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A Proofs and Derivations

In this appendix, we report the proofs and derivations of the results presented in the main paper.

A.1 Proofs of Section 4

Theorem 4.1. If ⌃ is positive definite, the optimization problem (5) can be restated as:
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where ⌦ denotes the Kronecker product and Id is the identity matrix of order d. Furthermore, the approximating
Jacobian M(!) is given by:
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Proof. The proof is analogous of that of Theorem 1 of (Manton et al., 2003). We report it using our notation

for completeness. Let ! 2 Rq
be a fixed vector, we are to solve the following optimization problem:
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We employ Lagrange multipliers, leading to the Lagrangian function:
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where � 2 Rd
is the Lagrange multiplier and we exploited the properties of the vectorization operator and the

Kronecker product to derive the second equation. We notice that the Lagrangian function L is convex w.r.t. to

vec (M). Thus, we make the gradient vanish:
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From the first equation, we obtain an expression for vec (M) as a function of �:
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Finally, we get the expression for vec (M):
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We can now substitute the value of vec (M) into the loss function:
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where we employed the properties of the vectorization operator and the Kronecker product in the last but one

line and the definition of norm in the last line.

Corollary 4.1. Let Q 2 Rd⇥d be a positive definite matrix and let 1q denote the q-dimensional vector of all
ones. If ⌃ = 1q1

T
q ⌦ Q, then objective function (6) is convex. Furthermore, if Q = Id, then the objective

function (6) is equivalent to (2) with p = 2.

Proof. When ⌃ = 1q1
T
q ⌦Q, we can provide the following derivation exploiting the properties of the Kronecker

product and recalling that !T1q = 1 because of the enforced constraints:
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which is clearly convex in !, as Q is positive definite.

Moreover, if we take Q = Id, then we have
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, that is the objective function (2)

optimized by GIRL when p = 2.

A.2 Proofs of Section 4.1

Lemma A.1. Let x, y 2 Rd any pair of vectors, then it holds that:
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Proof. The result follows from the following sequence of algebraic manipulations:
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where we applied the triangular inequality in the second line and the reverse triangular inequality in the last one,

i.e., |kxk2 � kyk2|  kx� yk2. By observing that, for symmetry reasons, the same derivation can be performed

getting kyk2 at the denominator, we get the result.
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Lemma A.2. Let A = (a1| . . . |aq), B = (b1| . . . |bq) 2 Rd⇥q be two matrices of rank q�1 such that sq�1(B) > 0,
where sq�1 denotes the (q � 1)-th singular value. Let A = span ({a1, . . . ,aq}) and B = span ({b1, . . . ,bq}) be
the vector spaces generated by the columns of A and B respectively. Then, the cosine of the (principal) angle ↵
between the corresponding orthogonal complements A? and B? is lower bounded by:
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�
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2
min

⇧2Permq

kA�B⇧k2F ,

where Permq is the set of all permutation matrices of order q and k · kF denotes the Frobenius norm.

Proof. Since both matrices A and B have rank q � 1, the orthogonal complements A?
and B?

have dimension

1. Since the principal angles (which in this case is just one) of the orthogonal complements are essentially the

same as those of the correponding spaces (Knyazev et al., 2010), we reduce the problem to the computation of

^ (A,B). In particular, we are interested in the maximum (and only non-zero) principal angle ↵, whose cosine

can be conveniently defined as (Taslaman, 2014):
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where line (8) follows from bounding the min over y with a specific choice of y = ⇧x. Line (9) is obtained

from Lemma A.1 and line (10) derives from bounding the maximum at the denominator with its first argument.

