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Supplementary Materials
Here, we provide the proofs of the main two theorems of this paper in Sections 7 and 8 along with the necessary

lemmas and discussions. Moreover, we provide more numerical results over more complicated datasets and model
parameters in Section 9.

7 Proof of Theorem 1

We first introduce some additional notations which will be used throughput the proofs.

Additional notations. For each period £k =0,1,--- , K — 1 and iteration t =0,1,--- ,7 — 1 we denote

_ 1 (i) )
Xpa1 = X + . Z Q (xkﬁ Xk |,

1€Sk
~ 1 (i)
X1 = X + o Z Q (Xk,r - Xk) .
1€[n]
_ 1 ()
= — . 18
R =D X (18)

i€[n]

We begin the proof of Theorem 1 by noting a few key observations. Based on the above notations and the

. . S , . . )
assumptions we made earlier, the optimality gap of the parameter server’s model at period k, i.e. E||xgt+1 — x*||°,
can be decomposed as stated in the following lemma.

Lemma 1. Consider any period k =0,--- , K —1 and the sequences {Xp41,Xp+1,Xk,-} generated by the FedPAQ
method in Algorithm 1. If Assumption 1 holds, then

X ~ ~ _ 2 _ w112
Ellxps1 — x> = E|[xp41 _Xk+1H2+E||Xk:+1 —Xk,TH +EHX1@,T - X || ) (19)
where the expectation is with respect to all sources of randomness.
Proof. See Section 7.1. O

In the following three lemmas, we characterize each of the terms in the right-hand side (RHS) of (19).

Lemma 2. Consider the sequence of local updates in the FedPA§ method in Algorithm 1 and let Assumptions 2,
3 and 4 hold. The optimality gap for the average model at the end of period k, i.e. X ., relates to that of the
initial model of the k-th period xi, as follows:

Bl —x7[* < (14 ) (1 — )" Bl —x7

o2 o?
12127 2 4 20 2
(T = 1)L e + 77—
+7%(1 — 1) L*o?eny, (20)
for the stepsize n, < min{»/r?,1/rr}.
Proof. See Section 7.2. O

Lemma 3. For the proposed FedPA§ method in Algorithm 1 with stepsize n < min{#/r? 1/1+} and under
Assumptions 1, 2, 3 and 4, we have

2 2
- —_ 2 q . o o
EHXkH — X;CJH < QETQLQnI%Eka -x ||2 + 2q7‘2;77,% +2q(T — 1)72L2;enﬁ, (21)
where Xg+1 and Xg,» are defined in (18).

Proof. See Section 7.3. O
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Lemma 4. For the proposed FedPA§ method in Algorithm 1 with stepsize n, < min{#/r? 1/1+} and under
Assumptions 1-4, we have

R n—r .
E||xg+1 — xk+1||2 < )8(1 + q){72L2n£E|xk - x ||2 + 7'20277,% + (71— 1)72L202en2}, (22)

r(n—1

where r denotes the number of nodes contributing in each period of the FedPA{ method.

Proof. See Section 7.4. O

Now that we have established the main building modules for proving Theorem 1, let us proceed with the proof
by putting together the results in Lemmas 1-4. That is,

|2 |2 2 T 2,2 2 (4 n—r
— < — — =
Ellxkr1 — x*||° < Eljx — x*| ((1 + m]k) (1 — pni)" 4+ 2L°1°n;, (n + e 1)4(1 + q)))

nn—7r)\ o , ,
14 2q+8(1 —— ) —
+<+q+(+q)rn_1)>n7nk

(

0.2
+ LQ—eT(T — 1)277,%
n
t(nt 20480149 ) 2% 0 - 1) (23)
- N —e(T — T
q q rn—1) n Mk

Let us set the following notations:
8 = Elxy — x*|°

. n—r
Co = (1 + nni) (1 — pmp)" + 2L% %07 <Z + T74(1 + q)) ,
2

o) =

)

16
Ch ::u2<1+2q+8(1+q)

16 _, 02
Cy = —2L20—e,
n

I
_ 256 nin—r)\ ,,02

Consider Cy, the coefficient of E||x;, — x*||* in (23). One can show that if the condition in (11) in Theorem 1 is
satisfied, then we have Cy < 1 — Zu7n;, (See Section 7.6). Therefore, for each period k > ko we have

1 s s pw s
Opr1 < (1 - 2H7'77k> O + EClrzni + ECQT(T — 1)21],% + %03(7' - 1)7’277k. (25)

