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Supplementary Materials

Here, we provide the proofs of the main two theorems of this paper in Sections 7 and 8 along with the necessary
lemmas and discussions. Moreover, we provide more numerical results over more complicated datasets and model
parameters in Section 9.

7 Proof of Theorem 1

We first introduce some additional notations which will be used throughput the proofs.

Additional notations. For each period k = 0, 1, · · · ,K � 1 and iteration t = 0, 1, · · · , ⌧ � 1 we denote

xk+1 := xk +
1

r

X

i2Sk

Q
⇣
x(i)
k,⌧ � xk

⌘
,

bxk+1 := xk +
1

n

X

i2[n]

Q
⇣
x(i)
k,⌧ � xk

⌘
,

xk,t :=
1

n

X

i2[n]

x(i)
k,t. (18)

We begin the proof of Theorem 1 by noting a few key observations. Based on the above notations and the
assumptions we made earlier, the optimality gap of the parameter server’s model at period k, i.e. Ekxk+1 � x⇤

k
2,

can be decomposed as stated in the following lemma.
Lemma 1. Consider any period k = 0, · · · ,K � 1 and the sequences {xk+1, bxk+1,xk,⌧} generated by the FedPAQ
method in Algorithm 1. If Assumption 1 holds, then

Ekxk+1 � x⇤
k
2 = Ekxk+1 � bxk+1k

2 + E
��bxk+1 � xk,⌧

��2 + E
��xk,⌧ � x⇤��2 , (19)

where the expectation is with respect to all sources of randomness.

Proof. See Section 7.1.

In the following three lemmas, we characterize each of the terms in the right-hand side (RHS) of (19).
Lemma 2. Consider the sequence of local updates in the FedPAQ method in Algorithm 1 and let Assumptions 2,
3 and 4 hold. The optimality gap for the average model at the end of period k, i.e. xk,⌧ , relates to that of the
initial model of the k-th period xk as follows:

E
��xk,⌧ � x⇤��2 

⇣
1 + n⌘2k

⌘
(1� µ⌘k)

⌧ Ekxk � x⇤
k
2

+ ⌧(⌧ � 1)2L2�
2

n
e⌘2k + ⌧2

�2

n
⌘2k

+ ⌧2(⌧ � 1)L2�2e⌘4k, (20)

for the stepsize ⌘k  min{µ/L2, 1/L⌧}.

Proof. See Section 7.2.

Lemma 3. For the proposed FedPAQ method in Algorithm 1 with stepsize ⌘k  min{µ/L2, 1/L⌧} and under
Assumptions 1, 2, 3 and 4, we have

E
��bxk+1 � xk,⌧

��2  2
q

n
⌧2L2⌘2kEkxk � x⇤

k
2 + 2q⌧2

�2

n
⌘2k + 2q(⌧ � 1)⌧2L2�

2

n
e⌘4k, (21)

where bxk+1 and xk,⌧ are defined in (18).

Proof. See Section 7.3.
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Lemma 4. For the proposed FedPAQ method in Algorithm 1 with stepsize ⌘k  min{µ/L2, 1/L⌧} and under
Assumptions 1–4, we have

Ekxk+1 � bxk+1k
2


n� r

r(n� 1)
8(1 + q)

(
⌧2L2⌘2kEkxk � x⇤

k
2 + ⌧2�2⌘2k + (⌧ � 1)⌧2L2�2e⌘4k

)
, (22)

where r denotes the number of nodes contributing in each period of the FedPAQ method.

Proof. See Section 7.4.

Now that we have established the main building modules for proving Theorem 1, let us proceed with the proof
by putting together the results in Lemmas 1–4. That is,

Ekxk+1 � x⇤
k
2
 Ekxk � x⇤

k
2

 ⇣
1 + n⌘2k

⌘
(1� µ⌘k)

⌧ + 2L2⌧2⌘2k

✓
q

n
+

n� r

r(n� 1)
4(1 + q)

◆!

+

✓
1 + 2q + 8(1 + q)

n(n� r)

r(n� 1)

◆
�2

n
⌧2⌘2k

+ L2�
2

n
e⌧(⌧ � 1)2⌘2k

+

✓
n+ 2q + 8(1 + q)

n(n� r)

r(n� 1)

◆
L2�

2

n
e(⌧ � 1)⌧2⌘4k (23)

Let us set the following notations:

�k := Ekxk � x⇤
k
2 ,

C0 :=
⇣
1 + n⌘2k

⌘
(1� µ⌘k)

⌧ + 2L2⌧2⌘2k

✓
q

n
+

n� r

r(n� 1)
4(1 + q)

◆
,

C1 :=
16

µ2

✓
1 + 2q + 8(1 + q)

n(n� r)

r(n� 1)

◆
�2

n
,

C2 :=
16

µ2
L2�

2

n
e,

C3 :=
256

µ4

✓
n+ 2q + 8(1 + q)

n(n� r)

r(n� 1)

◆
L2�

2

n
e. (24)

Consider C0, the coefficient of Ekxk � x⇤
k
2 in (23). One can show that if the condition in (11) in Theorem 1 is

satisfied, then we have C0  1� 1
2µ⌧⌘k (See Section 7.6). Therefore, for each period k � k0 we have