Line (11) follows from the definition of permutation matrix, having denoted with ⇡ : {1, . . . , q} ! {1, . . . , q} the

permutation realized by ⇧. Line (12) follows from expanding the expression at the previous line, while line (13) is

an application of Cauchy-Swartz inequality. Finally, line (14) is obtained from the definition of Frobenius norm.
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To conclude, we bound the norm kxk2 under the constraints kAxk2 = 1 and x ? null(A). For this purpose,

we consider the singular value decomposition of A = USV

T
, where S = diag(s1, . . . , sq�1, 0) and sq�1 > 0 for

the hypothesis. Moreover, let V = (v1| . . . |vq), we know that null(A) = span({vq}). Therefore, our chosen x is
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where we exploited the fact that U is a unitary matrix and the fact that
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2
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of V an orthonormal basis. Using this result, and recalling that kAxk2 = 1, we can upper bound the value of

kxk2, to get the result.

Lemma A.3. Let M(
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Proof. Given a vector x, we upper bound the norm kxk2 with kxk
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Putting these two inequalities together, we get the result.

Theorem 4.2. Let br✓ (✓) be an unbiased estimate of the Jacobian r✓ (✓) obtained with the trajectories
D = {⌧1, . . . , ⌧n}. Let 1

n⌃ = Cov[vec(br✓ (✓))] be the true covariance matrix of the estimated Jacobian. Let b!
be the weight vector recovered by ⌃-GIRL run with covariance matrix ⌃ and !E be the expert’s weight vector.
If r✓ (✓) and M(

b!) have rank q � 1 and sq�1(r✓ (✓)) = s > 0, where sq�1(·) denotes the (q � 1)-th singular
value, then it holds that:
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where the expectation is taken w.r.t. the randomness of the trajectories in D used to compute br✓ (✓).

Proof. From the proof of Theorem 13.2 of (Pirotta, 2016), we know that:
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where ↵ is the angle between the two vectors

b! and !E
. We now provide a bound for cos↵. Since
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where line (18) is obtained from selecting ⇧ = Iq. Line (19) derives from observing that the Frobenius norm

of a matrix equals the L2
-norm of the corresponding vectorization. Finally, line (20) follows from Lemma A.3.

Putting this latter result into Equation (17), we have:
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Now we compute the expectation of the norm of the difference:
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where the last passage follows from Jensen inequality. To conclude, we compute the expectation inside the

square root by observing that it is the expectation of a zero-mean random vector under the norm induced

by its true covariance matrix. Thus, by renaming x = vec
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Bound Discussion The bound on the error of the recovered weights depends on the size of the Jacobian

matrix dq, on the L2
-norm of the true covariance matrix ⌃, as more uncertain gradients make the estimation

of the true Jacobian harder, and on sq�1 (the last but one singular value of the true Jacobian matrix). The

dependence on sq�1 is related to the reward feature space. This quantity replaces the quantity ⇢ of Theorem 13.2

of Pirotta (2016). The difference is ⇢ is a property of the estimated Jacobian, whereas s depends is a property

of the true Jacobian matrix.

A.3 Proofs of Section 5

We obtain the expression of function Q(⌦,⌦old

) following a derivation analogous to the one presented in Bilmes

et al. (1998). We denote with y = (y1, . . . , ym) the realization of the random vector Y.
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=
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=
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m
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B Details on Optimization Problem (6)

B.1 Approximation of ⌃ as in Corollary 4.1

In this appendix, we provide a way to represent a generic ⌃ as a matrix of the form 1q1
T
q ⌦Q as in Corollary 4.1.

We seek for the minimum Frobenius-norm distance between ⌃ and 1q1
T
q ⌦Q:
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where we required that Q � 0d, i.e., that Q is positive definite whenever ⌃ is.

We will solve the problem ignoring the constraint and we will prove that the resulting matrix is indeed positive

definite whenever ⌃ is.

Lemma B.1. Let ⌃ = nCov[vec(br✓ (✓))], the problem (21) admits a unique solution that is:
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where we denoted with ⌃i:i0,j:j0 the submatrix obtained by taking the rows between i and i0 and the columns
between j and j0. Furthermore, Q is positive definite whenever ⌃ is.

