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Abstract

State-of-the-art performance on language under-
standing tasks is now achieved with increasingly
large networks; the current record holder has bil-
lions of parameters. Given a language model
pre-trained on massive unlabeled text corpora,
only very light supervised fine-tuning is needed
to learn a task: the number of fine-tuning steps is
typically five orders of magnitude lower than the
total parameter count. Does this mean that fine-
tuning only introduces small differences from the
pre-trained model in the parameter space? If so,
can one avoid storing and computing an entire
model for each task? In this work, we address
these questions by using Bidirectional Encoder
Representations from Transformers (BERT) as
an example. As expected, we find that the fine-
tuned models are close in parameter space to the
pre-trained one, with the closeness varying from
layer to layer. We show that it suffices to fine-
tune only the most critical layers. Further, we
find that there are surprisingly many good solu-
tions in the set of sparsified versions of the pre-
trained model. As a result, fine-tuning of huge
language models can be achieved by simply set-
ting a certain number of entries in certain lay-
ers of the pre-trained parameters to zero, saving
both task-specific parameter storage and compu-
tational cost.

1 Introduction

Modern deep neural networks operate in a regime where
the generalization gap diminishes with growing model ca-
pacity, defying the classical bias-variance tradeoff (Belkin
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et al., 2018). Increased model capacity always leads to bet-
ter generalization, a trend highly prominent in the natural
language understanding domain. From BERT (340M pa-
rameters, Devlin et al., 2018), to GPT-2 (1.5B parameters,
Radford et al., 2019), and to Megatron-LM (8.3B parame-
ters, Shoeybi et al., 2019), state-of-the-art performance in
language comprehension tasks keeps improving with larger
model capacity.

These huge language models are first pre-trained on large
text corpora. Pre-training is a learning procedure, often
unsupervised, that yields a good common initialization for
further supervised learning of various downstream tasks.
This further learning, called fine-tuning, is an additional
optimization of model parameters jointly with a very small
number of extra task-specific parameters (e.g. Table 1).

Though larger models generalize better, they are more ex-
pensive computationally, and the costs grow with the num-
ber of tasks learned. The high computational cost is usually
addressed by network compression techniques that produce
compact models for efficient inference (e.g. Zhao et al.,
2019). To reduce task-specific cost, transfer learning and
continual learning methods are useful to maximize sharing
of parameters across tasks (e.g. Houlsby et al., 2019; Liu
et al., 2019). In this work, we attempt to achieve these two
desirable outcomes with a single effort. We use Bidirec-
tional Encoder Representations from Transformers (BERT,
Devlin et al., 2018) and the General Language Understand-
ing Evaluation (GLUE) benchmark (Wang et al., 2018) as
a working example.

Our intuition comes from the observation that the amount
of fine-tuning necessary to learn each task is very small
(five orders of magnitude smaller than the dimensionality
of the parameter space, Table 1). This is not surprising: the
high quality of a pre-trained model should naturally lead to
rather few iterations needed to fine-tune it to perform spe-
cific tasks. But importantly, such light fine-tuning might re-
sult in fine-tuned models hypothetically closer 3 to the pre-
trained one in parameter space. This suggests a potentially
high degree of computational redundancy across tasks that
might be avoided at inference time.

3This vague notion of closeness, viz. separation by few gra-
dient update steps in the parameter space, will be made explicit
later in the text.
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Figure 1: An illustration of L0-close and sparsifica-
tion constraints on a pre-trained parameter in a three-
dimensional parameter space. Here θ̃ is the pre-trained
parameters. Individual fine-tuning procedures for different
tasks send the pre-trained parameters to distinct optimized
parameters in a close L1-neighborhood, e.g. θ(1), θ(2) and
θ(3), of which each component, viz. θ1, θ2 or θ3, is sub-
ject to change. The L0-closeness constraint (red with its
saturation encoding closeness) forces optimization within
those parameter configurations that share a certain fraction
of components with θ̃, i.e. having a small number of dif-
ferent components. The sparsification constraint (blue with
its saturation encoding density) further confines optimiza-
tion to a discrete subset of L0-close parameters, where all
changed components have to be set to zero.