�k+1 

✓
1�

1

2
µ⌧⌘k

◆
�k +

µ2

16
C1⌧

2⌘2k +
µ2

16
C2⌧(⌧ � 1)2⌘2k +

µ4

256
C3(⌧ � 1)⌧2⌘4k. (25)

Now, we substitute the stepsize ⌘k = 4µ�1/k⌧+1 in (25) which yields

�k+1 

✓
1�

2

k + 1/⌧

◆
�k + C1

1

(k + 1/⌧)2
+ C2

(⌧ � 1)2

⌧

1

(k + 1/⌧)2
+ C3

⌧ � 1

⌧2
1

(k + 1/⌧)4
. (26)

In Lemma 5, we show the convergence analysis of such sequence. In particular, we take k1 = 1/⌧ , a = C1 +
C2(⌧ � 1)2/⌧ and b = C3(⌧ � 1)/⌧2 in Lemma 5 and conclude for any k � k0 that

�k 
(k0 + 1/⌧)2

(k + 1/⌧)2
�k0 + C1

1

k + 1/⌧
+ C2

(⌧ � 1)2

⌧

1

k + 1/⌧
+ C3

⌧ � 1

⌧2
1

(k + 1/⌧)2
. (27)

Finally, rearranging the terms in (27) yields the desired result in Theorem 1, that is

Ekxk � x⇤
k
2


(k0⌧ + 1)2

(k⌧ + 1)2
Ekxk0 � x⇤

k
2 + C1

⌧

k⌧ + 1
+ C2

(⌧ � 1)2

k⌧ + 1
+ C3

⌧ � 1

(k⌧ + 1)2
. (28)
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7.1 Proof of Lemma 1

Let Fk,t denote the history of all sources of randomness by the t-th iteration in period k. The following expectation
arguments are conditional on the history Fk,⌧ which we remove in our notations for simplicity. Since the random
subset of nodes Sk is uniformly picked from the set of all the nodes [n], we can write

ESkxk+1 = xk + ESk

1

r

X

i2Sk

Q
⇣
x(i)
k,⌧ � xk

⌘

= xk +
X

S✓[n]
|S|=r

Pr [Sk = S]
1

r

X

i2Sk

Q
⇣
x(i)
k,⌧ � xk

⌘

= xk +
1�n
r

� 1
r

✓
n� 1

r � 1

◆ X

i2[n]

Q
⇣
x(i)
k,⌧ � xk

⌘

= xk +
1

n

X

i2[n]

Q
⇣
x(i)
k,⌧ � xk

⌘

= bxk+1. (29)

Moreover, the quantizer Q(·) is unbiased according to Assumption 1, which yields

EQ bxk+1 = xk +
1

n

X

i2[n]

EQ Q
⇣
x(i)
k,⌧ � xk

⌘

=
1

n

X

i2[n]

x(i)
k,⌧

= xk,⌧ . (30)

Finally, since the two randomnesses induced by the quantization and random sampling are independent, together
with (29) and (30) we can conclude that:

Ekxk+1 � x⇤
k
2 = E

��xk+1 � bxk+1 + bxk+1 � xk,⌧ + xk,⌧ � x⇤��2

= Ekxk+1 � bxk+1k
2 + E

��bxk+1 � xk,⌧

��2 + E
��xk,⌧ � x⇤��2 . (31)

7.2 Proof of Lemma 2

According to update rule in Algorithm 1, local model at node i for each iteration t = 0, · · · , ⌧ � 1 of period
k = 0, · · · ,K � 1 can be written as follows:

x(i)
k,t+1 = x(i)

k,t � ⌘k erfi
⇣
x(i)
k,t

⌘
, (32)

where all the nodes start the period with the initial model x(i)
k,0 = xk. In parallel, let us define another sequence

of updates as follows:

�k,t+1 = �k,t � ⌘krf
�
�k,t

�
, (33)

also starting with �k,0 = xk. The auxiliary sequence {�k,t} represents Gradient Descent updates over the global
loss function f while x(i)

k,t captures the sequence of SGD updates on each local node. However, both sequences
are initialized with xk at the beginning of each period k. To evaluate the deviation

��xk,⌧ � x⇤
��2, we link the

two sequences. In particular, let us define the following notations for each k = 0, · · · ,K� 1 and t = 0, · · · , ⌧ � 1:

ek,t =
1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘
�rf

�
�k,t

�
. (34)

One can easily observe that Eek,0 = 0 as x(i)
k,0 = �k,0 = xk and erfi is unbiased for rf . However, Eek,t 6= 0 for

t � 1. In other words, 1
n

P
i2[n]

erfi(x
(i)
k,t) is not unbiased for rf(�k,t). We also define ek = ek,0 + · · · + ek,⌧�1
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and gk = rf(�k,0) + · · ·+rf(�k,⌧�1). Now, the average model obtained at the end of period k can be written
as

xk,⌧ =
1

n

X

i2[n]

x(i)
k,⌧

= xk � ⌘k

0

@ 1

n

X

i2[n]

erfi
⇣
x(i)
k,0

⌘
+ · · ·+

1

n

X

i2[n]

erfi
⇣
x(i)
k,⌧�1

⌘
1

A

= xk � ⌘k (gk + ek) . (35)