Proof. Recall that the Kroneker product 1q1
T
q ⌦ Q constructs a matrix in which Q is repeated q ⇥ q times,

arranged in a square matrix. Thus, it follows that we can rewrite the norm as:
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This is a least-squares problem, that can be solved in closed form, yelding to a matrix Q which is the mean of

the blocks ⌃iq:(i+1)q,jq:(j+1)q.

To get the first expression we observe that each block can be rewritten as:

⌃iq:(i+1)q,jq:(j+1)q = Cov [r✓ i,r✓ j ] .

Given the linearity of the covariance we have:
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3

5

=

1

q2
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The last equality follows from the properties of the Kroneker product.

We now prove that matrix Q is positive definite whenever ⌃ is. Q is positive definite if and only if:

inf

x2Rd:x 6=0

x

T
Qx > 0.
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Let us now consider the following derivation:

inf

x2Rd:x 6=0

x

T
Qx =

1

q2
inf

x2Rd:x 6=0

x

T
(1q ⌦ Id)

T
⌃ (1q ⌦ Id)x

� 1

q2
inf

x2Rdq :x 6=0

x

T
⌃x > 0.

having observed that (1q ⌦ Id)x is never null unless x is null.

Note that this is equivalent to take a specific choice for the weights ! =

1
q1q.

B.2 Analysis of the Gap

In this appendix, we upper bound the gap on the objective function value attained by the optimum when we

consider either matrix ⌃ or a matrix of the form 1q1
T
q ⌦Q.

First of all, let us denote with l
A

(!) the objective function in problem (6), when using A as covariance model.

Let A and B be two covariance matrices and let !
A

and !
B

be any of the optimal weight for the corresponding

covariances. Supposing that A is the true covariance, we want to bound 0  l
A

(!
A

)� l
A

(!
B

). Using a standard

argument from empirical risk minimization:

l
A

(!
A

)� l
A

(!
B

) = l
A

(!
A

)� l
A

(!
B

)± l
B

(!
B

)

� l
A

(!
A

)� l
B

(!
A

) + l
B

(!
B

)� l
A

(!
B

)

� �2 sup

!
|l
A

(!)� l
B

(!)| ,

where we exploited the fact that l
B

(!
B

)  l
B

(!
A

). Thus, it sufficies to prove an upper bound on |l
A

(!)� l
B

(!)|
that is uniform over !.

Lemma B.2. Let A 2 Rd⇥dq and B 2 Rdq⇥dq symmetric positive definite. Then, it holds that:
�

�

�

�

A

T
⇣

ABA

T
⌘�1

A

�

�

�

�

F


p
d

smin(B)

. (23)

Proof. First recall that for a symmetric positive definite matrix the following identity involving the square root

holds:

⇣

B

1

2

⌘T
=

⇣

B

T
⌘

1

2

= B

1

2 .

Consider now the following derivation:

�

�

�

�

A

T
⇣

ABA

T
⌘�1

A

�

�

�

�

F

=

�

�

�

�

B

� 1

2

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

B

� 1

2

�

�

�

�

F


�

�

�

B

� 1

2

�

�

�

2

2

�

�

�

�

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

�

�

�

�

F

=

1

smin(B)

�

�

�

�

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

�

�

�

�

F

,

where we exploited the inequality kXYkF  kXk2 kYkF and fact that

�

�

�

B

� 1

2

�

�

�

2

1p
s
min

(B)
. Let us bound the

second term.