We first observe that the fine-tuned and pre-trained pa-
rameters are both L1-close and angular-close in parameter
space, consistent with the small number of fine-tuning it-
erations separating them. Despite this closeness in param-
eter space, the fine-tuned parameters are not constrained
to share any components with the pre-trained weights, and
thus are equally expensive to store and to compute per iter-
ation. We conjecture that there also exist good fine-tuned
parameters under efficient computational constraints, even
though they might be more L1-distant or angular-distant.
In order to make fine-tuned models share parameters with
the pre-trained models, we optimize parameters L0-close
to pre-trained (Figure 1, red) by fine-tuning only the most
sensitive layers (i.e. those most distant in parameter sub-
spaces) of the network. Furthermore, we attempt to learn a
task by sparsifying the pre-trained weights (Figure 1, blue).
Surprisingly, our results reveal an abundance of good task-
specific parameter configurations within sparified versions
of pre-trained models: a specific task can be learned by
simply masking anywhere between 1% to 40% of the pre-
trained weights to zero.

A major contribution of the present work is the demon-

stration that fine-tuning can be realized by sparsification,
which has favorable practical implications. By forcing fine-
tuned parameters to beL0-close to the pre-trained ones, one
only needs to store a small number of different weights per
task, in addition to the common pre-trained weights, sub-
stantially saving parameter memory when there are many
tasks to perform. By forcing fine-tuned parameters to be
sparse, one potentially saves both memory and compute,
because each task only requires a binary mask on top of the
common pre-trained parameters and sparse linear algebraic
operations could be used instead of dense ones.

2 Related work

A large body of literature is concerned with sparsifica-
tion of large networks for efficient inference (e.g. Zhu and
Gupta, 2017). Our search for L0-close fine-tuning solu-
tions is motivated by the observation that sensitivities of
the optimization objective to different layers in a network
are highly variable (Zhang et al., 2019). Zhou et al. (2019)
trained sparse connectivity patterns over randomly initial-
ized network parameters, termed supermasks, suggesting
that sparsification plays a role similar and complementary
to gradient-based learning of the objective. This is also re-
lated to network architecture search (NAS).

The most similar study to ours is piggyback and its vari-
ants (Mallya et al., 2018; Mancini et al., 2019), where in a
multi-task visual object classification scenario, the authors
trained task-specific binary masks on top of a shared set of
pre-trained parameters. In this work, we not only applied
similar techniques to larger pre-trained language models,
but also studied the sparsity-accuracy tradeoff in a system-
atic way. Houlsby et al. (2019) added adapter modules to
pre-trained language models, achieving parameter sharing
across multiple tasks, but not reducing the computational
cost of the resultant fine-tuned networks. Also, note that
randomly generated high-dimensional masks can also sup-
port multi-task learning, e.g. Cheung et al. (2019).

To impose parameter sparseness differentiably in combi-
nation with the L0-closeness constraint, instead of prin-
cipled approaches to imposing L0-regularization (Louizos
et al., 2017), we used the simpler straight-through estima-
tor, much like binary quantization techniques (Courbariaux
et al., 2015; Courbariaux and Bengio, 2016); note that this
is also used by Mallya et al. (2018) and Zhou et al. (2019).

3 Methods

3.1 Notations and model architecture

Consider a pre-trained network Fθ : x 7→ F (x;θ) that
transforms input sequence x into a good representation. It
is parameterized by θ, noted as subscript for convenience.
The fine-tuning procedure to perform a task t ∈ T (T being
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Table 1: Task-specific model information of BERTBASE (parameter count 109M).

GLUE Task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Additional parameter count 2, 304 1, 536 1, 536 1, 536 1, 536 768 1, 536 1, 536
Fine-tuning iteration count 36, 816 34, 113 9, 822 6, 315 804 540 345 234

the set of tasks) can be described as a supervised training
procedure of model G(t)

φ ◦ Fθ : x 7→ y on fine-tuning set{
(x

(t)
i ,y

(t)
i )
}

. G(t)
φ is a task-specific last layer unique to

task t and is parameterized by φ; ◦ denotes function com-
position.