Therefore, the optimality gap for the averaged model can be written as

E
��xk,⌧ � x⇤��2 = Ekxk � ⌘kgk � x⇤

k
2
� 2⌘kE hxk � ⌘kgk � x⇤, eki+ ⌘2kEkekk

2

 Ekxk � ⌘kgk � x⇤
k
2

+ n⌘2kEkxk � ⌘kgk � x⇤
k
2 +

1

n
kEekk2

+ ⌘2kEkekk
2

=
⇣
1 + n⌘2k

⌘
Ekxk � ⌘kgk � x⇤

k
2 +

1

n
kEekk2 + ⌘2kEkekk

2 , (36)

where we used the inequality �2ha,bi  ↵kak2 + ↵�1
kbk2 for any two vectors a,b and scalar ↵ > 0. In the

following, we bound each of the three terms in the RHS of (36). First, consider the termkxk � ⌘kgk � x⇤
k
2 and

recall the auxiliary sequence {�k,t} defined in (37). For every t and k we have

���k,t+1 � x⇤��2 =
���k,t � ⌘krf(�k,t)� x⇤��2

=
���k,t � x⇤��2 � 2⌘k

⌦
�k,t � x⇤,rf(�k,t)

↵
+ ⌘2k

��rf(�k,t)
��2



⇣
1� 2µ⌘k + L2⌘2k

⌘���k,t � x⇤��2

 (1� µ⌘k)
���k,t � x⇤��2 . (37)

In the above derivations, we used the facts that f is µ-strongly convex and its gradient is L-Lipschitz (Assumptions
2 and 4). The stepsize is also picked such that ⌘k  µ/L2. Now, conditioned on the history Fk,0 and using (37)
we have

kxk � ⌘kgk � x⇤
k
2 =

���k,⌧ � x⇤��2

 (1� µ⌘k)
⌧���k,0 � x⇤��2

= (1� µ⌘k)
⌧
kxk � x⇤

k
2 . (38)

Secondly, consider the term kEekk2 in (36). By definition, we have Eek = Eek,1 + · · · + Eek,⌧�1 and hence
kEekk2  (⌧ � 1)

��Eek,1
��2+ · · ·+(⌧ � 1)

��Eek,⌧�1

��2. The first term
��Eek,1

��2 can be bounded using Assumptions
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2 and 3 as follows:

��Eek,1
��2 =

������
1

n

X

i2[n]

Eerfi
⇣
x(i)
k,1

⌘
�rf

�
�k,1

�
������

2

=

������
1

n

X

i2[n]

Erf
⇣
x(i)
k,1

⌘
�rf

�
�k,1

�
������

2


1

n

X

i2[n]

E
����rf

⇣
x(i)
k,1

⌘
�rf

�
�k,1

�����
2


1

n
L2
X

i2[n]

E
���x(i)

k,1 � �k,1

���
2

=
1

n
L2
X

i2[n]

E
�����

✓
x(i)
k,0 � ⌘k erfi

⇣
x(i)
k,0

⌘◆
�

⇣
�k,0 � ⌘krf

�
�k,0

�⌘
�����

2

=
1

n
L2⌘2k

X

i2[n]

E
���erfi (xk)�rf (xk)

���
2

 L2�2⌘2k. (39)

In general, for each t = 1 · · · , ⌧ � 1 we can write

��Eek,t
��2 =

������
1

n

X

i2[n]

Eerfi
⇣
x(i)
k,t

⌘
�rf

�
�k,t

�
������

2

=

������
1

n

X

i2[n]

Erf
⇣
x(i)
k,t

⌘
�rf

�
�k,t

�
������

2


1

n

X

i2[n]

E
����rf

⇣
x(i)
k,t

⌘
�rf

�
�k,t

�����
2


1

n
L2
X

i2[n]

E
���x(i)

k,t � �k,t

���
2
. (40)
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Let us denote ak,t :=
1
n

P
i2[n] E

���x(i)
k,t � �k,t

���
2
. In the following, we will derive a recursive bound on at. That is,

ak,t =
1

n

X

i2[n]

E
���x(i)

k,t � �k,t

���
2

=
1

n

X

i2[n]

E
�����

✓
x(i)
k,0 � ⌘k erfi

⇣
x(i)
k,0

⌘
� · · ·� ⌘k erfi

⇣
x(i)
k,t�1

⌘◆

�

⇣
�k,0 � ⌘krf

�
�k,0

�
� · · ·� ⌘krf

�
�k,t�1

�⌘
�����

2

=
1

n
⌘2k
X

i2[n]

E
�����
erfi

⇣
x(i)
k,0

⌘
�rf

�
�k,0

�
+ · · ·+ erfi

⇣
x(i)
k,t�1

⌘
�rf

�
�k,t�1

�
�����

2

 ⌘2k�
2 +

1

n
⌘2k
X

i2[n]

E
�����
erfi

⇣
x(i)
k,1

⌘
�rf

�
�k,1

�
+ · · ·+ erfi

⇣
x(i)
k,t�1

⌘
�rf

�
�k,t�1

�
�����

2

 ⌘2k�
2 +

1

n
⌘2k
X

i2[n]

