is used to return an estimate
of the mean.

We assume that the contamination level ε and confi-
dence level δ are such that,

2ε+

√
ε
log(4/δ)

n
+

log(4/δ)

n
<

1

2
.

Algorithm 1 Robust Univariate Mean Estimation
function Interval1D({zi}2ni=1,Corruption
Level ε, Confidence Level δ)

Split the data into two subsets: Z1 = {zi}ni=1

and Z2 = {zi}2ni=n+1.
Let α = max(ε, log(1/δ)

n ).
Using Z1, let Î = [a, b] be the shortest interval

containing n(1−2α−
√

2α log(4/δ)
n − log(4/δ)

n ) points.
Use Z2 to identify points lying in [a, b].
return 1∑2n

i=n I{zi∈Î}
∑2n
i=n ziI

{
zi ∈ Î

}
end function

Then, we have the following Lemma.

Lemma 3. Suppose P be any 2k-moment bounded dis-
tribution over R with mean µ with variance bounded by
σ2. Given, n samples {xi}ni=1 from the mixture distri-
bution (3), Algorithm 1 returns an estimate θ̂δ such
that with probability at least 1− δ,

|θ̂δ − µ| .σmax(2ε,
log(1/δ)

n
)1− 1

2k

+σ(
log n

n
)1− 1

2k + σ

√
log(1/δ)

n

Observe that Algorithm 1 has an asymptotic bias of
O(σε1−1/2k) in the ε-contamination setting, which is
known to be information theoretically optimal Hopkins
and Li (2018); Lai et al. (2016).

Moreover, observe that for ε = 0, P has atleast

bounded 4th moment, i.e. k ≥ 2, log(n)
n

1−1/2k
term

can be ignored for large enough n. Hence, for k ≥ 2
and large enough n, Algorithm 1 achieves the devia-

tion rate of σ
√

log(1/δ)
n .

4.2 Symmetric Distributions

In the univariate setting, our estimator presented in
Algorithm 2 simply returns the sample median of the
observed samples. While this idea is simple and cru-
cially exploits that the mean and median overlap for
a symmetric distribution, this leads to profound im-
plications on the effect of contamination in the Huber
contamination model. Next, we present the theoreti-
cal bound achieved by this estimator, which was shown
in Altschuler et al. (2018).

We further assume that ε and δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
log(2/δ)

n
≤ t0.

Then we have that,
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Algorithm 2 Sample Median
function Sample Median - 1D ({zi}2n+1

i=1 )
Let z[k] be kth order-statistic
return z[n+1]

end function

Lemma 4. [Altschuler et al. (2018)] Let P be any uni-
variate distribution in Pt0,κsym . Given n-samples from
the mixture distribution (3), we get that with probabil-
ity at least 1 − δ, Algorithm 2 returns an estimate θ̂
such that,

|θ̂ − Ex∼P [x]| ≤ C1κε+ C2κ

√
log(1/δ)

n

Observe that Algorithm 2 has an asymptotic bias
of O(κε), which is also information theoretically
optimal. To see this, observe that N (·, κ2) lies
in Pt0,κsym for some constant t0 and the fact that
TV (N (µ1, κ

2),N (µ2, κ
2)) = O(|µ1 − µ2|/κ)(Theorem

1.3 Devroye et al. (2018)).

5 From 1D to p-D: A meta-estimator

In this section, we propose a general meta-estimator
to extend any univariate estimator to the multivariate
setting. For any univariate estimator f(·), suppose
that when given n-samples from the mixture model, it
returns an estimate f(Xn) such that with probability
1− δ,

|f(Xn, ε, δ)− µ(P )| ≤ ωf (ε, P, δ).