In the case of BERT, we have a stack of modules

Fθ = BERTθ , PθL+1
◦BθL ◦ · · · ◦Bθ1 ◦ Eθ0 (1)

(θ , [θl]
L+1
0 ),

among which E is the embedding layer, P a final pooling
layer and each B is a transformer block

Bϑ : x 7→ LN (x+DO(WOGeLU(WILN (x

+DO(WDA(WQx,WKx,WV x)))))), (2)

where ϑ , [WQ,WK ,WV ,WD,WI ,WO] collects all
the learnable parameter matrices in the block. WQ, WK ,
WV and WD are the query, key, value, and dense self-
attention projection matrices, respectively. WI and WO

are the intermediate and output feedforward matrices, re-
spectively. A(·, ·, ·) represents multi-head scaled dot-
product attention (Vaswani et al., 2017), DO(·) dropout,
LN (·) layer normalization, and GeLU(·) the Gaussian er-
ror linear unit activation function (Hendrycks and Gimpel,
2016). We experimented with the BERTBASE model (De-
vlin et al., 2018), for which L = 12, with total parameter
count of 109M 4. See Table 1 for additional task-specific
parameter counts, all 5 orders of magnitude smaller than
the total parameter count. Optimization of them alone fails
to fine-tune (see Appendix A).

3.2 GLUE benchmark

The GLUE benchmark is a collection of diverse nat-
ural language understanding tasks (Wang et al., 2018):
CoLA (Warstadt et al., 2018), SST (Socher et al., 2013),
MRPC (Dolan and Brockett, 2005), STS (Cer et al., 2018),
QQP (Shankar Iyer et al., 2017), MNLI (Williams et al.,
2018), QNLI (Rajpurkar et al., 2016), and RTE (Dagan
et al., 2006; Bar-Haim et al., 2006; Giampiccolo et al.,
2007; Bentivogli et al., 2009). We exclude the problem-
atic WNLI set 5 (Levesque et al., 2012). We fine-tune on
these tasks and report the evaluation performances. F1
is reported for QQP and MRPC, Matthews correlation for

4Pre-trained parameters obtained from https://github.
com/google-research/bert.

5See (12) in https://gluebenchmark.com/faq.

CoLA, Pearson and Spearman correlation for STS-B, and
accuracy for all other tasks.

3.3 Constrained fine-tuning procedures

For all fine-tuning procedures, we use the exact hyperpa-
rameters as described in the original paper (Devlin et al.,
2018) unless specified otherwise, with additional con-
straints described as follows. No constraints are imposed
on task-specific last layers G(t)

φ .

L0-close fine-tuning To search for fine-tuned solutions
that are L0-close to the pre-trained parameters, we selec-
tively fix the least sensitive parameter matrices at their pre-
trained values and perform fine-tuning optimization on a
lower-dimensional parameter space.

Sparsification as fine-tuning In order to search for fine-
tuned networks that are both sparse and L0-close to the
pre-trained one, we reparameterize the model by a multi-
plicative binary mask

θ = θ̃ � µ, (3)

where θ̃ is the pre-trained parameters, and µ ∈ {0, 1}N the
mask, N being the dimensionality of the parameter space,
and � the Hadamard product.

If learning is purely through optimizing the mask µ while
holding θ̃ constant, the mask is called a supermask (Zhou
et al., 2019). Since µ is discrete-valued and thus not differ-
entiable, we reparameterize µ as

µ = Bern(σ(ν)), (4)

where Bern(p) denotes an element-wise independent
Bernoulli sampler with probability p, and σ(·) the sigmoid
function, applied element-wise on ν ∈ RN , the continu-
ous mask parameter that is task-specific. We treat gradient
backpropagation through µ as a straight-through estima-
tor, similar to the techniques used in Mallya et al. (2018);
Zhou et al. (2019). Same fine-tuning hyperparameters as
described in Devlin et al. (2018) were used except for the
learning rate (see Appendix B).

Control over the final sparsity 6 is exerted by initializa-
tion of µ for fine-tuning. We initialize ν according to a
soft magnitude-based pruning mask: a fraction of small-
magnitude values are initialized to ν = −5 and the rest to

6Defined as the fraction of zero components, equal to one mi-
nus density.

https://github.com/google-research/bert
https://github.com/google-research/bert
https://gluebenchmark.com/faq
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Figure 2: L1- and angular distances in parameter sub-
spaces between pre-trained and fine-tuned weights. Shown
are metrics across the 12 encoder stack layers for the self-
attention projection matrices (WQ, WK , WV and WD)
and feed-forward matrices (WI andWO). The results pre-
sented here are for MNLI fine-tuning, but similar patterns
are observed across all GLUE tasks.

ν = 5. We found that the initial sparsity directly controls
the final sparsity (see Appendix C), allowing us to produce
masks with sparsity levels ranging from 1% to 89%.