E
�����
erfi

⇣
x(i)
k,1

⌘
�rf

⇣
x(i)
k,1

⌘
+rf

⇣
x(i)
k,1

⌘
�rf

�
�k,1

�

+ · · ·+ erfi
⇣
x(i)
k,t�1

⌘
�rf

⇣
x(i)
k,t�1

⌘
+rf

⇣
x(i)
k,t�1

⌘
�rf

�
�k,t�1

�
�����

2

 t⌘2k�
2 +

1

n
⌘2k
X

i2[n]

E
�����rf

⇣
x(i)
k,1

⌘
�rf

�
�k,1

�
+ · · ·rf

⇣
x(i)
k,t�1

⌘
�rf

�
�k,t�1

�
�����

2

 t⌘2k�
2 + (t� 1)L2⌘2k

1

n

X

i2[n]

E
�����x

(i)
k,1 � �k,1

�����

2

+ · · · (t� 1)L2⌘2k
1

n

X

i2[n]

E
�����x

(i)
k,t�1 � �k,t�1

�����

2

= t⌘2k�
2 + (t� 1)L2⌘2k

�
ak,1 + · · ·+ ak,t�1

�

 ⌧⌘2k�
2 + ⌧L2⌘2k

�
ak,1 + · · ·+ ak,t�1

�
. (41)

Therefore, for the sequence {ak,1, · · · , ak,⌧�1} we have shown that

ak,t  ⌧⌘2k�
2 + ⌧L2⌘2k

�
ak,1 + · · ·+ ak,t�1

�
, (42)

where ak,1  �2⌘2k. We can show by induction, that such sequence satisfies the following inequality:

ak,t  ⌧⌘2k�
2
⇣
1 + ⌧L2⌘2k

⌘t�1
. (43)

See Section 7.5 for the detailed proof. Therefore, we have

kEekk2  (⌧ � 1)
��Eek,1

��2 + · · ·+ (⌧ � 1)
��Eek,⌧�1

��2

 (⌧ � 1)L2 (a1 + · · ·+ a⌧�1)

 ⌧(⌧ � 1)2L2�2⌘2k

⇣
1 + ⌧L2⌘2k

⌘⌧
. (44)

Now, we use the inequality 1 + x  ex and conclude that

kEekk2  ⌧(⌧ � 1)2L2�2⌘2ke
⌧2L2⌘2

k . (45)

Therefore, if ⌧2L2⌘2k  1, we have

kEekk2  ⌧(⌧ � 1)2L2�2e⌘2k. (46)



Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

Finally, we bound the third term in (36), that is Ekekk2. Using the definition, we know that Ekekk2  ⌧E
��ek,0

��2+
· · ·+ ⌧E

��ek,⌧�1

��2. Firstly, note that

E
��ek,0

��2 = E

������
1

n

X

i2[n]

erfi
⇣
x(i)
k,0

⌘
�rf

�
�k,0

�
������

2

= E

������
1

n

X

i2[n]

erfi (xk)�rf (xk)

������

2


�2

n
. (47)

For each t = 1, · · · , ⌧ � 1 we have

E
��ek,t

��2 = E

������
1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘
�rf

�
�k,t

�
������

2

= E

������
1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘
�rf

⇣
x(i)
k,t

⌘
+

1

n

X

i2[n]

rf
⇣
x(i)
k,t

⌘
�rf

�
�k,t

�
������

2


�2

n
+ L2 1

n

X

i2[n]

E
���x(i)

k,t � �k,t

���
2

=
�2

n
+ L2ak,t. (48)

Summing over t = 0, 1, · · · , ⌧ � 1 results in the following

Ekekk2  ⌧E
��ek,0

��2 + · · ·+ ⌧E
��ek,⌧�1

��2

 ⌧2
�2

n
+ ⌧L2 (a1 + · · ·+ a⌧�1)

 ⌧2
�2

n
+ ⌧2(⌧ � 1)L2�2⌘2k

⇣
1 + ⌧L2⌘2k

⌘⌧

 ⌧2
�2

n
+ ⌧2(⌧ � 1)L2�2e⌘2k. (49)

Now, we can put everything together and conclude Lemma 2, as follows

E
��xk,⌧ � x⇤��2 =

⇣
1 + n⌘2k

⌘
Ekxk � ⌘kgk � x⇤

k
2 +

1

m
kEekk2 + ⌘2kEkekk

2



⇣
1 + n⌘2k

⌘
(1� µ⌘k)

⌧ Ekxk � x⇤
k
2

+ ⌧(⌧ � 1)2L2�
2

n
e⌘2k + ⌧2

�2

n
⌘2k

+ ⌧2(⌧ � 1)L2�2e⌘4k. (50)

7.3 Proof of Lemma 3

According to the notations defined on (18), we can write
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E
��bxk+1 � xk,⌧

��2 = E

������
xk +

1

n

X

i2[n]

Q
⇣
x(i)
k,⌧ � xk

⌘
�

1

n

X

i2[n]

x(i)
k,⌧

������

2

= E

������
1

n

X

i2[n]

Q
⇣
x(i)
k,⌧ � xk

⌘
�

⇣
x(i)
k,⌧ � xk

⌘
������

2

=
1

n2

X

i2[n]

E
����Q
⇣
x(i)
k,⌧ � xk

⌘
�

⇣
x(i)
k,⌧ � xk

⌘����
2

 q
1

n2

X

i2[n]