Now, we substitute the stepsize nx = 44" /kr+1 in (25) which yields

2 1 (r—12 1 -1 1
<(1-—2— .
Okt1 < <1 k:+1/7) O G T Gy T T G

(26)

In Lemma 5, we show the convergence analysis of such sequence. In particular, we take k1 = 1/7, a = C; +
Co(t —1)?/7 and b = C3(7 — 1)/7% in Lemma 5 and conclude for any k > ko that

(ko +1/7)2 1 (r—1)2 1 T—1 1
T . 2
ot T s T TR e 27)

Finally, rearranging the terms in (27) yields the desired result in Theorem 1, that is

—1)2 -1
Ellxq, — x| + O —— + C .
ko = %717 + Yer 11 T2 kT +1 * 3(k7+1)2

|2 (ko’l’+ 1)2

Ellx, —x*[" < G2
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7.1 Proof of Lemma 1
Let F}, + denote the history of all sources of randomness by the ¢-th iteration in period k. The following expectation

arguments are conditional on the history 7}, - which we remove in our notations for simplicity. Since the random
subset of nodes Sy, is uniformly picked from the set of all the nodes [n], we can write

ESka+1 = X + Egk Z Q (Xk _— Xk)

1€Sk

:Xk-i-ZPI‘[Sk ZQ(ka—Xk>

SCn] lESk

|S|=r
Xt )r(r—1>§]@<xkf‘x’f>
:Xk“r% ZQ(X](?T_X/%)

i€[n]

= Rpp1. (29)

Moreover, the quantizer Q(-) is unbiased according to Assumption 1, which yields

EQXk+1—Xk+ Z]EQQ(kafxO

ze [n]

_1 (i)
- ﬁ Z Xk,'r
1€[n]

—%.. (30)

Finally, since the two randomnesses induced by the quantization and random sampling are independent, together
with (29) and (30) we can conclude that:

—~ ~ _ _ 2
Elxg1 — x*|° = E|[xk41 = X1 + K1 — Xir + Xpr — x7|

= El|xp1 — Real® + E[|Rir1 — Ko ||° + E[[Rer — x| (31)
7.2 Proof of Lemma 2
According to update rule in Algorithm 1, local model at node i for each iteration ¢t = 0,--- ,7 — 1 of period
k=0,---,K — 1 can be written as follows:
) =% —mV S (x1)) (32)

where all the nodes start the period with the initial model x,(f’)o = Xg. In parallel, let us define another sequence

of updates as follows:

Brit+1 = B — V[ (Bre) (33)

also starting with 8 o = xj. The auxiliary sequence {0 .} represents Gradient Descent updates over the global
loss function f while x,(;)t captures the sequence of SGD updates on each local node. However, both sequences

are initialized with x; at the beginning of each period k. To evaluate the deviation Hikﬁ — x*‘ 2, we link the

two sequences. In particular, let us define the following notations for each k =0,--- /K —1landt=0,--- ,7—1:
ent = Z v/ <xk t) —Vf (Brs) - (34)

ze[n]
One can easily observe that Ee, o =0 as xk 0= = fr0 = X; and sz is unbiased for V f. However, Ee; + # 0 for

t > 1. In other words, 1 o Zie[n] Vfi(xm) is not unbiased for V f(Bx,.). We also define ey, = ex o+ - -+ exr_1
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and g = Vf(Bro) + -+ Vf(Brk,r—1). Now, the average model obtained at the end of period k can be written
as

- 1 (i)
Xoor =4 > X

1€[n]
A PP IZICHREET PIEIC
i€[n] 1€[n]
=X, — Nk (8r +er). (35)

Therefore, the optimality gap for the averaged model can be written as

_ w2 . .
E||%e,r — x*||” = Eljxx — negr — x 1> — 2 E (xi, — g — X", ex) + 17E|ler ||
< Elxp — egr — x|
2 *12 1 2
+ nnpEllxp — mrgr — X7 + ;HE%H
2
+ iE|lex ||

" 1
= (1 nn}) Ellxce = mege —x"* + - |[Eexl|” + nfE[lex . (36)

where we used the inequality —2(a, b) < al|al|* + a~1||b||? for any two vectors a,b and scalar o > 0. In the
following, we bound each of the three terms in the RHS of (36). First, consider the term ||x; — npgr — x*||* and
recall the auxiliary sequence {f } defined in (37). For every ¢t and k we have

|Brr = x||* =||Bre — eV F(Bra) — x|
=18k, — X*HQ =20k (Br — X V[ (Bre)) + nl%}’vf(ﬂk,t)w
< (1 — 2pumy, + Lgni) 18k —x7[|”