Note that ωf (ε, P, δ) is the error suffered by the uni-
variate estimator at a contamination level ε, and con-
fidence level δ, when the true univariate distribution
is P .
5.1 Mean Estimation

The proposed meta-estimator proceeds by robustly es-
timating the mean along almost every direction u, and
returns an estimate θ̂, whose projection along u(uT θ̂)
is close to these univariate robust mean along that di-
rection. In particular, let N 1/2(Sp−1) is the half-cover
of the unit sphere Sp−1, i.e. ∀u ∈ Sp−1, there exists a
y ∈ N 1/2(Sp−1) such that u = y+z for some ‖z‖2 ≤ 1

2 .
Then, for any point θ ∈ Rp and any univariate estima-
tor f(·), consider the following loss,

Df(θ, {xi}ni=1) = sup
u∈N 1/2(Sp−1)

|uT θ−f({uTxi}ni=1, ε,
δ

5p
)|,

Then, we use it to construct the following multivariate
meta-estimator, θ̂f which takes in n-samples {xi}ni=1

and a univariate estimator f(·),

θ̂f({xi}ni=1) = argmin
θ

Df (θ, {xi}ni=1),

Such directional-control based estimators have been
previously studied in the context of heavy-tailed mean
estimation by Joly et al. (2017) and Catoni and Giulini
(2017). Joly et al. (2017) used the median-of-means es-
timator, while Catoni and Giulini (2017) used Catoni’s
M-estimator Catoni (2012) as their univariate estima-
tor. Then, we have the following result.

Lemma 5. Suppose P is a multivariate distribution
with mean µ. Given n-samples from the mixture dis-
tribution (3), we get that with probability at least 1−δ,

‖θ̂f (Xn)− µ‖2 . sup
u∈N 1/2(Sp−1)

ωf (ε, uTP,
δ

5p
),

where uTP is the univariate distribution of P along u.

Sparse Mean Estimation. In this setting, we fur-
ther assume that the true mean vector of the distribu-
tion P has only a few non-zero co-ordinates, i.e. it is
sparse. Such sparsity patterns are known to be present
in high-dimensional data(see Rish et al. (2014) and ref-
erences therein). Then, the goal is to design estima-
tors which can exploit this sparsity structure, while
remaining robust under the ε-contamination model.
Formally, for a vector x ∈ Rp, let supp(x) = {i ∈
[p] s.t. x(i) 6= 0}. Then, x is s-sparse if |supp(x)| ≤ s.
We further assume that s ≤ p/2. Let Θs be the set of
s-sparse vectors in Rp, and let N

1
2

2s(Sp−1) is the half-
cover of the set of unit vectors which are 2s-sparse.
Then, for any univariate estimator f(·), let

Df,s(θ, {xi}ni=1) = sup
u∈N 1/2

2s (Sp−1)

|uT θ−f(uTXn, ε,
δ

( 6ep
s )s

)|.

Then, we can define the following meta-estimator,

θ̂f,s(Xn) = argmin
θ∈Θs

Df,s(θ,Xn),

which has the following error guarantee.

Lemma 6. Suppose P is a multivariate distribution
with mean µ such that µ is s-sparse. Given n-samples
from the mixture distribution (3), we get that with
probability at least 1− δ,

‖θ̂f,s(Xn)− µ‖2 . sup
u∈N 1/2

2s (Sp−1)

ωf (ε, uTP,
δ

( 6ep
s )s

),

where uTP is the univariate distribution of P along u.

5.2 Covariance-Estimation

In this section, we study recovering the true covari-
ance matrix, when given samples from a mixture dis-
tribution. We first center our observations by defining
pseudo-samples zi =

xi−xi+n/2√
2

. We can think of zi
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as being sampled from the Huber Contamination P̃2ε,
where P̃ = 1√

2
(P −P ). Let Zn = {zi}ni=1 be the set of

these pseudo-samples, and let uTZ⊗2
n = {(uT zi)2}ni=1.

Let F = {Σ = ΣT ∈ Rp×p : Σ � 0} be the class of
positive semi-definite symmetric matrices. Then, for
any matrix Θ ∈ F , let,

D⊗2
f (Θ,Zn) = sup

u∈N 1/4

|uTΘu− f(uTZ⊗2
n , ε,

δ

9p
)|

Then, consider the meta-estimator Θ̂f(Zn) given as,

Θ̂f(Zn) = argmin
Θ∈F

D⊗2
f (Θ,Zn)

Lemma 7. Suppose P is a multivariate distribution
with covariance Σ. Given n-samples from the mixture
distribution (3), we get that with probability at least
1− δ,

‖Θ̂f(Zn)− Σ‖2 . sup
u∈N 1/4(Sp−1)

ωf (2ε, uT P̃⊗2,
δ

9p
),

where uT P̃⊗2 is the univariate distribution of (uT zi)
2

for zi ∼ P̃ .

