Tensorized Random Projections
 (Supplementary Material)

A Proof of the Theorems for the CP case

A. 1 Proof of Theorem 1: CP case

Theorem. Let $\mathcal{X} \in \mathbb{R}^{d_{1} \times d_{2} \times \cdots \times d_{N}}$. The random projection maps $f_{\mathrm{TT}(R)}$ and $f_{\mathrm{CP}(R)}$ (see Definitions 1 and 2) satisfy the following properties:
$\bullet \mathbb{E}\left[\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right]=\mathbb{E}\left[\left\|f_{\mathrm{TT}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right]=\|\mathcal{X}\|_{F}^{2}$,

- $\operatorname{Var}\left(\left\|f_{\mathrm{TT}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right) \leq \frac{1}{k}\left(3\left(1+\frac{2}{R}\right)^{N-1}-1\right)\|\mathcal{X}\|_{F}^{4}$,
- $\operatorname{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right) \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathcal{X}\|_{F}^{4}$.

Proof. Expected isometry. We start by showing that $f_{\mathrm{CP}(R)}$ is an expected isometry, i.e. that $\mathbb{E}\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}=$ $\|\mathcal{X}\|_{F}^{2}$. Let $y_{i}=\left\langle\llbracket \mathbf{A}_{i}^{1}, \mathbf{A}_{i}^{2}, \cdots, \mathbf{A}_{i}^{N} \rrbracket, \boldsymbol{\mathcal { X }}\right\rangle$ and $\mathbf{y}=\left[y_{1}, y_{2}, \cdots, y_{k}\right]$. With these definitions we have $f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})=$ $\frac{1}{\sqrt{k}} \mathbf{y}$ and it is thus sufficient to find $\mathbb{E}\left[y_{1}^{2}\right]$. To lighten the notation, let $\mathbf{A}^{n}=\mathbf{A}_{1}^{n}$ for each $n \in[N]$ and let $\mathcal{T}=$ $\llbracket \mathbf{A}^{1}, \mathbf{A}^{2}, \cdots, \mathbf{A}^{N} \rrbracket$. We have

$$
\begin{aligned}
\mathbb{E}\left[y_{1}^{2}\right] & =\mathbb{E}\left[\langle\boldsymbol{\mathcal { T }}, \boldsymbol{\mathcal { X }}\rangle^{2}\right]=\mathbb{E}[\langle\boldsymbol{\mathcal { T }} \otimes \boldsymbol{\mathcal { T }}, \boldsymbol{\mathcal { X }} \otimes \boldsymbol{\mathcal { X }}\rangle] \\
& =\langle\mathbb{E}[\boldsymbol{\mathcal { T }} \otimes \boldsymbol{\mathcal { T }}], \boldsymbol{\mathcal { X }} \otimes \boldsymbol{\mathcal { X }}\rangle
\end{aligned}
$$

Using the fact that the factor matrices \mathbf{A}^{n} are independent, we have

$$
\begin{aligned}
\mathbb{E}[\mathcal{T} \otimes \mathcal{T}] & =\mathbb{E}\left[\llbracket \mathbf{A}^{1} \otimes \mathbf{A}^{1}, \cdots, \mathbf{A}^{N} \otimes \mathbf{A}^{N} \rrbracket\right] \\
& =\llbracket \mathbb{E}\left[\mathbf{A}^{1} \otimes \mathbf{A}^{1}\right], \cdots, \mathbb{E}\left[\mathbf{A}^{N} \otimes \mathbf{A}^{N}\right] \rrbracket .
\end{aligned}
$$

Now, for $n \in[N]$, since the entries of each factor matrix \mathbf{A}^{n} are i.i.d. Gaussian random variables with mean 0 and variance $\left(\frac{1}{R}\right)^{\frac{1}{N}}$, we have

$$
\mathbb{E}\left[\mathbf{A}^{n} \otimes \mathbf{A}^{n}\right]=\left(\frac{1}{R}\right)^{\frac{1}{N}} \operatorname{vec}\left(\mathbf{I}_{d_{n}}\right) \circ \operatorname{vec}\left(\mathbf{I}_{R}\right)
$$