< (1= )| Bre — ¥ (37)

In the above derivations, we used the facts that f is u-strongly convex and its gradient is L-Lipschitz (Assumptions
2 and 4). The stepsize is also picked such that 7, < #/r?. Now, conditioned on the history F ¢ and using (37)
we have

x5 — gk — x*||° = | Br,r — X*H2
< (1= pmie)" || Bryo — x* ?
= (1 — )" lIxie — x| (38)

Secondly, consider the term ||IEek||2 in (36). By definition, we have Ee;, = Eeg1 + --- + Ee ,—1 and hence
|Eex|® < (7 — 1)||Eek71|’2 +oo 4 (T— 1)||Eek,T_1HZ. The first term ||Eey,1 ||2 can be bounded using Assumptions
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2 and 3 as follows:

[Ee.||”

LS EVA (3 - VF (Bea)

’LE [n]

= —ZEVf(xl) Vf (Bra)

i€[n]

I /\

HVf (%) = V7 (Bea)

ZE [n]

1 , 2
n E Xk 1 Br,1

1€[n]

IN

7L2ZE

i€[n]

S

i€[n]

(xk b= eV (xko)) = (Bro = w7 (Bro))

< L20'2772

In general, for each t =1--- ;7 — 1 we can write

2
[Bewdl* =5 3= B4 (x15) - V7 (3)
i€[n]
) 2
=% S EVS (x0) - 9 (Bro)
i€[n]
2
s— HVf x?ﬁ =V (Brs)
ze[n]

L2 3 EHXM ﬂk7tH2.

1€[n]

2
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. 2
Let us denote ay, + == % Zie[n] IEHX,(;)t — Bt H . In the following, we will derive a recursive bound on a;. That is,

oL Y |
" Z]E (X?ﬁ ~ VS (xh) - mV (Xz(f,)tl))
— (Bro=mVS (Bro) =+ = mVf (Brer) ) 2
= %;]E Vi (X(00) = VI (Bro) + -+ Vi (x0hy) = O (Bra1) 2
< nko” 4 ZGX[E]E V1 (x0) = VF (Bea) + o+ V5 (x4 ) = VS (Bren)
<nlo’+ nkzeZmE Vi (x%) = V1 (x) + 95 (x() = V7 (Bra)

oV () -V (x

1
<tnpo” + Enﬁ Z E

1
<tnio? + (t — 1)L2n,35 Y E

i€[n]

i€[n]

vi

x(h) = Vf (Bea) +

X](:,)l — Br,1

=tnpo’® + (t — 1)L?n; (ak,l + -+ ak,t—l)

< oot + rLi

Therefore, for the sequence {ax.1,- -

(a/k},l +...

+ ak,tq) .

I(cZ)tfl> +Vf (Xl(ci,)tfl> -Vf (ﬁk;t—l)

,ak,r—1} we have shown that

2 2 2, 2
ary < TNRo + 7L (akg + -+ + aki—1)

2

2

2
-V (x520) = Y (Bram)
’ 1
DL~ D Ellxihy — Bra
i€[n]

where ay 1 < o?nf. We can show by induction, that such sequence satisfies the following inequality:

akt < 7'7]]%0'2 (1 + 7'LG,%)

t—1

See Section 7.5 for the detailed proof. Therefore, we have

<
<

<

(r = 1)||Bepu|* + - +
—1)L2(a1+-~-

(r

T(r

1)L

(r = 1)||Eer
+ a’T*l)
(1 +7L2n,3>T

Now, we use the inequality 1 + x < e® and conclude that

Therefore, if 72L%n?

< 1, we have

Eex||* < 7(r

Eex||* < 7(r

2r2, 2
—1)2L2*nie™ LTk,

—1)2L%0%en;.
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Finally, we bound the third term in (36), that is E||ex||>. Using the definition, we know that E||e|* < 7E||ex,0 H2—|—
ot TEHG}C,7_1H2. Firstly, note that

1 i~ i
Ellesol* = E|| > 3 Vi (xh) = V£ (8ro)
i1€[n]
2

=B 3 Vi (o) — VS ()

1€[n]

< (47)

n’
For eacht =1,--- ;7 — 1 we have

llew| =E| - 395 (%) - 97 (5o)

1€[n]

B LS S () - 97 (x0) + L Y v (x) - 9 (6

i€[n] i€[n]

