Tensorized Random Projections(Supplementary Material)

A Proof of the Theorems for the CP case

A.1 Proof of Theorem 1: CP case

Theorem. Let $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_N}$. The random projection maps $f_{\mathrm{TT}(R)}$ and $f_{\mathrm{CP}(R)}$ (see Definitions 1 and 2) satisfy the following properties:

- $\bullet \mathbb{E}\left[\|f_{\mathrm{CP}(R)}(\mathcal{X})\|_2^2\right] = \mathbb{E}\left[\|f_{\mathrm{TT}(R)}(\mathcal{X})\|_2^2\right] = \|\mathcal{X}\|_F^2,$
- $\bullet \text{ Var}\left(\|f_{\mathrm{TT}(R)}(\boldsymbol{\mathcal{X}})\|_2^2\right) \leq \tfrac{1}{k}(3\left(1+\tfrac{2}{R}\right)^{N-1}-1)\left\|\boldsymbol{\mathcal{X}}\right\|_F^4,$
- $\operatorname{Var}\left(\|f_{\operatorname{CP}(R)}(\mathcal{X})\|_{2}^{2}\right) \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\|\mathcal{X}\|_{F}^{4}$.

Proof. Expected isometry. We start by showing that $f_{\mathrm{CP}(R)}$ is an expected isometry, *i.e.* that $\mathbb{E} \left\| f_{\mathrm{CP}(R)}(\mathcal{X}) \right\|_2^2 = \|\mathcal{X}\|_F^2$. Let $y_i = \langle [\![\mathbf{A}_i^1, \mathbf{A}_i^2, \cdots, \mathbf{A}_i^N]\!], \mathcal{X} \rangle$ and $\mathbf{y} = [y_1, y_2, \cdots, y_k]$. With these definitions we have $f_{\mathrm{CP}(R)}(\mathcal{X}) = \frac{1}{\sqrt{k}}\mathbf{y}$ and it is thus sufficient to find $\mathbb{E}[y_1^2]$. To lighten the notation, let $\mathbf{A}^n = \mathbf{A}_1^n$ for each $n \in [N]$ and let $\mathcal{T} = [\![\mathbf{A}^1, \mathbf{A}^2, \cdots, \mathbf{A}^N]\!]$. We have

$$\mathbb{E}[y_1^2] = \mathbb{E}[\langle \mathcal{T}, \mathcal{X} \rangle^2] = \mathbb{E}[\langle \mathcal{T} \otimes \mathcal{T}, \mathcal{X} \otimes \mathcal{X} \rangle]$$
$$= \langle \mathbb{E}[\mathcal{T} \otimes \mathcal{T}], \mathcal{X} \otimes \mathcal{X} \rangle.$$

Using the fact that the factor matrices A^n are independent, we have

$$\begin{split} \mathbb{E}[\boldsymbol{\mathcal{T}}\otimes\boldsymbol{\mathcal{T}}] &= \mathbb{E}[[\![\mathbf{A}^1\otimes\mathbf{A}^1,\cdots,\mathbf{A}^N\otimes\mathbf{A}^N]\!]] \\ &= [\![\mathbb{E}[\mathbf{A}^1\otimes\mathbf{A}^1],\cdots,\mathbb{E}[\mathbf{A}^N\otimes\mathbf{A}^N]]\!]. \end{split}$$

Now, for $n \in [N]$, since the entries of each factor matrix \mathbf{A}^n are i.i.d. Gaussian random variables with mean 0 and variance $(\frac{1}{R})^{\frac{1}{N}}$, we have

$$\mathbb{E}[\mathbf{A}^n \otimes \mathbf{A}^n] = \left(\frac{1}{R}\right)^{\frac{1}{N}} \operatorname{vec}(\mathbf{I}_{d_n}) \circ \operatorname{vec}(\mathbf{I}_R).$$

One can then show that

$$\mathbb{E}[\mathcal{T}\otimes\mathcal{T}]=\mathrm{vec}(\mathbf{I}_{d_1})\circ\cdots\circ\mathrm{vec}(\mathbf{I}_{d_N}),$$

which implies that

$$\mathbb{E}[y_1^2] = \langle \mathbb{E}[\mathcal{T} \otimes \mathcal{T}], \mathcal{X} \otimes \mathcal{X} \rangle = \|\mathcal{X}\|_F^2,$$

from which $\mathbb{E}\left\|f_{\mathrm{CP}(R)}(\mathcal{X})\right\|_2^2 = \|\mathcal{X}\|_F^2$ directly follows.