Sparse Covariance Estimation. Next, we consider
sparse covariance matrices. In particular, we assume
that there exists a subset S of |S| = s covariates that
are correlated with each other, and the remaining co-
variates [p]\S are independent from this subset and
from each other. Such sparsity patterns arise naturally
in various real-world data Bien and Tibshirani (2011).
More concretely, for a subset of co-ordinates S, define
G(S)

def
= {G = (g)ij ∈ Rp×p, gij = 0 if i /∈ S or j /∈ S},

and let G(s) =
⋃
S⊂[p]:|S|≤s G(S). Consider the class

of matrices Fs such that,

Fs = {Σ = ΣT ,Σ � 0,Σ− diagΣ ∈ G(s)}

Then for any matrix Θ and univariate estimator f , let

Df,s(Θ,Zn) = sup
u∈N 1/4

2s (Sp−1)

|uTΘu−f(uTZ⊗2
n , ε,

δ

( 9ep
s )s

)|.

Then, we can define the following estimator,

Θ̂f,s(Xn) = arginf
θ∈Fs

Df,s(Θ,Zn),

Lemma 8. Suppose P is a multivariate distribution
with covariance Σ such that Σ ∈ Fs. Given n-samples
from the mixture distribution (3), we get that with
probability at least 1− δ,

‖Θ̂f,s(Zn)−Σ‖2 . sup
u∈N 1/4

2s (Sp−1)

ωf (2ε, uT P̃⊗2,
δ

( 9ep
s )s

),

where uT P̃⊗2 is the univariate distribution of (uT zi)
2

for zi ∼ P̃ .

6 Consequences for Pσ2

2k

Next, we study the performance of our meta-estimator
for multivariate estimation for the class of distribu-
tions with bounded 2k-moments. In particular, we use
the interval estimator(IM) presented in Algorithm 1
as our univariate estimator to instantiate our meta-
estimator.

Multivariate Mean Estimation. In the multivari-
ate setting, we further assume that the contamination
level ε, and confidence are such that,

2ε+

√
ε(
p

n
+

log(1/δ)

n
) +

p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the
following result.
Corollary 1. Suppose P has bounded 2k moments
with mean µ and covariance Σ. Given n samples
{xi}ni=1 from the mixture distribution (3), we get that
with probability at least 1− δ,

‖θ̂IM(Xn)− µ‖2 . ‖Σ‖1/22 ε1−1/2k + ‖Σ‖1/22

√
log(1/δ)

n

+ ‖Σ‖1/22 (

√
p

n
+ (

log n

n
)1− 1

2k )

Observe that the proposed estimator achieves a dimen-
sion independent asymptotic bias ofO(σε1−1/2k) in the
ε-contamination model for multivariate mean estima-
tion, with a sample complexity of O(p).

Sparse Mean Estimation. In this setting, we as-
sume that the contamination level ε, and confidence
are such that,

2ε+

√
ε(
s log p

n
+

log(1/δ)

n
) +

s log p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the
following result.
Corollary 2. Suppose P has bounded 2k moments
with mean µ and covariance Σ, where µ is s-sparse.
Then, given n samples {xi}ni=1 from the mixture dis-
tribution (3), we get that with probability at least 1−δ,

‖θ̂IM,s(Xn)− µ‖2 . ‖Σ‖1/22,2sε
1−1/2k + ‖Σ‖1/22,2s

√
log(1/δ)

n

+ ‖Σ‖1/22,2s(

√
s log p

n
+ (

log n

n
)1− 1

2k ),

where ‖Σ‖2,2s = supu∈Sp−1,‖u‖0≤2s u
TΣu.

The above result shows that the proposed esti-
mator exploits the underlying sparsity structure,
and achieves the near-optimal sample complexity of
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O(s log p), while simultaneously achieving the optimal
asymptotic bias of O(‖Σ‖1/22,2sε

1−1/2k).

Covariance Estimation. We begin by first calcu-
lating ωIM (2ε, uT P̃⊗2, δ). To do this, recall that for
fixed u, for the clean samples in zi, (uT zi)

2 has mean
uTΣ(P )u, and variance C4(uTΣ(P )u)2. Note that the
scalar random variables (uT zi)

2 have bounded k mo-
ments, whenever xi has bounded 2k-moments. Hence,
from Lemma 3, we have that

ωIM (2ε, uT P̃⊗2, δ) .(uTΣ(P )u)ε1−1/k

+ uTΣ(P )u

√
log 1/δ

n
.