4 Experimental results

4.1 Fine-tuned and pre-trained parameters are
L1-close and angular-close

We observe that the original fine-tuning procedures for
GLUE tasks all take 102 to 104 parameter update steps (Ta-
ble 1), negligible compared to the dimensionality of the pa-
rameter space, viz. 108. Thus, we first asked whether fine-
tuned parameters are indeed close to the pre-trained ones in
parameter space. We measured the L1-distances, i.e. L1-
norm of parameter difference, and angular distances (Ta-
ble 2). Specifically, we inspect the weight matrices in all
self-attention layers, of size 768 × 768 where 768 is the
hidden state dimension. We report the minimum and maxi-
mum values across GLUE tasks: RTE showed the smallest
values, and MNLI showed the largest values. Evidently,
we see a significantly higher L1- and angular-closeness be-
tween fine-tuned and pre-trained parameters as compared
to the expected distance between two independent random
initializations, or that between an initialization and the pre-
trained paremeters. This confirms that, during the course
of fine-tuning, the very few model parameter updates tra-
versed a very short distance in the parameter space. Com-
paring the parameter distance across GLUE tasks, we find
that it scales with the number of fine-tuning iterations (see

0.0

0.2

0.4

0.6

0.8

Baseline 0 20 3010 40 60 70 80 9050

T
as

k
 p

er
fo

rm
a
n
ce

Global sparsity (%)

MNLI
QQP
QNLI
SST-2
CoLA
STS-B
MRPC
RTE

Figure 3: Performance of supermask fine-tuned models
across GLUE tasks. We show the mean of performance
metrics across 10 independent Bernoulli sampling proce-
dures. Note the baseline performance for each task marked
by the leftmost end of each curve.

Appendix D).

Further, we inspect the closeness in parameter subspaces
for each layer. We found that, though all layers change
very little during fine-tuning, there is nevertheless a high
degree of variability across different parameter matrices
(Figure 2). Blocks deeper in the encoder stack are less L1-
close but more angular-close than shallower ones. In all
self-attention modules, value and dense projection matrices
(WV and WD) change considerably more than query and
key projection matrices (WQ andWK) during fine-tuning.

4.2 L0-close fine-tuning

Inspired by the high degree of variability in each layer’s
parameter change during fine-tuning, we ask whether ef-
fective fine-tuning can be achieved by optimizing only a
fraction of layers while having others fixed at pre-trained
values, resulting in fine-tuned models L0-close in parame-
ter space.

Our results suggest this is indeed feasible (Table 3). In-
formed by different layers’ sensitivity to fine-tuning, we
performed fine-tuning experiments by progressively ex-
cluding: (1) key projection layers in self-attention across
all encoder stack layers, (2) the penultimate and ultimate
encoder stacks, and (3) the word embedding layer. Each
of these exclusions independently or all three combined
do not substantially degrade performance, while reducing
the number of parameters to fine-tune by up to 40% (from
109M to 66M).

4.3 Sparsification as fine-tuning

Encouraged by these results, we ask whether more aggres-
sive constraints can be imposed on the fine-tuning process
to further reduce computational cost. Though L0-close
fine-tuning obviates optimization of a substantial fraction
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Table 2: Distance metrics between fine-tuned and pre-trained parameters, compared against the expected values between
two independent random initializations, either uniformly or normally distributed from − 1√

H
to 1√

H
where H = 768 is the

hidden dimension, as well as those between the pre-trained and a random initialization. Statistics presented in the rightmost
column are across all GLUE tasks.

Distance metric Between uniform
initializations

Between normal
initializations

Between uniform
initialization
and pre-trained

Between normal
initialization
and pre-trained

Between fine-tuned
and pre-trained
([min,max])

L1-distance 20.0± 0.1 16.7± 0.1 41.9± 15.2 40.9± 15.4 [0.1, 3.3]
Angular distance 0.500 0.500 0.500 0.500 [0.001, 0.027]

Table 3: L0-close fine-tuning results: layers excluded from fine-tuning, corresponding number of parameters remaining
to fine-tune, and the fine-tuning performance on the MRPC task (F1 score); other GLUE tasks show similar patterns. We
report the mean and standard deviation across 10 independent runs.