One can then show that

$$
\mathbb{E}[\mathcal{T} \otimes \mathcal{T}]=\operatorname{vec}\left(\mathbf{I}_{d_{1}}\right) \circ \cdots \circ \operatorname{vec}\left(\mathbf{I}_{d_{N}}\right)
$$

which implies that

$$
\mathbb{E}\left[y_{1}^{2}\right]=\langle\mathbb{E}[\mathcal{T} \otimes \mathcal{T}], \boldsymbol{\mathcal { X }} \otimes \boldsymbol{\mathcal { X }}\rangle=\|\boldsymbol{\mathcal { X }}\|_{F}^{2}
$$

from which $\mathbb{E}\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}=\|\boldsymbol{\mathcal { X }}\|_{F}^{2}$ directly follows.
Bound on the variance of $f_{\mathrm{CP}(R)}$. Similar to TT case, in order to bound the variance of $\|\mathbf{y}\|_{2}^{4}$ we need to bound $\mathbb{E}\left[\|\mathbf{y}\|_{2}^{4}\right]$. We have

$$
\mathbb{E}\left[\|\mathbf{y}\|_{2}^{4}\right]=\sum_{i=1}^{k} \mathbb{E}\left[y_{i}^{4}\right]+\sum_{i \neq j} \mathbb{E}\left[y_{i}^{2} y_{j}^{2}\right]
$$

Since y_{i} and y_{j} are independent whenever $i \neq j$ and $\mathbb{E}\left[y_{i}^{2}\right]=\|\mathcal{X}\|_{F}^{4}$ for all i, the second summand is equal to $k(k-1)\|\mathcal{X}\|_{F}^{4}$. We now derive a bound on $\mathbb{E}\left[y_{1}^{4}\right]$. First define the tensor \mathcal{S}^{n} of order $2(n-1)$ and shape $\underbrace{R \times R \cdots \times R}_{n-1} \times d_{1} \times d_{2} \cdots \times d_{n-1}$ for any $2 \leq n<N$ by

$$
\mathcal{S}_{r_{1}, r_{2}, \cdots, r_{n-1}, i_{1}, i_{2}, \cdots, i_{n-1}}^{n}=\sum_{r_{n}, \ldots, r_{N}} \sum_{i_{n}, \cdots, i_{N}}\left(\mathbf{A}^{n}\right)_{i_{n} r_{n}}\left(\mathbf{A}^{n+1}\right)_{i_{n+1} r_{n+1}} \ldots\left(\mathbf{A}^{N}\right)_{i_{N} r_{N}} \mathcal{I}_{r_{1}}, \ldots, r_{N} \mathcal{X}_{i_{1}, \ldots, i_{N}},
$$

where $\mathcal{I} \in\left(\mathbb{R}^{R}\right)^{\otimes N}$ is the N th order identity tensor, i.e., $\mathcal{I}_{r_{1}, \ldots, r_{n}}=1$ if $r_{1}=\cdots=r_{n}$ and 0 otherwise. In some sense, \mathcal{S}^{n} is the tensor obtained by removing the first $n-1$ factor matrices from the computation of $y_{1}=$ $\left\langle\llbracket \mathbf{A}^{1}, \mathbf{A}^{2}, \cdots, \mathbf{A}^{N} \rrbracket, \mathcal{X}\right\rangle$. With this definition one can check that