0'2 1 i 2
PREEP I LS

n
1€[n]

IN

0'2 2
= ; + L A t- (48)

Summing over t =0,1,--- ,7 — 1 results in the following

Ellex|® < 7E||eo|” + - + 7E[er— |
2
< 7-2% +7'L2 (0,1 +"'+Cl7—_1)
2 T
<204 2 - (14 7L}

2
< 72% +2(r — 1)L20%ent. (49)

Now, we can put everything together and conclude Lemma 2, as follows

1
E[[Rer —x"|* = (1+ ) Bl — g — x| + — [Eex|* + ZE] e

< (14 mm2) ( 1—unk )" Ellxi — x"”
2720 2 2‘72 2
_ 12722 o
+7(r—1) nenk+7 i
+ 7'2(7' — 1)L202en,‘§. (50)
7.3 Proof of Lemma 3

According to the notations defined on (18), we can write
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- 1 i 1 i
B[R — %o | = Elx+ = 3 Q(xih —xi) = = D)

i€[n) i€[n]

=E —ZQ(ka—xk> (xﬁl—xk)
P> EHQ =) = (0~ x)

Z IEka - ka , (51)

2

where, we used Assumption 1. In particular, the last equality above follows from the fact that the random
quatizer is unbiased and the quantizations are carried out independently in each iteration and each worker.
Moreover, the last inequality in (51) simply relates the variance of the quantization to its argument. Next, we
‘ (i)

s T

2
bound E||x, ’ for each worker ¢ € [n]. From the update rule in Algorithm 1 we have

— X,

XECZ)T =Xk~ Tk (sz (xk 0) +o VS (Xk T— 1))
=X} — Mk (gk + e;(f)) : (52)
where we denote
= Vi (x%) = VS (Beo) + -+ Vi (%0 1) = VF (Ber1) (53)
and gr = Vf(Bro) + -+ Vf(Bkr—1) as defined before. Using these notations we have
S @
ity — x| = niefen + el

° (54)

< 20 lge |’ + 207 e}
Let us first bound the first term in (54), i.e. ||gx|/>. That is,
el < [ VF@Bro)|* 4+ 7|V A B
L2 (oo = e (= ) s — )
< P — x|, (55)

where we used the smoothness of the loss function f (Assumption 2) and the result in (37) to derive inequality

(a). To bound the second term in (54), i.e. ]EHe,(f)
It yields that for n, < /L,

3
, we can employ our result in (49) for the special case n = 1.

2112
IEHe,(;) < 7?0 + (1 — 1)L20%en;. (56)

Plugging (55) and (56) in (54) implies that
. 2
EHXEJ)T - ka <272 LniE|xp — X*H2 + 272020} + 2(7 — )72 L% en}, (57)
which together with (51) concludes Lemma 3:

2 2
- _ 2 q . o o
E||Xp+1 — Xpr||” < QETQLQnI%Eka —x*| + 2q72;n,§ +2q(1 — 1)7'2L2;€T]§- (58)
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7.4 Proof of Lemma 4

For each node i € [n] denote z,(j)T = Q(x,(CZ)T —x;) and Zj, , = 1 >ien] z,(cl)q_ Then,

2
B e — Renl = Es,|| - 3" 40, 7
X1 — X1 Se | 2y — Zhr
1€Sk
2
= Llrs Y 1fiesy () ~ 7.
,r2 k k77' k,T
1€[n]
1 i 2
— 2{ Z Prfi e Sk]Hzé)T —Zpr
" i€[n]
+ ZPI‘ [Z,j S Sk] <Z](;7)T — Zkvﬂzgz_ - Ek,r> }
i#£j

2

(0 _ =
Zk,'r — Zk,r

-

_m"
i€[n]
r—1 O - G =

() 2

1€[n]

. 2
X : (59)

Zk,‘r — Zk,7

. 2 . 4
where we used the fact that HZI(CZ)T — ||+ iy <z,(;) Zkﬁ,z,(gl —Zk7T> = 0. Further taking expectation

_—

with respect to the quantizer yields

" Eollsl) 2| <23 Bofjaf)

i€[n] i€[n]

<4 Eqllz)’),

i€[n]
2
=4 Z EQ Q (X,(;;)T - Xk) ’
i€[n]

<a(t+q) 3 x| (60)

i€[n]

2 2
+ 2n]EQ||Zk,T||

2

I

In the above derivations, we used the fact that under Assumption 1 and for any x we have E||Q(x)||” < (1+¢) llx]|%.