We assume that the contamination level ε, and confi-
dence are such that,

4ε+

√
2ε(

p

n
+

log(1/δ)

n
) +

p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the
following result.
Corollary 3. Suppose P has bounded 2k-moments,
then, given Xn drawn from the mixture model, then,
we have that with probability at least 1− δ,

‖Θ̂IM − Σ(P )‖2 . ‖Σ(P )‖2ε1−1/k + ‖Σ(P )‖2
√
p

n

+ ‖Σ(P )‖2

√
log 1/δ

n

Observe that the proposed estimator achieves a dimen-
sion independent asymptotic bias of O(σ2ε1−1/k) in
the ε-contamination model for multivariate covariance
estimation, with a sample complexity of O(p).

Sparse Covariance Estimation. In this setting, we
assume that the contamination level ε, and confidence
δ are such that,

4ε+

√
2ε(

s log p

n
+

log(1/δ)

n
) +

s log p

n
+

log(4/δ)

n
< c,

for some small constant c > 0. Then, we have the
following result.
Corollary 4. Suppose P has bounded 2k-moments
and Σ(P ) ∈ Fs, then, given Xn drawn from the mix-
ture model, we have that with probability at least 1− δ,

‖Θ̂IM,s − Σ(P )‖2 . ‖Σ(P )‖2ε1−1/k + ‖Σ(P )‖2

√
s log p

n

+ ‖Σ(P )‖2

√
log 1/δ

n

As before, even in this case, the proposed estimator
achieves a dimension independent bias of O(σ2ε1−1/k),
with a sample complexity of O(s log p).

Sparse PCA in Spiked Covariance Model As
an application of the sparse-covariance estimation, we
consider the following spiked covariance model, where
the true distribution P ∈ P2k is such that

Σ(P ) = V ΛV T + Ip, (7)

where V ∈ Rp×r is an orthonormal matrix, and Λ ∈
Rr×r is a diagonal matrix with entries Λ1 ≥ Λ2 ≥
. . . ≥ Λr > 0. In this setting, suppose we observe sam-
ples from a mixture distribution Pε, then the goal is
to estimate the subspace projection matrix V V T , i.e.
construct V̂ such that ‖V̂ V̂ − V V T ‖F is small. Note
that when V has only s non-zero rows, then the cor-
responding covariance matrix Σ is s-sparse(Σ ∈ Fs).

We follow Chen et al. (2015) to use our sparse co-
variance estimator Θ̂IM,s(Xn) to construct V̂ ∈ Rp×r
by setting its jth column to be the jth eigenvector of
Θ̂IM,s(Xn). Then, under the assumption that (ε, n) are
such that

(1+Λ1)ε1−1/k+(1+Λ1)

√
s log p

n
+(1+Λ1)

√
log 1/δ

n
.

Λr
2
,

we have the following result.

Corollary 5. Suppose P has bounded 2k-moments,
and Σ(P ) is of the form of (7) and we are given n
samples from the mixture distribution. Then, we have
that with probability at least 1− δ,

‖V̂ V̂ T − V V T ‖2F . (
1 + Λ1

Λr
)2(ε2−2/k)

+ (
1 + Λ1

Λr
)2(

s log p

n
+

log 1/δ

n
)

Discussion. Throughout this section, all our estima-
tors achieve a dimension-independent asymptotic bias.
Hence, our proposed meta-estimator allows us to es-
cape the dimension dependence in the ε-contamination
setting.

Next, we expand on a more subtle aspect of our es-
timators. Observe that when ε = 0, i.e. there is no
contamination, we see that the typical error rate of
our estimators for k ≥ 2(k ≥ 4 for covariance) is

O(
√

p
n +

√
log(1/δ)

n ) is the low dimensional setting,

and O(
√

s log p
n +

√
log(1/δ)

n ) in the high-dimensional
setting. Typically, such high-probability bounds are
achieved only under the restrictive assumption that
the true distribution is Gaussian or sub-gaussian. In
contrast, all our results are valid for the much broader
class of distributions with bounded 2k-moment. As
discussed in the introduction, while such results have
been recently obtained for mean estimation, our simple
meta-estimator achieves these high-probability error
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guarantees for a much broader range of problems. To
the best of our knowledge, these are some of the first
estimators which get such high-probability deviation
bounds for sparse-mean, covariance, sparse-covariance
and sparse-PCA.