- $\left\langle\llbracket \mathbf{A}^{1}, \mathbf{A}^{2}, \cdots, \mathbf{A}^{N} \rrbracket, \boldsymbol{\mathcal { X }}\right\rangle=\left\langle\left(\mathbf{A}^{1}\right)^{\top}, \mathbf{S}^{2}\right\rangle$,
- $\left(\mathcal{S}_{(1, \ldots, N-1)}^{N}\right)^{\top}=\left(\mathcal{X}_{(N)}\right)^{\top} \mathbf{A}^{N} \mathcal{I}_{(1)}\left(\right.$ recall that $\left(\mathcal{S}^{N}\right)_{(1, \ldots, N-1)} \in \mathbb{R}^{R^{N-1} \times d_{1} \ldots d_{N-1}}$ denotes the matricization of \mathcal{S}^{N} obtained by mapping its first $N-1$ modes to rows and the other ones to columns).
- $\operatorname{vec}\left(\mathcal{S}^{n}\right)=\left(\left(\mathcal{S}^{n+1}\right)_{(1,2 n)}\right)^{\top} \operatorname{vec}\left(\mathbf{A}^{n}\right)$ for each $n \in[N-1]$.

Using Lemma 3 we obtain

$$
\begin{aligned}
\mathbb{E} y_{1}^{4}=\mathbb{E}\left\langle\llbracket \mathbf{A}^{1}, \mathbf{A}^{2}, \cdots, \mathbf{A}^{N} \rrbracket, \boldsymbol{\mathcal { X }}\right\rangle^{4} & =\mathbb{E}\left\langle\operatorname{vec}\left(\left(\mathbf{A}^{1}\right)^{\boldsymbol{\top}}\right), \operatorname{vec}\left(\mathbf{S}^{2}\right)\right\rangle^{4}=3 R^{-\frac{2}{N}} \mathbb{E}\left\|\operatorname{vec}\left(\mathbf{S}^{2}\right)\right\|_{F}^{4} \\
& =3 R^{-\frac{2}{N}} \mathbb{E}\left\|\left(\left(\boldsymbol{\mathcal { S }}^{3}\right)_{(1,4)}\right)^{\top} \operatorname{vec}\left(\mathbf{A}^{2}\right)\right\|_{F}^{4} .
\end{aligned}
$$

Using successive applications of Lemma 4 it follows that

$$
\begin{aligned}
\mathbb{E} y_{1}^{4} & =3 R^{-\frac{2}{N}} \mathbb{E}\left\|\left(\left(\boldsymbol{\mathcal { S }}^{3}\right)_{(1,4)}\right)^{\top} \operatorname{vec}\left(\mathbf{A}^{2}\right)\right\|_{F}^{4} \\
& \leq 3^{2} R^{-\frac{4}{N}} \mathbb{E}\left\|\left(\mathcal{S}^{3}\right)_{(1,4)}\right\|_{F}^{4}=3^{2} R^{-\frac{4}{N}} \mathbb{E}\left\|\operatorname{vec}\left(\boldsymbol{\mathcal { S }}^{3}\right)\right\|_{F}^{4}=3^{2} R^{-\frac{4}{N}} \mathbb{E}\left\|\left(\left(\mathcal{S}^{4}\right)_{(1,6)}\right)^{\top} \operatorname{vec}\left(\mathbf{A}^{3}\right)\right\|_{F}^{4} \\
& \leq 3^{3} R^{-\frac{6}{N}} \mathbb{E}\left\|\left(\mathcal{S}^{4}\right)_{(1,6)}\right\|_{F}^{4}=3^{3} R^{-\frac{6}{N}} \mathbb{E}\left\|\operatorname{vec}\left(\mathcal{S}^{4}\right)\right\|_{F}^{4} \\
& \leq \cdots \\
& \leq 3^{N-1} R^{-\frac{2(N-1)}{N}} \mathbb{E}\left\|\operatorname{vec}\left(\boldsymbol{\mathcal { S }}^{N}\right)\right\|_{F}^{4}=3^{N-1} R^{-\frac{2(N-1)}{N}} \mathbb{E}\left\|\left(\boldsymbol{\mathcal { S }}_{(1, \ldots, N-1)}^{N}\right)^{\top}\right\|_{F}^{4} \\
& =3^{N-1} R^{-\frac{2(N-1)}{N}} \mathbb{E}\left\|\left(\boldsymbol{\mathcal { X }}_{(N)}\right)^{\top} \mathbf{A}^{N} \boldsymbol{\mathcal { I }}_{(1)}\right\|_{F}^{4}=3^{N-1} R^{-\frac{2(N-1)}{N}} \mathbb{E}\left\|\left(\boldsymbol{\mathcal { X }}_{(N)}\right)^{\top} \mathbf{A}^{N}\right\|_{F}^{4} \\
& \leq 3^{N-1} R^{-2} R(R+2)\|\boldsymbol{\mathcal { X }}\|_{F}^{4} \\
& =3^{N-1}\left(1+\frac{2}{R}\right)\|\boldsymbol{\mathcal { X }}\|_{F}^{4},
\end{aligned}
$$