�

�

�

�

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

�

�

�

�

2

F

= tr

✓

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

B

1

2

A

T
⇣

ABA

T
⌘�1

AB

1

2

◆

= tr

✓

ABA

T
⇣

ABA

T
⌘�1

ABA

T
⇣

ABA

T
⌘�1

◆

= tr (IdId) = d,

where we exploited the identity kXk2F = tr

⇣

X

T
X

⌘

and the cyclic property of the trace.
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Lemma B.3. Let A,B 2 Rdq⇥dq be two symmetric positive semidefinite matrices. Then, for any ! 2 Rq
+ it

holds that:
�

�l
A

(!)� l s
min

(Q)vB(!)
�

� 
�

�

�

�

(! ⌦ Id)

h

(! ⌦ Id)
T
B (! ⌦ Id)

i�1

(! ⌦ Id)
T

�

�

�

�

F

⇥
�

�

�

�

(! ⌦ Id)

h

(! ⌦ Id)
T
A (! ⌦ Id)

i�1

(! ⌦ Id)
T

�

�

�

�

F

�

�

�

br✓ (✓)
�

�

�

2

F
kB�AkF .

Proof. We explicitly write down the expression of l
A

(!) and l
B

(!) and perform a sequence of algebric manipu-

lations:

lA(!)� lB(!) =
�

�

�

br✓ (✓)!
�

�

�

2

[

(!⌦Id)
TA(!⌦Id)]

�1

�
�

�

�

br✓ (✓)!
�

�

�

2

[

(!⌦Id)
TB(!⌦Id)]

�1

= !T
br✓ (✓)

T
h

(! ⌦ Id)
T A (! ⌦ Id)

i�1
br✓ (✓)! � !T

br✓ (✓)
T
h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
br✓ (✓)!

= !T
br✓ (✓)

T

⇢

h

(! ⌦ Id)
T A (! ⌦ Id)

i�1
�

h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
�

br✓ (✓)!

= !T
br✓ (✓)

T
h

(! ⌦ Id)
T A (! ⌦ Id)

i�1
⇢

Idq �
h

(! ⌦ Id)
T A (! ⌦ Id)

i h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
�

br✓ (✓)!

= !T
br✓ (✓)

T
h

(! ⌦ Id)
T A (! ⌦ Id)

i�1 n

(! ⌦ Id)
T B (! ⌦ Id)� (! ⌦ Id)

T A (! ⌦ Id)
o

⇥
h
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T B (! ⌦ Id)

i�1
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= !T
br✓ (✓)

T
h
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T A (! ⌦ Id)

i�1
(! ⌦ Id)

T {B�A} (! ⌦ Id)
h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
br✓ (✓)!

= tr

✓

!T
br✓ (✓)

T
h
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T A (! ⌦ Id)

i�1
(! ⌦ Id)
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T B (! ⌦ Id)

i�1
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◆
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✓
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h

(! ⌦ Id)
T B (! ⌦ Id)
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T
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T
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✓
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T
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T
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T A (! ⌦ Id)
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T

◆

⇥ vec (B�A)


�

�

�

�

vec

✓

(! ⌦ Id)
h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
br✓ (✓)!!

T
br✓ (✓)

T
h

(! ⌦ Id)
T A (! ⌦ Id)

i�1
(! ⌦ Id)

T

◆

�

�

�

�

2

⇥ kvec (B�A)k2

=

�

�

�

�

(! ⌦ Id)
h

(! ⌦ Id)
T B (! ⌦ Id)

i�1
br✓ (✓)!!

T
br✓ (✓)

T
h

(! ⌦ Id)
T A (! ⌦ Id)

i�1
(! ⌦ Id)

T

�

�

�

�

F

kB�AkF ,

where we applied the trace since the quantity is scalar, we exploited the cyclic property of the trace, we used the

inequality tr(X

T
Y) = vec(X)

T
vec(Y), Cauchy-Swartz inequality and finally observed that kvec(X)k2 = kXkF .

To conclude consider:

br✓ (✓)! = vec

⇣

br✓ (✓)!
⌘

= vec

⇣

Id
br✓ (✓)!

⌘

=

�

!T ⌦ Id

�

vec

⇣

br✓ (✓)
⌘

= (! ⌦ Id)
T
vec

⇣

br✓ (✓)
⌘

.

Using the properties of the Frobenious norm, the result follows.