E
���x(i)

k,⌧ � xk

���
2
, (51)

where, we used Assumption 1. In particular, the last equality above follows from the fact that the random
quatizer is unbiased and the quantizations are carried out independently in each iteration and each worker.
Moreover, the last inequality in (51) simply relates the variance of the quantization to its argument. Next, we

bound E
���x(i)

k,⌧ � xk

���
2

for each worker i 2 [n]. From the update rule in Algorithm 1 we have

x(i)
k,⌧ = xk � ⌘k

✓
erfi

⇣
x(i)
k,0

⌘
+ · · ·+ erfi

⇣
x(i)
k,⌧�1

⌘◆

= xk � ⌘k
⇣
gk + e(i)k

⌘
, (52)

where we denote

e(i)k := erfi
⇣
x(i)
k,0

⌘
�rf

�
�k,0

�
+ · · ·+ erfi

⇣
x(i)
k,⌧�1

⌘
�rf

�
�k,⌧�1

�
, (53)

and gk = rf(�k,0) + · · ·+rf(�k,⌧�1) as defined before. Using these notations we have

E
���x(i)

k,⌧ � xk

���
2
= ⌘2kE

���gk + e(i)k

���
2

 2⌘2kkgkk
2 + 2⌘2kE

���e(i)k

���
2
. (54)

Let us first bound the first term in (54), i.e. kgkk
2. That is,

kgkk
2
 ⌧

��rf(�k,0)
��2 + · · ·+ ⌧

��rf(�k,⌧�1)
��2

(a)
 ⌧L2

⇣
kxk � x⇤

k
2 + · · ·+ (1� µ⌘k)

⌧�1
kxk � x⇤

k
2
⌘

 ⌧2L2
kxk � x⇤

k
2 , (55)

where we used the smoothness of the loss function f (Assumption 2) and the result in (37) to derive inequality

(a). To bound the second term in (54), i.e. E
���e(i)k

���
2
, we can employ our result in (49) for the special case n = 1.

It yields that for ⌘k  1/L⌧,

E
���e(i)k

���
2
 ⌧2�2 + ⌧2(⌧ � 1)L2�2e⌘2k. (56)

Plugging (55) and (56) in (54) implies that

E
���x(i)

k,⌧ � xk

���
2
 2⌧2L2⌘2kEkxk � x⇤

k
2 + 2⌧2�2⌘2k + 2(⌧ � 1)⌧2L2�2e⌘4k, (57)

which together with (51) concludes Lemma 3:

E
��bxk+1 � xk,⌧

��2  2
q

n
⌧2L2⌘2kEkxk � x⇤

k
2 + 2q⌧2

�2

n
⌘2k + 2q(⌧ � 1)⌧2L2�

2

n
e⌘4k. (58)
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7.4 Proof of Lemma 4

For each node i 2 [n] denote z(i)k,⌧ = Q(x(i)
k,⌧ � xk) and zk,⌧ = 1

n

P
i2[n] z

(i)
k,⌧ . Then,

ESkkxk+1 � bxk+1k
2 = ESk

������
1

r

X

i2Sk

z(i)k,⌧ � zk,⌧

������

2

=
1

r2
ESk

������

X

i2[n]

{i 2 Sk}

⇣
z(i)k,⌧ � zk,⌧

⌘
������

2

=
1

r2

(
X

i2[n]

Pr [i 2 Sk]
���z(i)k,⌧ � zk,⌧

���
2

+
X

i 6=j

Pr [i, j 2 Sk]
D
z(i)k,⌧ � zk,⌧ , z

(j)
k,⌧ � zk,⌧

E)

=
1

nr

X

i2[n]

���z(i)k,⌧ � zk,⌧
���
2

+
r � 1

rn(n� 1)

X

i 6=j

D
z(i)k,⌧ � zk,⌧ , z

(j)
k,⌧ � zk,⌧

E

=
1

r(n� 1)

✓
1�

r

n

◆ X

i2[n]

���z(i)k,⌧ � zk,⌧
���
2
, (59)

where we used the fact that
���z(i)k,⌧ � zk,⌧

���
2
+
P

i 6=j

D
z(i)k,⌧ � zk,⌧ , z

(j)
k,⌧ � zk,⌧

E
= 0. Further taking expectation

with respect to the quantizer yields
X

i2[n]

EQ

���z(i)k,⌧ � zk,⌧
���
2
 2

X

i2[n]

EQ

���z(i)k,⌧

���
2
+ 2nEQ

��zk,⌧
��2

 4
X

i2[n]

EQ

���z(i)k,⌧

���
2

= 4
X

i2[n]

EQ

����Q
⇣
x(i)
k,⌧ � xk

⌘����
2

 4(1 + q)
X

i2[n]

���x(i)
k,⌧ � xk

���
2
. (60)

In the above derivations, we used the fact that under Assumption 1 and for any x we have E
��Q(x)

��2  (1+q)kxk2.
Therefore, (60) together with the equality derived in (59) yields that

Ekxk+1 � bxk+1k
2


1

r(n� 1)

✓
1�

r

n

◆
4(1 + q)

X

i2[n]

E
���x(i)

k,⌧ � xk

���
2
. (61)

Finally, we substitute the bound in (57) into (61) and conclude Lemma 4 as follows:

Ekxk+1 � bxk+1k
2


n� r

r(n� 1)
8(1 + q)

n
⌧2L2⌘2Ekxk � x⇤

k
2 + ⌧2�2⌘2 + (⌧ � 1)⌧2L2�2e⌘4

o
. (62)

7.5 Proof of Equation (43)

Let us fix the period k and for simplicity of the notations in this proof, let us take at = ak,t and ⌘ = ⌘k. We
showed that at  ⌧⌘2�2 + ⌧L2⌘2 (a1 + · · ·+ at�1) for every t = 2, · · · , ⌧ � 1 and also a1  ⌘2�2. For t = 1, (43)
holds. Assume that (43) holds also for {a1, · · · , at�1}. Now, for at we have
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at  ⌧⌘2�2 + ⌧L2⌘2 (a1 + · · ·+ at�1)

 ⌧⌘2�2 + ⌧L2⌘2
t�2X

i=0

⌧⌘2�2
⇣
1 + ⌧L2⌘2

⌘i

= ⌧⌘2�2 + ⌧⌘2�2
· ⌧L2⌘2 ·

�
1 + ⌧L2⌘2

�t�1
� 1

⌧L2⌘2

= ⌧⌘2�2
⇣
1 + ⌧L2⌘2

⌘t�1
, (63)

as desired. Therefore, (43) holds for every t = 1, · · · , ⌧ � 1.

7.6 Discussion on stepsize ⌘k

Here we show that for any k � k0 we have C0  1� 1
2µ⌧⌘k, where k0 satisfies the condition in Theorem 1, that

is

k0 � 4max

(
L

µ
, 4

✓
B1

µ2
+ 1

◆
,
1

⌧
,
4n

µ2⌧

)
. (64)

First note that this condition on k0 implies the following conditions on the stepsize ⌘k = 4µ�1/k⌧+1 for k � k0:

⌘k⌧  min

⇢
1

L
,

µ

4 (µ2 +B1)

�
, and ⌘k  min

⇢
µ

L2
,
µ

4n

�
, (65)

Now consider the term (1� µ⌘k)⌧ in C0. We have

(1� µ⌘k)
⌧ =

✓
1�

µ⌧⌘k
⌧

◆⌧

 e�µ⌧⌘k

 1� µ⌧⌘k + µ2⌧2⌘2k, (66)

where the first inequality follows from the assumption ⌘k  1/µ and the second inequality uses the fact that
ex  1 + x+ x2 for x  0. Therefore,

C0 

⇣
1 + n⌘2k

⌘⇣
1� µ⌧⌘k + µ2⌧2⌘2k

⌘
+B1⌧

2⌘2k

= 1� µ⌧⌘k + ⌧2⌘2k(B1 + µ2) + n⌘2k

⇣
1� µ⌧⌘k + µ2⌧2⌘2k

⌘
. (67)

Note that from the assumption ⌘k  1/L⌧ we have 0  µ⌧⌘k  µ/L  1. This implies that 1�µ⌧⌘k +µ2⌧2⌘2k  1.
Hence,

C0  1� µ⌧⌘k + ⌧2⌘2k(B1 + µ2) + n⌘2k. (68)

Now from the condition ⌘k⌧  µ/4(B1+µ2) we have

⌧2⌘2k(B1 + µ2) 
1

4
µ⌧⌘k, (69)

and from ⌘k  µ/4n we have

n⌘2k 
1

4
µ⌧⌘k, (70)

sine ⌧ � 1. Plugging (69) and (70) in (68) yields that for any k � k0 we have C0  1� 1
2µ⌧⌘k.
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7.7 Skipped lemmas and proofs

Lemma 5. Let a non-negative sequence �k satisfy the following

�k+1 

✓
1�

2

k + k1

◆
�k +

a

(k + k1)2
+

b

(k + k1)4
, (71)

for every k � k0, where a, b, c, k1 are positive reals and k0 is a positive integer. Then for every k � k0 we have

�k 
(k0 + k1)2

(k + k1)2
�k0 +

a

k + k1
+

b

(k + k1)2
. (72)

Proof. We prove by induction on k � k0. The claim in (72) is trivial for k = k0. Let (72) hold for s � k0, that is

�s 
(k0 + k1)2

(s+ k1)2
�k0 +

a

s+ k1
+

b

(s+ k1)2
. (73)

We can then write

�s+1 

✓
1�

2

s+ k1

◆
�s +

a

s+ k1
+

b

(s+ k1)2



✓
1�

2

s+ k1

◆ 
(k0 + k1)2

(s+ k1)2
�k0 +

a

s+ k1
+

b

(s+ k1)2

!
+

a

(s+ k1)2
+

b

(s+ k1)4

=
s+ k1 � 2

(s+ k1)3
(k0 + k1)

2�k0 +
s+ k1 � 1

(s+ k1)2
a+

(s+ k1 � 1)2

(s+ k1)4
b. (74)

Now, take s0 = s+ k1. We have for s0 � 1 that

s0 � 2

s03


1

(s0 + 1)2
,

s0 � 1

s02


1

s0 + 1
,

(s0 � 1)2

s04


1

(s0 + 1)2
. (75)

Plugging (75) in (74) yields that the claim in (72) holds for s+ 1 and hence for any k � k0.