where we used the equality $\left\|\boldsymbol{\mathcal { T }} \mathcal{I}_{(1)}\right\|_{F}^{2}=\|\boldsymbol{\mathcal { T }}\|_{F}^{2}$ for any tensor \mathcal{T} (which follows from the fact that $\mathcal{I}_{(1)}\left(\mathcal{I}_{(1)}\right)^{\top}=\mathbf{I}$) for the penultimate equality.
Similar to proof of Theorem 1 for $f_{\mathrm{TT}(R)}$ map, we obtain

$$
\mathbb{E}\|\mathbf{y}\|_{2}^{4}=\sum_{i=1}^{k} \mathbb{E} y_{i}^{4}+\sum_{i \neq j} \mathbb{E} y_{i}^{2} y_{j}^{2} \leq k\left(3^{N-1}\left(1+\frac{2}{R}\right)\|\boldsymbol{\mathcal { X }}\|_{F}^{4}\right)+k(k-1)\|\boldsymbol{\mathcal { X }}\|_{F}^{4} .
$$

Finally,

$$
\begin{aligned}
\operatorname{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right) & =\operatorname{Var}\left(\left\|\frac{1}{\sqrt{k}} \mathbf{y}\right\|_{2}^{2}\right)=\frac{1}{k^{2}} \mathbb{E}\left(\|\mathbf{y}\|_{2}^{4}\right)-\frac{1}{k^{2}} \mathbb{E}\left(\|\mathbf{y}\|_{2}^{2}\right)^{2}=\frac{1}{k^{2}} \mathbb{E}\|\mathbf{y}\|_{2}^{4}-\|\boldsymbol{\mathcal { X }}\|_{F}^{4} \\
& \leq \frac{1}{k^{2}}\left[k\left(3^{N-1}\left(1+\frac{2}{R}\right)\|\boldsymbol{\mathcal { X }}\|_{F}^{4}\right)+k(k-1)\|\boldsymbol{\mathcal { X }}\|_{F}^{4}\right]-\|\boldsymbol{\mathcal { X }}\|_{F}^{4} \\
& \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\boldsymbol{\mathcal { X }}\|_{F}^{4} .
\end{aligned}
$$

A. 2 Proof of Theorem 2: CP case

Theorem 2 for the map $f_{\mathrm{CP}(R)}$ directly follows from the following concentration bound.
Theorem. Let $\mathcal{X} \in \mathbb{R}^{d_{1} \times d_{2} \times \cdots \times d_{N}}$. There exist absolute constants C and $\widetilde{K}>0$ such that the random projection map $f_{\mathrm{CP}(R)}$ (see Definition 2) satisfies

$$
\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}-\|\boldsymbol{\mathcal { X }}\|_{F}^{2}\right| \geq \varepsilon\|\mathcal{X}\|_{F}^{2}\right) \leq C \exp \left[-C_{1} \frac{(\sqrt{k} \varepsilon)^{\frac{1}{N}}}{\left(3^{N-1} \widetilde{K}\right)^{\frac{1}{2 N}}(1+2 / R)^{\frac{1}{2 N}}}\right]
$$

Proof. By CP part of Theorem 1, recall

$$
\mathbb{E}\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}=\|\mathcal{X}\|_{F}^{2},
$$

and

$$
\operatorname{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right) \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathcal{X}\|_{F}^{4}
$$