Therefore, (60) together with the equality derived in (59) yields that
Elxis — %l € ——— (1= L) a1 +9) Y ]EHX(i) ~x H2 (61)
ket~ Xl S STy - ' oor — Xk|| -
i€[n]
Finally, we substitute the bound in (57) into (61) and conclude Lemma 4 as follows:

n-—r

r(n—1)

7.5 Proof of Equation (43)

E|xgs1 — ﬁkHHQ < 8(1+¢q) {T2L2772E\|xk - X*||2 +720%% + (r— 1)7‘2L20'267]4} . (62)

Let us fix the period k and for simplicity of the notations in this proof, let us take a; = a;+ and n = ;. We
showed that a; < 79?02 + 7L*n? (a1 + -+ +ay_1) for every t = 2,--- ,7 — 1 and also a; < n%0?. For t =1, (43)
holds. Assume that (43) holds also for {as,---,a;—1}. Now, for a; we have
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ar < ™?c? + 7L%n? (a1 4 -+ az—1)
i

t—2
< 77)202 + TL27]2 Z 777202 (1 + TL2772>
i=0

(1 + TLQnQ)t_l -1
7L2n?2

t—1
= 7n%0? (1 + TL2772) , (63)

=m?c® + mPo? - TL*n? -

as desired. Therefore, (43) holds for every t =1,--- ;7 — 1.

7.6 Discussion on stepsize 7y

Here we show that for any k > kg we have Cyp <1 — % uTnE, where kg satisfies the condition in Theorem 1, that
is

L B 1 4
ko>4max{ =4 22 41), -, 22 b (64)
AN T pPT
First note that this condition on & implies the following conditions on the stepsize nx = 44" /kr+1 for k > ko:
- f 1 1% feop
nkT<In1n{L,M}, and Nk <m1n{[/2,4n 5 (65)

Now consider the term (1 — pny)™ in Cp. We have

(1— )" = <1 = M)T

T
< e KTk

< 1— prny + @270, (66)

where the first inequality follows from the assumption 7, < 1/u and the second inequality uses the fact that
e* <14 2+ 22 for < 0. Therefore,

Co < (1 + m]ﬁ) (1 — pTnE + ,u27'277,%) + Bimn;
=1 — prng + 720 (B + 1) + nn (1 — T + MQTQHi) : (67)

Note that from the assumption n, < 1/Lr we have 0 < prn, < #/r < 1. This implies that 1 — prn; + /127217,% <1
Hence,

Co < 1 — prmy + 720 (By + ) + ni. (68)
Now from the condition 757 < #/4(B,+u%) we have
PR (B + ) < Jur, (69)
and from 7 < #/4n we have
KTk (70)

i <

sine 7 > 1. Plugging (69) and (70) in (68) yields that for any k > ko we have Cy < 1 — Lurny.
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7.7 Skipped lemmas and proofs

Lemma 5. Let a non-negative sequence dy, satisfy the following

2 a b
o< (1- 5 , 7
’““( k+k1) S Py R A (71)

for every k > ko, where a,b,c, ki1 are positive reals and kg is a positive integer. Then for every k > kg we have

(ko + k1)? a b

S < 5 .
N AL ey s

(72)

Proof. We prove by induction on k > kq. The claim in (72) is trivial for k& = ko. Let (72) hold for s > ko, that is

(ko + k1)? a b
s < Ok, + + . 73
GG+k)2 ™ stk (5+k)2 (73)
We can then write
a b
65 S ]- - 55 + +
H ( s+k1) s+k o (s+k)?
2 (k‘o + k‘l)Q a b a b
1— + + - -
—( s+k1) < (s+k)2 ™ sk (s+k)?) " (s+k)2 (s+ ki)
S+k1—2 2 S+k1—1 (8+k1—1)2
= — (ko + k1)"6s, + a b. 74
(s+ k)3 (ko =+ F1)"0k, (s + kp )2 (s + k1)t (74)
Now, take s’ = s+ k;. We have for s’ > 1 that
s —2 1 s —1 1 (s —1)2 1
= < ) < ; < . 75
8/3 — (s/ + 1)2 8'2 s’ + 1 8'4 (SI + 1)2 ( )
Plugging (75) in (74) yields that the claim in (72) holds for s + 1 and hence for any k > ko. O

8 Proof of Theorem 2

We begin the proof of Theorem 2 by noting the following property for any smooth loss function.