8 Proof of Theorem 2

We begin the proof of Theorem 2 by noting the following property for any smooth loss function.
Lemma 6. Consider the sequences of updates {xk+1, bxk+1,xk,⌧} generated by FedPAQ method in Algorithm 1.
If Assumptions 1 and 2 hold, then

Ef(xk+1)  Ef(xk,⌧ ) +
L

2
E
��bxk+1 � xk,⌧

��2 + L

2
Ekbxk+1 � xk+1k

2 , (76)

for any period k = 0, · · · ,K � 1.

Proof. See Section 8.2.

In the following three lemmas, we bound each of the three terms in the RHS of (76).
Lemma 7. Let Assumptions 2 and 3 hold and consider the sequence of updates in FedPAQ method with stepsize
⌘. Then, for every period k = 0, · · · ,K � 1 we have

Ef(xk,⌧ )  Ef(xk)�
1

2
⌘
⌧�1X

t=0

E
��rf(xk,t)

��2

� ⌘

✓
1

2n
�

1

2n
L⌘ �

1

n
L2⌧(⌧ � 1)⌘2

◆ ⌧�1X

t=0

X

i2[n]

E
����rf

⇣
x(i)
k,t

⌘����
2

+ ⌘2
L

2

�2

n
⌧ + ⌘3

�2

n
(n+ 1)

⌧(⌧ � 1)

2
L2. (77)
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Proof. See Section 8.3.

Lemma 8. If Assumptions 1 and 3 hold, then for sequences {bxk+1,xk,⌧} defined in (18) we have

E
��bxk+1 � xk,⌧

��2  q
�2

n
⌧⌘2 + q

1

n2
⌧⌘2

X

i2[n]

⌧�1X

t=0

����rf
⇣
x(i)
k,t

⌘����
2

. (78)

Proof. See Section 8.4.

Lemma 9. Under Assumptions 1 and 3, for the sequence of averages {bxk+1} defined in (18) we have

Ekbxk+1 � xk+1k
2


1

r(n� 1)

✓
1�

r

n

◆
4(1 + q)

8
<

:n�2⌧⌘2 + ⌧⌘2
X

i2[n]

⌧�1X

t=0

����rf
⇣
x(i)
k,t

⌘����
2
9
=

; . (79)

Proof. See Section 8.5.

After establishing the main building modules in the above lemmas, we now proceed to prove the convergence rate
in Theorem 2. In particular, we combine the results in Lemmas 6–9 to derive the following recursive inequality
on the expected function value on the models updated at the parameter servers, i.e. {xk : k = 1, · · · ,K}:

Ef(xk+1)  Ef(xk)

�
1

2
⌘
⌧�1X

t=0

E
��rf(xk,t)

��2

� ⌘
1

2n

 
1� L

✓
1 +

1

n
q⌧ + 4

n� r

r(n� 1)
(1 + q)⌧

◆
⌘ � 2L2⌧(⌧ � 1)⌘2

!
⌧�1X

t=0

X

i2[n]

E
����rf

⇣
x(i)
k,t

⌘����
2

+ ⌘2
L

2
(1 + q)⌧

 
�2

m
+ 4

�2

r

n� r

n� 1

!
+ ⌘3

�2

m
(m+ 1)

⌧(⌧ � 1)

2
L2. (80)

For sufficiently small ⌘, such that

1� L⌘ � L

✓
1

n
q + 4

n� r

r(n� 1)
(1 + q)

◆
⌧⌘ � 2L2⌧(⌧ � 1)⌘2 � 0, (81)

we have

Ef(xk+1)  Ef(xk)�
1

2
⌘
⌧�1X

t=0

E
��rf(xk,t)

��2

+ ⌘2
L

2
(1 + q)⌧

 
�2

n
+ 4

�2

r

n� r

n� 1

!
+ ⌘3

�2

n
(n+ 1)

⌧(⌧ � 1)

2
L2. (82)

In Section 8.1 we show that if the stepsize is picked as ⌘ = 1/L
p
T and the T ans ⌧ satisfy the condition (16) in

Theorem 2, then (81) also holds. Now summing (82) over k = 0, · · · ,K � 1 and rearranging the terms yield that

1

2
⌘
K�1X

k=0

⌧�1X

t=0

E
��rf(xk,t)

��2

 f(x0)� f⇤ +K⌘2
L

2
(1 + q)⌧

 
�2

n
+ 4

�2

r

n� r

n� 1

!
+K⌘3

�2

n
(n+ 1)

⌧(⌧ � 1)

2
L2, (83)

or

1

K⌧

K�1X

k=0

⌧�1X

t=0

E
��rf(xk,t)

��2


2(f(x0)� f⇤)

⌘K⌧
+ ⌘L(1 + q)

 
�2

n
+ 4

�2

r

n� r

n� 1

!
+ ⌘2

�2

n
(n+ 1)(⌧ � 1)L2. (84)
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Picking the stepsize ⌘ = 1/L
p
T = 1/L

p
K⌧ results in the following convergence rate:

1

T

K�1X

k=0

⌧�1X

t=0

E
��rf(xk,t)

��2


2L(f(x0)� f⇤)

p
T

+ (1 + q)

 
�2

n
+

�2

r

n� r

n� 1

!
1

p
T

+
�2

n
(n+ 1)

⌧ � 1

T
, (85)

which completes the proof of Theorem 2.