Layers excluded from fine-tuning Task-specific parameter storage F1 score

None (baseline) 109M float (100%) 89.4± 0.7
(1) Key projection layers in self-attention 102M float (94%) 89.1± 0.8
(2) Deepest encoder stack layers 95M float (87%) 88.8± 0.9
(3) Word embedding layer 86M float (78%) 89.3± 0.8
(1), (2), and (3) 66M float (60%) 88.7± 0.9

(1), (2), and (3) with 30% sparse fine-tuning 66M binary (60%) 87.4± 2.2
(1), (2), and (3) with 40% sparse fine-tuning 66M binary (60%) 86.6± 2.2
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Figure 4: Supermask sparsity levels across layers. Shown
is the low-sparsity MNLI supermask with a global spar-
sity level of 12.9%; similar patterns are observed across all
GLUE tasks.

of parameters, avoiding full storage of all parameters for
each fine-tuned task, all operations still need to be per-
formed at inference time. In order to reduce operations,
we seek to sparsify parameters. This amounts to a search
over a binary mask in a high-dimensional parameter space.
We adopt supermask training (see Section 3) to this end.

Figure 3 shows fine-tuned model performance across
GLUE tasks obtained by supermask training. Final spar-
sity level of the supermask is controlled by its initialization
(see Section 3 and Appendix C). We note that there is lit-
tle task performance degradation between 1% and 40% pa-
rameter sparsity, very close to sparse networks produced by
iterative pruning (Zhu and Gupta, 2017) but underperfom-
ing it at high sparsity levels (see Appendix E). Layer-wise
sparsity levels of supermasks also demonstrate system-
atic trends (Figure 4): (1) across GLUE tasks, WQ, WK

and WI tend to be sparser than WV , WD and WO, and
(2) shallower encoder stack layers are sparser than deeper

ones. Moreover, we show that supermask fine-tuning of
only a fraction of sensitive layers could also achieve per-
formance with little degradation from baseline (Table 3).

4.4 Many good, sparse fine-tuned supermasks exist,
but for pre-trained parameters only

One surprising finding of this study is the many occur-
rences of good fine-tuned parameters among the 2N con-
figurations in the set

{
θ : θ = θ̃ � µ

∣∣∣ µ ∈ {0, 1}N} viz.
vertices of anN -dimensional hypercube, even though most
of them are quite distant from the pre-trained parameters by
L1-metric.

First, there exist supermasks up to 40% sparse without re-
markable performance degradation for all GLUE tasks, for
some tasks even sparser (Figure 3, right end). Second, for
any task, below this maximum sparsity, we found good
masks at any sparsity level (Figure 3), which can be con-
trolled by initialization of the supermask (see Appendix C).
Finally, while it is natural that performance drops as the
mask becomes extremely sparse (Figure 3, right end), it is
rather counterintuitive that there exist good supermasks at
the dense extreme (Figure 3, left end), since we observe
that the pre-trained model with only the task-specific last
layer fine-tuned utterly fails to learn any task (Appendix A).
Noticeably, good supermasks selectively prune important
weights of large magnitudes (Appendix F).

To understand this phenomenon better, we study the su-
permasks trained with all-dense initialization (Figure 5).
Surprisingly, these low-sparsity supermasks successfully
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Table 4: Low-sparsity supermask performance. We report the sparsity levels achieved when the supermasks were initial-
ized at 0% sparsity. For several tasks, fine-tuning is achieved with less than 3% of pre-trained weights pruned. For the
supermask evaluation results, we include the mean and standard deviation of 10 Bernoulli samplings of a single run.

GLUE Task MNLI QQP QNLI SST-2 CoLA STS-B MRPC RTE

Baseline 84.3/85.6 88.5 91.6 92.7 55.2 88.5 90.7 67.1

Supermask 81.5/82.9 87.2 89.8 91.3 50.8 88.2 91.3 68.8
±0.1 ±0.1 ±0.1 ±0.2 ±0.8 ±0.1 ±0.4 ±1.0

Final sparsity 12.9% 12.6% 10.3% 7.4% 2.9% 2.2% 1.3% 1.0%
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Figure 5: Low-sparsity supermask performance, i.e. task
performance of super-masks initialized at 0% sparsity,
compared against baseline.

learn to perform all the tasks without noticeable degra-
dation from baseline. Essentially, complicated tasks like
MNLI and QQP can be learned by clamping 12-13% of
the pre-trained weights to zero (see Appendix G for how
model performance improves with sparsity), whereas for
simple tasks like MRPC and RTE, setting only 1-2% of the
pre-trained weight entries to zero suffices to learn the task
(Table 4). Fine-tuning can indeed be very fine, suggesting
relatively frequent occurrences of good solutions within a
sparse L0-neighborhood of the pre-trained parameters.