Bound on the variance of $f_{CP(R)}$. Similar to TT case, in order to bound the variance of $\|\mathbf{y}\|_2^4$ we need to bound $\mathbb{E}[\|\mathbf{y}\|_2^4]$. We have

$$\mathbb{E}[\|\mathbf{y}\|_{2}^{4}] = \sum_{i=1}^{k} \mathbb{E}[y_{i}^{4}] + \sum_{i \neq j} \mathbb{E}[y_{i}^{2}y_{j}^{2}].$$

Since y_i and y_j are independent whenever $i \neq j$ and $\mathbb{E}[y_i^2] = \|\mathcal{X}\|_F^4$ for all i, the second summand is equal to $k(k-1)\|\mathcal{X}\|_F^4$. We now derive a bound on $\mathbb{E}[y_1^4]$. First define the tensor \mathcal{S}^n of order 2(n-1) and shape $\underbrace{R \times R \cdots \times R}_{n-1} \times d_1 \times d_2 \cdots \times d_{n-1}$ for any $2 \leq n < N$ by

$$\boldsymbol{\mathcal{S}}^{n}_{r_{1},r_{2},\cdots,r_{n-1},i_{1},i_{2},\cdots,i_{n-1}} = \sum_{r_{n},\dots,r_{N}} \sum_{i_{n},\dots,i_{N}} (\mathbf{A}^{n})_{i_{n}r_{n}} (\mathbf{A}^{n+1})_{i_{n+1}r_{n+1}} \dots (\mathbf{A}^{N})_{i_{N}r_{N}} \boldsymbol{\mathcal{I}}r_{1},\dots,r_{N} \boldsymbol{\mathcal{X}}_{i_{1},\dots,i_{N}},$$

where $\mathcal{I} \in (\mathbb{R}^R)^{\otimes N}$ is the Nth order identity tensor, i.e., $\mathcal{I}_{r_1,\dots,r_n} = 1$ if $r_1 = \dots = r_n$ and 0 otherwise. In some sense, \mathcal{S}^n is the tensor obtained by removing the first n-1 factor matrices from the computation of $y_1 = \langle \llbracket \mathbf{A}^1, \mathbf{A}^2, \dots, \mathbf{A}^N \rrbracket, \mathcal{X} \rangle$. With this definition one can check that

- $\langle [\![\mathbf{A}^1, \mathbf{A}^2, \cdots, \mathbf{A}^N]\!], \boldsymbol{\mathcal{X}} \rangle = \langle (\mathbf{A}^1)^\mathsf{T}, \mathbf{S}^2 \rangle,$
- $(\mathcal{S}^N_{(1,\dots,N-1)})^\mathsf{T} = (\mathcal{X}_{(N)})^\mathsf{T} \mathbf{A}^N \mathcal{I}_{(1)}$ (recall that $(\mathcal{S}^N)_{(1,\dots,N-1)} \in \mathbb{R}^{R^{N-1} \times d_1 \dots d_{N-1}}$ denotes the matricization of \mathcal{S}^N obtained by mapping its first N-1 modes to rows and the other ones to columns).
- $\operatorname{vec}(\mathbf{S}^n) = ((\mathbf{S}^{n+1})_{(1,2n)})^{\mathsf{T}} \operatorname{vec}(\mathbf{A}^n)$ for each $n \in [N-1]$.

Using Lemma 3 we obtain

$$\mathbb{E}y_1^4 = \mathbb{E}\langle [\![\mathbf{A}^1, \mathbf{A}^2, \cdots, \mathbf{A}^N]\!], \boldsymbol{\mathcal{X}}\rangle^4 = \mathbb{E}\langle \operatorname{vec}((\mathbf{A}^1)^\mathsf{T}), \operatorname{vec}(\mathbf{S}^2)\rangle^4 = 3R^{-\frac{2}{N}}\mathbb{E}\left\|\operatorname{vec}(\mathbf{S}^2)\right\|_F^4$$
$$= 3R^{-\frac{2}{N}}\mathbb{E}\left\|\left((\boldsymbol{\mathcal{S}}^3)_{(1,4)}\right)^\mathsf{T}\operatorname{vec}(\mathbf{A}^2)\right\|_F^4.$$

