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Tensorized Random Projections

(Supplementary Material)

A Proof of the Theorems for the CP case

A.1 Proof of Theorem 1: CP case

Theorem. Let X € R4 *42XXdN_ The random projection maps frr(r) and fcp(r) (see Definitions | and 2) satisfy
the following properties:

o E [ form (X)3] = E [l frrm (X)I3] = 1213,
o Var (|| fromy (X)[3) < 23 (1+ 2)V 7 = 1) | X,
o Var (|| fop(ry (X)[3) < £ (BY 1 (1+ %) — 1) [ X[

Proof. Expected isometry. We start by showing that fcp(g) is an expected isometry, i.e. that E || Jep(r) (X) H; =
| X[ Lety, = ([AL, A2, AN].X) and y = [yn. .-+ , i With these definitions we have fop( () =
ﬁy and it is thus sufficient to find E[y?]. To lighten the notation, let A" = A7 for each n € [N] and let T =
[A', A2 ... AN]. We have
E[yi] = E(T. X)) =E(T @ T, X © X)]
=E[TeT],X®X).

Using the fact that the factor matrices A™ are independent, we have
E[T 7] =E[[A'© AL, , AN © AV]]
= [E[A'® A'],--- ,E[AN @ AM]].

Now, for n € [N], since the entries of each factor matrix A™ are i.i.d. Gaussian random variables with mean 0 and
. Ek
variance ()~ , we have
1
N

E[A" ® A"] = (;) vec(Iy, ) o vec(IR).
One can then show that
E[T @ T| = vec(Iz) o---ovec(Iyy),
which implies that
Elyi] = E[T® T], X ® X) = || X|%,
from which E | fop () (X)||2 = || X||% directly follows.
Bound on the variance of fcp(g). Similar to TT case, in order to bound the variance of ||y||3 we need to bound

Ely3]. We have

k

Elllylly) =Y Elyf] + > Elyiy?].

i=1 i#j

Since y; and y; are independent whenever i # j and E[y?] = || X ||}L, for all 4, the second summand is equal
to k(k — 1) ||XH?, We now derive a bound on E[y;]. First define the tensor 8™ of order 2(n — 1) and shape
RXxR--- X Rxdy Xdg-++xd,_qforany 2 <n < N by

[ —

n—1
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where Z € (RE)®N is the Nth order identity tensor, i.€., Z,, . = lifr; = --- = r, and 0 otherwise. In

some sense, 8™ is the tensor obtained by removing the first n — 1 factor matrices from the computation of y; =
(JAY, A2 ...  AN], X). With this definition one can check that

i <[[A17A2"" 7ANH7X> = <(A1)T782>7

. (Sé\{7__.7N_1))T = (X (n))TANZ 4 (recall that (SN)(L,“,N_l) € RR" " xdidx1 denotes the matricization of
8" obtained by mapping its first N — 1 modes to rows and the other ones to columns).

o vec(S") = ((S"H)(Lgn))Tvec(A") foreach n € [N — 1].
Using Lemma 3 we obtain
Eyi = E([AY, A% .- AN], X)* = E(vec((AY)T), vec(S?))* = 3R FE Hvec(SQ)H;
=3R FE ”((83)(1’4))Tvec (A?) HF
Using successive applications of Lemma 4 it follows that
Eyt = 3R™FE||((8%)(1.4)) "vec(A?)]|

< 3R ’%EH 8 = 3R VE [vec(S)||,, = 3R VE|[((S").6) Tvee(A)

<FRVE||(SY) 0| = 3R VE |vec(sY)|;
<.
- vec(SY H —3N-1p- %5 g ’(sé\{,...,N—l))THi
B 2(N 1 2(N 1)
=3V R IN U |(X ) TANT ) [ = 3V R UE | () TAY

<3V"'R2R(R+2) ||X||F

_gN (1 i ) 1

where we used the equality | TZ1)||% = ||T||% for any tensor T~ (which follows from the fact that Z(1)(Z1))" =)
for the penultimate equality.

Similar to proof of Theorem 1 for fpp(ry map, we obtain

E[lyllt = ZEWZE% (3 (14 2) 10 ) + k- 1) 12

i#j
Finally,
var (| form (%)) = Var( \/Eylé) = SE (1) - E (Iv13)" = EIvlE - 121
< o[k (35 (14 2 ) 105 )+ k- v -
< % <3N1 (1 + ]2%) - 1) (B
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A.2 Proof of Theorem 2: CP case

Theorem 2 for the map fcp(r) directly follows from the following concentration bound.

Theorem. Let X € R4 xd2XXdN There exist absolute constants C and K > 0 such that the random projection map
Jcp(r) (see Definition 2) satisfies

()"
(3N-1K)2v (1 +2/R)7~

P (|Ilferm @)~ 1213] = 1213) < Cexp |~C1

Proof. By CP part of Theorem 1, recall
El| for(r) (X)13 = 1X 1%

var (|| ferm (X)) < <3N ! <1+]2%> —1) E1r

Since H fepr)(X) H; is an order 2N polynomial of the entries of the matrices A}, --- , AN for i € [k] we can apply
Theorem 6 to obtain

and

1
, , )\2 N
P(|Ilfcrm ()[l; = 1217] > A) < Cexp |- | = ; ,
RVar (|| fopr (X))
where C' = ¢2 and K are absolute constants. Using the fact that
Var ([[ferm (0]12) < &1+ 2/R) 211
and letting A = ¢ | X ||fD we obtain
ke? || X || ”
]P’(’f X27X2’25X2)§C’expf _ F
| feram ()5 — 1215 > el )3 IETESTT

(Vi) ¥

<Cexp |— —— :
U BN RN (11 2/R) 2N
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B Additional Experimental Results

B.1 Pairwise Distance Estimation
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Figure 3: Comparison of tensorized ranodm projections with Gaussian random projections on CIFAR-10 data for
different values of the rank parameter: (left) rank 1, (middle) rank 3-10, (right) rank 5-25.

We compare the tensorized projection maps frr(g) and fcp(r) With classical Gaussian RP on CIFAR-10 image data

for different values of the rank parameter R. We reshape the first n=50 vectors (of size 32 x 32 x 4) of CIFAR-10 to
4 x 4 x 4 x 4 x 4 x 3 tensors, normalize them and compare the pairwise distance ﬁ > i<izi<n W
and standard deviation for different projection sizes k over 100 trials. The results are reported in Figure 3 where we see

that tensorized random projection maps perform competitively with classical Gaussian random projections.

B.2 Time Evaluation
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Figure 4: Comparison of embedding time between tensorized, Gaussian and very sparse Gaussian RP for the medium-
order case with different number of modes (d = 3, N € {8,11,12,13}) when the input is given in the TT format (left)
or CP format (right).

We report the average running time with respect to the input dimension dV for the medium-order case with different
number of modes (d = 3, N € {8,11, 12,13}) in Figure 4, when the input tensor X is either as a TT or CP tensor of
rank 10. We can see that frr(g) is more efficient when the input is in TT format. However, fcp(r) performs better
when the input is in the CP format (though the computational gain of fcp(r) in this case is considerably smaller than
the one of frr(g) in the previous case). We can see that by increasing the dimension frr(g) performs close to fcp(r)
even when the input is in CP and it is faster than classical Gaussian RPs in both cases (which is not true for fcp(loo)).