Theorem B.1. Let ⌃ be the true covariance matrix and 1q1
T
q ⌦Q be its approximation. Then, it holds that:

gap  2dq

smin(⌃)

2

�

�

�

br✓ (✓)
�

�

�

2

F

�

�

⌃� 1q1
T
q ⌦Q

�

�

F
. (24)

Proof. We instantiate Lemma B.3 with A = ⌃ and B = 1q1
T
q ⌦Q. Let us now consider the following identity:

Id =

1

q
(1q ⌦ Id)

T
(1q ⌦ Id) . (25)
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For the norm involving B we employ Lemma B.2 and for the other we directly derive:

�

�

�

�
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h
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,

where we exploited Lemma B.3. To bound the remaining term we have:

�

�

�

(! ⌦ Id) (1q ⌦ Id)
T
�

�

�

2
 k! ⌦ Idk2 k1q ⌦ Idk2
 k!k2 kIdk2 k1qk2 kIdk2
 k!k1

p
q  p

q.

C Computational Cost

In this appendix, we present the computational cost of the proposed algorithm ⌃-GIRL. The computational

cost of the Jacobian estimation is linear in the number of policy parameters d, reward parameters q, samples N
and horizon H. The computational cost of the covariance is quadratic in the number of policy parameters d and

number of reward parameters q, and linear in samples N and horizon H. For a given !, evaluating the objective

in Equation 5 costs O(d3 + d2q2). The cost of an expectation maximization step is O(MkC
opt

), where M and

k are the number of agents and clusters and C
opt

is the cost of optimizing function Q, which depends on the

optimizer.

D Additional Experiments

In this appendix, we report some additional experimental details together with some details on the optimization

of the objective function employed by ⌃-GIRL.

D.1 Optimization of ⌃-GIRL objective function

The objective function optimized by ⌃-GIRL is, in the general case, non-convex. In the experiments,

we optimize this function using the implementation of SLSQP (Sequential Least SQuares Programming)

from scipy Python package (https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.

minimize.html). We used the deafault parameters and tolerance value 1e � 8. We took the best of 25 in the

LQG experiment and 5 in the Gridworld experiment different random initializations.

D.2 Single-IRL

⌃-GIRL Comparison In this section, we compare different choices of the covariance matrix used in ⌃-GIRL

in the LQG environment. Apart from the full sample covariance matrix and the matrix of Corollary 4.1 (which

reduces our algorithm to GIRL), we consider also using a diagonal sample covariance matrix and the identity

matrix. The former considers only the uncertainty in each of the entries of the Jacobian matrix, while the latter

does not consider the uncertainty.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html
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Figure D.2 shows the results in the LQG environment. We can see that using the uncertainty of the gradient

estimation clearly achieves better performance. In the environment considered, using the full sample covariance

matrix, offers only a slight improvement when considering few trajectories, compared to the diagonal case. In

larger problems, where estimating the full covariance matrix might be prohibitive, using a diagonal covariance

model offers improvements compared to not using the uncertainty at all in the gradient estimation.
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Figure 7: Comparison on the LQG experiment with different choices of covariance model. 100 runs, 95% c.i.

D.3 Multiple-IRL

Gridworld In this section, we perform an empirical analysis the algorithm MLIRL (Babes et al., 2011).

The results in Section 7 show that the algorithm is not able to correctly cluster the agents. We perform two

experiments. In the first one, we have two agents with two different intentions. In the second one, we have two

agents with same intention but different optimal policies, and one agent with a different intention. As show in

Figure 8 in the first experiment MLIRL succeeds in the clustering task (left). When we add trajectories performed

by two agents with same intentions but different optimal policies the algorithm decreases its performance (right).

This behavior explains the results of Section 7 where we have a dataset with three agents sharing the same

intention (but different optimal policies) and two agent with different intention.
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Figure 8: Clustering accuracy in the case of two agents and two clusters (left) and in the case of three agents

and two clusters (right). 20 runs 98 % c.i.
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