Using successive applications of Lemma 4 it follows that

$$\begin{split} & \mathbb{E}y_{1}^{4} = 3R^{-\frac{2}{N}} \mathbb{E} \left\| ((\boldsymbol{\mathcal{S}}^{3})_{(1,4)})^{\mathsf{T}} \text{vec}(\mathbf{A}^{2}) \right\|_{F}^{4} \\ & \leq 3^{2}R^{-\frac{4}{N}} \mathbb{E} \left\| (\boldsymbol{\mathcal{S}}^{3})_{(1,4)} \right\|_{F}^{4} = 3^{2}R^{-\frac{4}{N}} \mathbb{E} \left\| \text{vec}(\boldsymbol{\mathcal{S}}^{3}) \right\|_{F}^{4} = 3^{2}R^{-\frac{4}{N}} \mathbb{E} \left\| ((\boldsymbol{\mathcal{S}}^{4})_{(1,6)})^{\mathsf{T}} \text{vec}(\mathbf{A}^{3}) \right\|_{F}^{4} \\ & \leq 3^{3}R^{-\frac{6}{N}} \mathbb{E} \left\| (\boldsymbol{\mathcal{S}}^{4})_{(1,6)} \right\|_{F}^{4} = 3^{3}R^{-\frac{6}{N}} \mathbb{E} \left\| \text{vec}(\boldsymbol{\mathcal{S}}^{4}) \right\|_{F}^{4} \\ & \leq \dots \\ & \leq 3^{N-1}R^{-\frac{2(N-1)}{N}} \mathbb{E} \left\| \text{vec}(\boldsymbol{\mathcal{S}}^{N}) \right\|_{F}^{4} = 3^{N-1}R^{-\frac{2(N-1)}{N}} \mathbb{E} \left\| (\boldsymbol{\mathcal{S}}_{(1,\dots,N-1)}^{N})^{\mathsf{T}} \right\|_{F}^{4} \\ & = 3^{N-1}R^{-\frac{2(N-1)}{N}} \mathbb{E} \left\| (\boldsymbol{\mathcal{X}}_{(N)})^{\mathsf{T}} \mathbf{A}^{N} \boldsymbol{\mathcal{I}}_{(1)} \right\|_{F}^{4} = 3^{N-1}R^{-\frac{2(N-1)}{N}} \mathbb{E} \left\| (\boldsymbol{\mathcal{X}}_{(N)})^{\mathsf{T}} \mathbf{A}^{N} \right\|_{F}^{4} \\ & \leq 3^{N-1}R^{-2}R(R+2) \left\| \boldsymbol{\mathcal{X}} \right\|_{F}^{4} \\ & = 3^{N-1} \left(1 + \frac{2}{R} \right) \left\| \boldsymbol{\mathcal{X}} \right\|_{F}^{4} , \end{split}$$

where we used the equality $\|\mathcal{T}\mathcal{I}_{(1)}\|_F^2 = \|\mathcal{T}\|_F^2$ for any tensor \mathcal{T} (which follows from the fact that $\mathcal{I}_{(1)}(\mathcal{I}_{(1)})^\mathsf{T} = \mathbf{I}$) for the penultimate equality.

Similar to proof of Theorem 1 for $f_{TT(R)}$ map, we obtain

$$\mathbb{E} \|\mathbf{y}\|_{2}^{4} = \sum_{i=1}^{k} \mathbb{E} y_{i}^{4} + \sum_{i \neq j} \mathbb{E} y_{i}^{2} y_{j}^{2} \leq k \left(3^{N-1} \left(1 + \frac{2}{R} \right) \|\boldsymbol{\mathcal{X}}\|_{F}^{4} \right) + k(k-1) \|\boldsymbol{\mathcal{X}}\|_{F}^{4}.$$

Finally,

$$\begin{aligned} \operatorname{Var}\left(\left\|f_{\operatorname{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_{2}^{2}\right) &= \operatorname{Var}\left(\left\|\frac{1}{\sqrt{k}}\mathbf{y}\right\|_{2}^{2}\right) = \frac{1}{k^{2}}\mathbb{E}\left(\left\|\mathbf{y}\right\|_{2}^{4}\right) - \frac{1}{k^{2}}\mathbb{E}\left(\left\|\mathbf{y}\right\|_{2}^{2}\right)^{2} = \frac{1}{k^{2}}\mathbb{E}\left\|\mathbf{y}\right\|_{2}^{4} - \left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{4} \\ &\leq \frac{1}{k^{2}}\left[k\left(3^{N-1}\left(1+\frac{2}{R}\right)\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{4}\right) + k(k-1)\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{4}\right] - \left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{4} \\ &\leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right) - 1\right)\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{4}. \end{aligned}$$

A.2 Proof of Theorem 2: CP case

Theorem 2 for the map $f_{\mathrm{CP}(R)}$ directly follows from the following concentration bound.