Lemma 6. Consider the sequences of updates {Xp11,Xk+1,Xk,r} generated by FedPA§ method in Algorithm 1.
If Assumptions 1 and 2 hold, then

Ef(xk+1) < Ef(Xp,r) + gEHikﬂ - ik,THQ + gEHﬁkﬂ —xp?, (76)
for any period k=0,--- | K — 1.
Proof. See Section 8.2. O
In the following three lemmas, we bound each of the three terms in the RHS of (76).

Lemma 7. Let Assumptions 2 and 3 hold and consider the sequence of updates in FedPA{ method with stepsize
1. Then, for every period k =0, -+ , K — 1 we have

T—1
_ 1 _ 2
Ef(%k.r) <Ef(xk) = 51 ) Bl VF(%e0)|
t=0
T—1 2
N AL MY (i)
1 (5 - gmbn - L0 1)n>t:0 EHEHW (=)
L 2 2 -1
+n250—7+n3%(n+1)77—(7—2 )12, (77)
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Proof. See Section 8.3. O

Lemma 8. If Assumptions 1 and 3 hold, then for sequences {§k+17ik -} defined in (18) we have

E|[%e 11 — %n- | < qu + qu Vf (Xfﬂ) (78)
i€[n] t=
Proof. See Section 8.4. O
Lemma 9. Under Assumptions 1 and 3, for the sequence of averages {Xp4+1} defined in (18) we have
Rk — % |* € s (1 L) 4(14) § mo®r? e Vf 0| (79)
“r(n—1) n k.t
Proof. See Section 8.5. O

After establishing the main building modules in the above lemmas, we now proceed to prove the convergence rate
in Theorem 2. In particular, we combine the results in Lemmas 6-9 to derive the following recursive inequality
on the expected function value on the models updated at the parameter servers, i.e. {x;:k=1,--- K}

Ef(xx11) <Ef(xz)

1 T—1 _
~ 31 2 BVl

_n21n<1—L(1+ qr+4(n1)(1+q)>n—2L2 (T —1)n )ZZ H ( )

t=0 i€[n]
L o2 o’n—r o? T(r—1)
2L o 40 30”7 T =142
+7 2(1+q)7(m+4rn1>+n m(m—i—l) 5 L= (80)
For sufficiently small 7, such that
1—Ln-L ( q+ 4m(1 + q)> ™ —2L%7 (T — 1)n* > 0, (81)
we have
1 T—1 5
Ef(xee1) <Ef(x) = 51 ) E[ V&l
t=0
L o? oln—r o? T(r—1)
2 3 2
-1 4— — 1)———L~. 2
+n 2(+Q)T<n+ Tn_1>+77n(n+) 5 (82)

In Section 8.1 we show that if the stepsize is picked as n = 1/LvT and the T ans 7 satisfy the condition (16) in
Theorem 2, then (81) also holds. Now summing (82) over k = 0,--- , K — 1 and rearranging the terms yield that

K-17-1
1Y Y B[ V(R
k=0 t=0

< flxo) — f* + K22 (1 4 g)r (‘i +4"7QZ - T) +Kn3%(n+ 1)ML2, (83)

N | =

2

or
K—-171—-1

S S BV )|

k=0t

N‘H
\]

i

o

x0) — f* 2 n—r
< 2= neg (2*4%_ 1) 7P+ 1) = I (84)
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Picking the stepsize n = 1/LvT = 1/LvK7 results in the following convergence rate:

lK—lT—l B
LY S Evsm)

k=0 t=0

L(f(xq)— f* 2 >n— § —
) (eI e T

which completes the proof of Theorem 2.

8.1 Discussion on stepsize 7,

Here, we consider the constraint on the stepsize derived in (81) and show that if 7 is picked according to Theorem
2, then it also satisfies (81). First, let the stepsize satisfy 1 — Ly > 0.1. Now, if the following holds

L (;qwr(’;_q)(uq)) ™ + 2L (n)? < 0.1, (86)

the condition in (81) also holds. It is straightforward to see when (86) holds. To do so, consider the following
quadratic inequality in terms of y = nt:

2L%y? + LBy — 0.1 < 0, (87)
where
1 n—r
By = — 4—(1 . 88

We can solve the quadratic form in (87) for y = 7 which yields
/BZ+0.8— B,
< ¥z =
nr < 1L (89)

This implies that if the parameter 7 and the stepsize n satisfy (89) and n < 0.9/L, then the condition (81) is
satisfied. In particular, for our pick of nn = 1/LvT, the condition 1 < 09/1, holds if T' > 2; and the constraint in
(89) is equivalent to having