Moreover, we ask whether such frequent occurrences of
good sparsified versions of parameters is a unique prop-
erty of the pre-trained weights. In other words, can one
also obtain good supermasks on parameters that are not
pre-trained? To answer this question, we perform super-
mask fine-tuning on pre-trained parameters with compo-
nents shuffled (thusly norm-preserved). Performance de-
grades significantly, for instance, for the MRPC task, from
an F1 score of 91.3 to 81.2 with shuffled pre-trained param-
eters. It is clear that one cannot obtain any good masks by
doing so, suggesting that having high-performance sparsi-
fied versions is unique to pre-trained parameters.

4.5 Task-uniqueness of fine-tuned supermasks

Finally, we ask whether the supermasks learned to per-
form different tasks share commonalities. Specifically, we

quantify the amount of overlapping zeros in learned super-
masks across different tasks (Figure 6). It seems the over-
laps are not substantially larger than what would have been
caused by chance, suggesting that, even though there seem
to be many good supermasks for each task, these masks are
largely distinct from each other, each unique to the task it
learns.

5 Discussion

One very puzzling fact about modern deep neural networks
is that overparameterization helps both generalization and
optimization. On the one hand, given an effective network
architecture reflecting proper inductive biases, better gen-
eralizing models are always larger models (Hestness et al.,
2017). On the other hand, sheer increases in dimensionality
of the parameter space seldom make stochastic gradient-
based optimization more difficult: deeper and/or wider net-
works take just about the same, if not a lower number
of training iterations to converge. For example, ResNet-
18 (11.7M parameters) and ResNet-152 (60.2M parame-
ters) both train to converge, at similar convergence rates,
in no more than 600K iterations on Imagenet (He et al.,
2015). Thus, given adequate computing infrastructure, one
always trains the largest possible model in order to obtain
the best performance. This is perhaps most prominent in
recent pre-trained huge language models (e.g. Devlin et al.,
2018; Radford et al., 2019; Shoeybi et al., 2019) that have
achieved state-of-the-art performance on language compre-
hension tasks. Similarly, fine-tuning larger pre-trained lan-
guage models is just as easy, if not easier, than fine-tuning
smaller ones. Fine-tuning steps are usually five orders of
magnitude smaller than the dimensionality of the parame-
ter space (Table 1). A direct consequence of this is that,
in the parameter space, fine-tuned networks do not deviate
substantially from the pre-trained one, which we quanti-
tatively establish in this study. Analogous to the contrast
between the low generalization performance of small net-
works and the high compressibility of large networks in the
case of ResNets (e.g. Zhu and Gupta, 2017; Frankle and
Carbin, 2018), we are faced with the high generalization
performance of large language models and the low level
of dissimilarity before and after fine-tuning. Just as net-
work compression can generate compact models for effi-
cient inference, the abovementioned parameter closeness
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Figure 6: Fractions of overlap of zero elements in super-
masks across GLUE tasks, compared to randomly gener-
ated masks. Each value in the grid shows the fraction of
pruned elements in one task (horizontal axis) that are also
pruned in the other (vertical axis). Here, we show low-
sparsity supermasks (initialized at 0% sparsity) and com-
pare the masks in the value layer of the first encoder, which
is one of the most sparse layers in the entire model.

can also be taken advantage of to achieve efficient compu-
tation, which we demonstrate in this work.

We show that, due to surprisingly frequent occurrences of
good parameter configurations in a close L0-neighborhood
and in the set of sparsified large pre-trained language mod-
els, two techniques are highly effective in producing effi-
cient fine-tuned networks to perform specific language un-
derstanding tasks: (1) optimizing only the most sensitive
layers and (2) learning to sparsify pre-trained parameters
as fine-tuning. In contrast to commonly employed post-
training sparsification methods which always incur per-
formance degradation, our procedure of sparsifying pre-
trained networks (similar to Mallya et al., 2018; Mancini
et al., 2019) is by itself an optimization process that learns
specific tasks.
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