7 Consequences for P t0,κsym

Next, we study the performance of our meta-estimator
for multivariate estimation for the class of symmetric
distributions. In particular, we use the sample median
presented in Algorithm 2 as our univariate estimator
to instantiate our meta-estimator. In the multivari-
ate setting, we further assume that the contamination
level ε, and confidence level δ are such that,

ε

2(1− ε)
+

1

(1− ε)

√
p

n
+

log(2/δ)

n
≤ t0.

Then, we have the following result.

Corollary 6. Suppose P ∈ Pt0,κsym is a multivariate dis-
tribution with mean µ. Given n samples {xi}ni=1 from
the mixture distribution (3), we get that with probabil-
ity at least 1− δ,

‖θ̂Med(Xn)− µ‖2 . κε+ κ

√
log(1/δ)

n
+ κ

√
p

n

Observe that the proposed estimator achieves a di-
mension independent asymptotic bias of O(κε) in the
ε-contamination model for multivariate mean estima-
tion, with a sample complexity of O(p).

Sparse Mean Estimation. In this setting, we as-
sume that the contamination level ε, and confidence
are such that,

ε

2(1− ε)
+

1

(1− ε)

√
s log p

n
+

log(2/δ)

n
. t0.

Then, we have the following result.

Corollary 7. Suppose P ∈ Pt0,κsym is a multivariate dis-
tribution with mean µ. Given n samples {xi}ni=1 from
the mixture distribution (3), we get that with probabil-
ity at least 1− δ,

‖θ̂Med,s(Xn)− µ‖2 . κε+ κ

√
log(1/δ)

n
+ κ

√
s log p

n

The above result shows that the proposed esti-
mator exploits the underlying sparsity structure,
and achieves the near-optimal sample complexity of
O(s log p), while simultaneously achieving the opti-
mal asymptotic bias of O(κε). Moreover for the case
of ε = 0, the proposed estimator achieves the near-
optimal deviation bound for sparse-mean estimation,

for symmetric distributions without moments. Note
that similar results can be derived for other higher-
order moments.

Discussion. Observe the difference in achievable
rates for Pt0,κsym and Pσ2

2k . In particular, for symmet-
ric distributions including those which have no finite
variance, the maximum bias introduced by Huber Con-
tamination Model is at most O(κε). In contrast for dis-
tributions with bounded 2k-moments, the lower bound
for mean estimation is Ω(σε1−1/2k). Note that the
depth based estimators of Chen et al. (2015) also im-
plicitly assume that the underlying distribution is sym-
metric, and hence obtain similar rates for elliptical dis-
tributions.

8 Conclusion and Future Directions.

In this work we provided a conceptually simple way
of reducing multivariate estimation to univariate es-
timation. In particular, we showed how to use any
robust univariate estimator to design statistically op-
timal robust estimators for multivariate estimation.
Through this reduction, we derived optimal estima-
tors for non-parametric distribution classes such as
distributions with bounded 2k-moments and symmet-
rical distributions. Our estimators achieved optimal
asymptotic bias in the ε-contamination model, and
also high-probability deviation bounds in the uncon-
taminated setting. There are several avenues for future
work, some of which we discuss below.

Computationally Efficient Estimators. As noted
in the introduction, there has been a flurry of work
in the theoretical computer science community on de-
signing polynomial time estimators for robust mean
estimation. Designing sample-efficient estimators for
sparse-mean estimation for the bounded 2k-moment
class is an open problem. Similarly for covariance es-
timation, most existing work has focused on Frobe-
nius norm, or Mahalanobis distance, and designing es-
timators for covariance estimation in operator norm
for general bounded 2k-moment is an open problem.
Another important challenge is to design computation-
ally efficient estimators for the mean of a symmetric
distribution.

Extension to General Risk Minimization. An-
other future line of work is to extend our results for
general risk minimization problems such as Linear Re-
gression and Generalized Linear Models.
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