VB2+08-B
T < 2+8 2VT. (90)

8.2 Proof of Lemma 6
Recall that for any L-smooth function f and variables x,y we have
L 2
F) < fO) +(VIE)x—y) + S lx =yl (91)
Therefore, we can write
F(xpt1) = [(Ret1 + X1 — Xpt1)
~ ~ ~ L ~
< FRigr) + (VF(Rer1)s Xes1 — Xiy1) + e — Ri1|l” - (92)

We take expectation of both sides of (92) and since Xy is unbiased for x;41, that is Eg, xp11 = Xg+1 (See
(29)), it yields that

~ L.
Ef(xk+1) < Ef(Xp41) + SE[Xer1 — xppa | (93)
Moreover, Xj1 is also unbiased for Xy, -, i.e. EgXp+1 = Xk,» (See (30)), and since f is L-smooth, we can write

~ _ L . _
EfRis1) < Ef Rer) + S E[Rur = s (94)

which together with (93) concludes the lemma.
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8.3 Proof of Lemma 7

According to the update rule in Algorithm 1, for every t =0,--- ,7 — 1 the average model is
Xit4+1 = Xkt — 77l Z Vi (x,(:)) . (95)
: ; n = N

Since f is L-smooth, we can write

2

[ (1) < F(Re) - <Vf ) Z Vi (x{ )> B B (96)

16 n] i€[n]

The inner product term above can be written in expectation as follows:

<fokt l;w;( )> Z2]E< (Rt) Vf(xfj)t)>

=yl + L 3 v ()

1€[n] )

_,Z Hfom -/ (x))

)

2 ; (97)

where we used the identity 2(a, b) =||a||> +||b||* —|]a — b||* for any two vectors a,b. In the following, we bound
each of the three terms in the RHS of (97). Starting with the third term, we use the smoothness assumption to
write

va(xk’t) —Vf <X’(§)t> H2 § L2ka - x}ci

(98)

Moreover, local models x,(j)t and average model X}, ; are respectively

x,(;)t =X} — (Vfl(xk) + Vf, (xk 1) 4ot ﬁfl (X,(cl)tl)> , (99)

and

ik,t = Xkr — Z Vf] Xk Z ij (Xg)l) +% Z 6']0] (ng_l) . (100)

jE n] JG[n] J€[n]
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Therefore, the expected deviation of each local model form the average model can be written as
B =i

2
< 29°E

LSt S () s SV (xE))

Jj€ln] Je[n] Jj€ln]

‘ﬁfl(xk) +Vf; (xg)l) .+ V (Xg)t 1) 2

+ 2n°E

LS Vi + 2 S v () e 2 v ()
J€[n]

j€[n] JG[n]
2)

< 2n2t%2+2772t (i 3 ||Vf(xk)}|2+% S vr (x,(j)l) +~-~+% >

j€n] J€[n]

2
+ 2n°to? + 2n°t <HVf Xk) H +va X}, 1) "‘va (Xl(gl,)t—l)

+ 27 (ta —l—HVf xx)+ VS <Xk 1) o+ Vf (ng,)tfl)

2
o () )

2
) . (101)

Summing (101) over all the workers i € [n] yields

N 12
o
i€[n]

vr (<)

ot

Vf (ngfl)

< 2%to? + 2%t (
j€m) j€m]

j€ln]
2
capinsapi( it s Sfos ()] o0 Slore)])
i€[n] i€[n] i€[n]
= %Pto (n+1)+477t<2||Vka 17+ 3 Vf(xkl)’ > (x 1)‘) (102)
j€[n] j€ln] J€ln]
Finally, summing (102) over t = 0,--- ,7 — 1 results in the following;:
Z Z Ekat—th
t=04€[n
A 2
< 220%(n+1) Zt+4n22t( Vf( ) ey Vf(x,(j’gil) )
J€ln] j€ln]
<n202(n+ Vr(r — 1) + 20%7(r — 1) ZZ Vf(xkt)‘ . (103)
t=0 i€[n]
Next, we bound the third term in ( 6). Using Assumption 3 we have
2 2
1 = i
BT 3 v () —E*ZW(XH) PINACHRHICH
i€[n] i€[n] ZG [n]
1 2 52
<-YE ’Vf (x3) ’ +Z (104)