Since $\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}$ is an order $2 N$ polynomial of the entries of the matrices $\mathbf{A}_{i}^{1}, \cdots, \mathbf{A}_{i}^{N}$ for $i \in[k]$ we can apply Theorem 6 to obtain

$$
\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}-\|\boldsymbol{\mathcal { X }}\|_{F}^{2}\right| \geq \lambda\right) \leq C \exp \left[-\left(\frac{\lambda^{2}}{\widetilde{K} \operatorname{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right)}\right)^{\frac{1}{2 N}}\right]
$$

where $C=e^{2}$ and \widetilde{K} are absolute constants. Using the fact that

$$
\operatorname{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}\right) \leq \frac{3^{N-1}}{k}(1+2 / R)\|\boldsymbol{\mathcal { X }}\|_{F}^{4}
$$

and letting $\lambda=\varepsilon\|\mathcal{X}\|_{F}^{2}$ we obtain

$$
\begin{aligned}
\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal { X }})\right\|_{2}^{2}-\|\boldsymbol{\mathcal { X }}\|_{F}^{2}\right| \geq \varepsilon\|\mathcal{X}\|_{F}^{2}\right) & \leq C \exp \left[-\left(\frac{k \varepsilon^{2}\|\mathcal{X}\|_{F}^{4}}{\widetilde{K} 3^{N-1}(1+2 / R)\|\mathcal{X}\|_{F}^{4}}\right)^{\frac{1}{2 N}}\right] \\
& \leq C \exp \left[-\frac{(\sqrt{k} \varepsilon)^{\frac{1}{N}}}{\left(3^{N-1} \widetilde{K}\right)^{\frac{1}{2 N}}(1+2 / R)^{\frac{1}{2 N}}}\right]
\end{aligned}
$$

B Additional Experimental Results

B. 1 Pairwise Distance Estimation

Figure 3: Comparison of tensorized ranodm projections with Gaussian random projections on CIFAR-10 data for different values of the rank parameter: (left) rank 1, (middle) rank 3-10, (right) rank 5-25.

We compare the tensorized projection maps $f_{\mathrm{TT}(R)}$ and $f_{\mathrm{CP}(R)}$ with classical Gaussian RP on CIFAR-10 image data for different values of the rank parameter R. We reshape the first $\mathrm{n}=50$ vectors (of size $32 \times 32 \times 4$) of CIFAR-10 to $4 \times 4 \times 4 \times 4 \times 4 \times 3$ tensors, normalize them and compare the pairwise distance $\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \frac{\left\|f\left(\mathbf{x}_{i}\right)-f\left(\mathbf{x}_{j}\right)\right\|_{2}}{\left\|\mathbf{x}_{i}-\mathbf{x}_{j}\right\|_{2}}$ and standard deviation for different projection sizes k over 100 trials. The results are reported in Figure 3 where we see that tensorized random projection maps perform competitively with classical Gaussian random projections.

B. 2 Time Evaluation

Figure 4: Comparison of embedding time between tensorized, Gaussian and very sparse Gaussian RP for the mediumorder case with different number of modes $(d=3, N \in\{8,11,12,13\})$ when the input is given in the TT format (left) or CP format (right).

We report the average running time with respect to the input dimension d^{N} for the medium-order case with different number of modes $(d=3, N \in\{8,11,12,13\})$ in Figure 4, when the input tensor \mathcal{X} is either as a TT or CP tensor of rank 10. We can see that $f_{\mathrm{TT}(R)}$ is more efficient when the input is in TT format. However, $f_{\mathrm{CP}(R)}$ performs better when the input is in the CP format (though the computational gain of $f_{\mathrm{CP}(R)}$ in this case is considerably smaller than the one of $f_{\mathrm{TT}(R)}$ in the previous case). We can see that by increasing the dimension $f_{\mathrm{TT}(R)}$ performs close to $f_{\mathrm{CP}(R)}$ even when the input is in CP and it is faster than classical Gaussian RPs in both cases (which is not true for $f_{\mathrm{CP}(100)}$).