Theorem. Let $\mathcal{X} \in \mathbb{R}^{d_1 \times d_2 \times \cdots \times d_N}$. There exist absolute constants C and $\widetilde{K} > 0$ such that the random projection map $f_{\mathrm{CP}(R)}$ (see Definition 2) satisfies

$$\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_{2}^{2}-\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{2}\right|\geq\varepsilon\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{2}\right)\leq C\exp\left[-C_{1}\frac{\left(\sqrt{k}\varepsilon\right)^{\frac{1}{N}}}{(3^{N-1}\widetilde{K})^{\frac{1}{2N}}(1+2/R)^{\frac{1}{2N}}}\right].$$

Proof. By CP part of Theorem 1, recall

$$\mathbb{E}\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal{X}})\|_2^2 = \|\boldsymbol{\mathcal{X}}\|_F^2,$$

and

$$\operatorname{Var}\left(\left\|f_{\operatorname{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_2^2\right) \leq \frac{1}{k}\left(3^{N-1}\left(1+\frac{2}{R}\right)-1\right)\left\|\boldsymbol{\mathcal{X}}\right\|_F^4.$$

Since $\|f_{\mathrm{CP}(R)}(\mathcal{X})\|_2^2$ is an order 2N polynomial of the entries of the matrices $\mathbf{A}_i^1, \cdots, \mathbf{A}_i^N$ for $i \in [k]$ we can apply Theorem $\frac{6}{100}$ to obtain

$$\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_{2}^{2}-\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{2}\right|\geq\lambda\right)\leq C\exp\left[-\left(\frac{\lambda^{2}}{\widetilde{K}\mathrm{Var}\left(\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_{2}^{2}\right)}\right)^{\frac{1}{2N}}\right],$$

where $C=e^2$ and \widetilde{K} are absolute constants. Using the fact that

$$\operatorname{Var}\left(\left\|f_{\operatorname{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_2^2\right) \leq \frac{3^{N-1}}{k}(1+2/R)\left\|\boldsymbol{\mathcal{X}}\right\|_F^4,$$

and letting $\lambda = \varepsilon \| \boldsymbol{\mathcal{X}} \|_F^2$ we obtain

$$\mathbb{P}\left(\left|\left\|f_{\mathrm{CP}(R)}(\boldsymbol{\mathcal{X}})\right\|_{2}^{2}-\left\|\boldsymbol{\mathcal{X}}\right\|_{F}^{2}\right| \geq \varepsilon \|\boldsymbol{\mathcal{X}}\|_{F}^{2}\right) \leq C \exp\left[-\left(\frac{k\varepsilon^{2} \|\boldsymbol{\mathcal{X}}\|_{F}^{4}}{\widetilde{K}3^{N-1}(1+2/R)\|\boldsymbol{\mathcal{X}}\|_{F}^{4}}\right)^{\frac{1}{2N}}\right] \\
\leq C \exp\left[-\left(\frac{\sqrt{k\varepsilon}}{(3^{N-1}\widetilde{K})^{\frac{1}{2N}}(1+2/R)^{\frac{1}{2N}}}\right].$$

B Additional Experimental Results

B.1 Pairwise Distance Estimation

Figure 3: Comparison of tensorized ranodm projections with Gaussian random projections on CIFAR-10 data for different values of the rank parameter: (left) rank 1, (middle) rank 3-10, (right) rank 5-25.

We compare the tensorized projection maps $f_{\mathrm{TT}(R)}$ and $f_{\mathrm{CP}(R)}$ with classical Gaussian RP on CIFAR-10 image data for different values of the rank parameter R. We reshape the first n=50 vectors (of size $32 \times 32 \times 4$) of CIFAR-10 to $4 \times 4 \times 4 \times 4 \times 4 \times 4 \times 3$ tensors, normalize them and compare the pairwise distance $\frac{1}{n(n-1)} \sum_{1 \leq i \neq j \leq n} \frac{\|f(\mathbf{x}_i) - f(\mathbf{x}_j)\|_2}{\|\mathbf{x}_i - \mathbf{x}_j\|_2}$ and standard deviation for different projection sizes k over 100 trials. The results are reported in Figure 3 where we see that tensorized random projection maps perform competitively with classical Gaussian random projections.

B.2 Time Evaluation

Figure 4: Comparison of embedding time between tensorized, Gaussian and very sparse Gaussian RP for the medium-order case with different number of modes $(d=3, N \in \{8, 11, 12, 13\})$ when the input is given in the TT format (left) or CP format (right).

We report the average running time with respect to the input dimension d^N for the medium-order case with different number of modes $(d=3,N\in\{8,11,12,13\})$ in Figure 4, when the input tensor $\boldsymbol{\mathcal{X}}$ is either as a TT or CP tensor of rank 10. We can see that $f_{\mathrm{TT}(R)}$ is more efficient when the input is in TT format. However, $f_{\mathrm{CP}(R)}$ performs better when the input is in the CP format (though the computational gain of $f_{\mathrm{CP}(R)}$ in this case is considerably smaller than the one of $f_{\mathrm{TT}(R)}$ in the previous case). We can see that by increasing the dimension $f_{\mathrm{TT}(R)}$ performs close to $f_{\mathrm{CP}(R)}$ even when the input is in CP and it is faster than classical Gaussian RPs in both cases (which is not true for $f_{\mathrm{CP}(100)}$).