1€[n]
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Summing (104) over iterations t = 0,--- ,7 — 1 yields
— 2 —1
I (i) 2L 15 (Z) oL o?
Sle|l s s ()] <o Yy Hw WO + 2L
t=0 i€[n] t=0 ig[n]
Now we can sum (96) for ¢ =0,--- ,7 — 1 and use the results in (103) and (105) to conclude:
1 T—1 5
Ef(Rk.r) <Ef(xe) = 51 ) E| V(&)
=0
2
Ly > o (=4
t=0 i€[n
o2
nZZEHVf Xpt) — Vf (xl(j)t)
t=0 i€[n
) 2
— oL_|I1
+Z *2E||> Z Vi (%)
1 T—1 5
<Ef(x) = 51 ) _E[| VI
t=0
2
1 1
-7 < — 5Ly - *LQ (r—1)n ) HVf
2n  2n
t=0 :€[n]
Lo? o? T(r—1)
20" 30° T =12
+772n7+7] n(n+1) 5 L=

8.4 Proof of Lemma 8

According to definitions in (18) and using Assumption 1 we have

~ 2 1 i 2
E||Re41 — Xp,r||” < 3 Z qEHX;(C)T - XkH .
i€[n]
Using the model update in (99) and Assumption 3, we can write
’2
n?E‘%fi(xk)Vf(xk) 4 VI (30 ) - v (6

‘ 2

EHXEJ,)T - XkH2 = 7721[*3‘ Vfilxe) + Vi (Xk 1) +o Vi (X;(ci,)Pl)

o 'Vﬂxm s (x )
’2

Summing (108) over all workers ¢ € [n] and using (107) yields

2 2

s ()

2

(i)

3

2 _
E|[%k+1 —ik,TH < Q*TW + Q*T Z Z
i€[n] t=0

as desired in Lemma 8.

(105)

(106)

(107)

(108)

(109)
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8.5 Proof of Lemma 9

The steps to prove the bound in (61) for strongly convex losses in Lemma 4 can also be applied for non-convex
losses. That is, we can use (61) and together with (108) conclude the following:

~ 2 1 r (@) 2
ElXpt1 — Xpa]]” < e p—") (1 - n) 41+q) ) ka,T - XkH

i€[n]

2

1

T—1
r
<— (1= =) 4(1 4 ¢) { no®m* + 02 E E (110)
r(n—1) ( n) i€[n] t=0

Vi (x)

9 Additional Numerical Results

To further illustrate the practical performance of the proposed FedPAQ method, in this section we provide more
numerical results using different and more complicated datasets and model parameters. The network settings,
communication and computation time models remain the same as those in Section 5. The following figures
demonstrate the training time corresponding to the following scenarios:

e Figure 2: Training time of a neural network with four hidden layers and more than 248K parameters over
10K samples of the CIFAR-10 dataset with 10 labels.

e Figure 3: Training time of a neural network with one hidden layer over 10K samples of the CIFAR-100
dataset with 100 labels.

e Figure 4: Training time of a neural network with one hidden layer over 10K samples of the Fashion-MNIST
dataset with 10 labels.

Similar to Section 5.2, in all of the above scenarios, the data samples are uniformly distributed among n = 50
nodes. We also keep the communication-computation ratio and the batchsize to be Ceomm/Ceomp = 1000/1 and
B = 10 respectively, and finely tune the stepsize for every training.

] —s=1 , —QSGD
_5
] —s=5 —FedPAQ
55 —s=10 55 —FedAvg
—No Quantization (FedAvg)
5 5
k=1 k=1
1.5 15
1

4 k=T/t k=T/7 ¢ k=T/T
35 l \ 35 \

3L 3L 3 - 3 -

10% 10" 100 10° 10° 10t 10% 10° 10 10% 10* 10* 10° 100

Training Time Training Time Training Time Training Time

Figure 2: Training Loss vs. Training Time: Neural Network on CIFAR-10 dataset with 248K parameters.

60 80
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—s =10 60 —_—r =25 —FedAvg
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30 k=1 40

N
0 b="T/r k=D k=T/r
\ \ 20 / k=T/r k=1
10 " \ \ l k :{/T
0 —

0 0
10° 10t 100 10! 10? 10° 10* 10° 10* 10* 10° 10°
Training Time Training Time Training Time Training Time

Figure 3: Training Loss vs. Training Time: Neural Network on CIFAR-100 dataset.
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10
5.5
ehk=1|=—s=1 9 —r =10 —QSGD
5 —s=5 —FedAvg
—_—s =10 8 —FedPAQ
45
—No Quantization (FedAvg) 7
k=1 6
5
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2 . -
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Figure 4: Training Loss vs. Training Time: Neural Network on Fashion-MNIST dataset.
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