8.1 Discussion on stepsize ⌘

Here, we consider the constraint on the stepsize derived in (81) and show that if ⌘ is picked according to Theorem
2, then it also satisfies (81). First, let the stepsize satisfy 1� L⌘ � 0.1. Now, if the following holds

L

✓
1

n
q + 4

n� r

r(n� 1)
(1 + q)

◆
⌧⌘ + 2L2(⌧⌘)2  0.1, (86)

the condition in (81) also holds. It is straightforward to see when (86) holds. To do so, consider the following
quadratic inequality in terms of y = ⌘⌧ :

2L2y2 + LB2y � 0.1  0, (87)

where

B2 :=
1

n
q + 4

n� r

r(n� 1)
(1 + q). (88)

We can solve the quadratic form in (87) for y = ⌘⌧ which yields

⌘⌧ 

p
B2

2 + 0.8�B2

4L
. (89)

This implies that if the parameter ⌧ and the stepsize ⌘ satisfy (89) and ⌘  0.9/L, then the condition (81) is
satisfied. In particular, for our pick of ⌘ = 1/L

p
T , the condition ⌘  0.9/L holds if T � 2; and the constraint in

(89) is equivalent to having

⌧ 

p
B2

2 + 0.8�B2

8

p

T . (90)

8.2 Proof of Lemma 6

Recall that for any L-smooth function f and variables x,y we have

f(x)  f(y) +
⌦
rf(y),x� y

↵
+

L

2
kx� yk2 . (91)

Therefore, we can write

f(xk+1) = f(bxk+1 + xk+1 � bxk+1)

 f(bxk+1) +
⌦
rf(bxk+1),xk+1 � bxk+1

↵
+

L

2
kxk+1 � bxk+1k

2 . (92)

We take expectation of both sides of (92) and since bxk+1 is unbiased for xk+1, that is ESkxk+1 = bxk+1 (See
(29)), it yields that

Ef(xk+1)  Ef(bxk+1) +
L

2
Ekbxk+1 � xk+1k

2 . (93)

Moreover, bxk+1 is also unbiased for xk,⌧ , i.e. EQbxk+1 = xk,⌧ (See (30)), and since f is L-smooth, we can write

Ef(bxk+1)  Ef(xk,⌧ ) +
L

2
E
��bxk+1 � xk,⌧

��2 , (94)

which together with (93) concludes the lemma.
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8.3 Proof of Lemma 7

According to the update rule in Algorithm 1, for every t = 0, · · · , ⌧ � 1 the average model is

xk,t+1 = xk,t � ⌘
1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘
. (95)

Since f is L-smooth, we can write

f(xk,t+1)  f(xk,t)� ⌘

*
rf(xk,t),

1

n

X

i2[n]

erfi
⇣
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k,t

⌘+
+ ⌘2

L

2

������
1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘
������

2

. (96)

The inner product term above can be written in expectation as follows:

2E
*
rf(xk,t),

1

n

X

i2[n]

erfi
⇣
x(i)
k,t

⌘+
=

1

n

X

i2[n]

2E
⌧
rf(xk,t),rf

⇣
x(i)
k,t

⌘�

= E
��rf(xk,t)

��2 + 1

n

X

i2[n]

E
����rf
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x(i)
k,t

⌘����
2

�
1

n

X

i2[n]

E
����rf(xk,t)�rf

⇣
x(i)
k,t

⌘����
2

, (97)

where we used the identity 2ha,bi =kak2 +kbk2 �ka� bk2 for any two vectors a,b. In the following, we bound
each of the three terms in the RHS of (97). Starting with the third term, we use the smoothness assumption to
write
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Moreover, local models x(i)
k,t and average model xk,t are respectively
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Therefore, the expected deviation of each local model form the average model can be written as
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Summing (101) over all the workers i 2 [n] yields
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Finally, summing (102) over t = 0, · · · , ⌧ � 1 results in the following:
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Next, we bound the third term in (96). Using Assumption 3 we have
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Summing (104) over iterations t = 0, · · · , ⌧ � 1 yields
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Now we can sum (96) for t = 0, · · · , ⌧ � 1 and use the results in (103) and (105) to conclude:
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8.4 Proof of Lemma 8

According to definitions in (18) and using Assumption 1 we have
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Using the model update in (99) and Assumption 3, we can write
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Summing (108) over all workers i 2 [n] and using (107) yields
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as desired in Lemma 8.
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8.5 Proof of Lemma 9

The steps to prove the bound in (61) for strongly convex losses in Lemma 4 can also be applied for non-convex
losses. That is, we can use (61) and together with (108) conclude the following:
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9 Additional Numerical Results

To further illustrate the practical performance of the proposed FedPAQ method, in this section we provide more
numerical results using different and more complicated datasets and model parameters. The network settings,
communication and computation time models remain the same as those in Section 5. The following figures
demonstrate the training time corresponding to the following scenarios:

• Figure 2: Training time of a neural network with four hidden layers and more than 248K parameters over
10K samples of the CIFAR-10 dataset with 10 labels.

• Figure 3: Training time of a neural network with one hidden layer over 10K samples of the CIFAR-100
dataset with 100 labels.

• Figure 4: Training time of a neural network with one hidden layer over 10K samples of the Fashion-MNIST
dataset with 10 labels.

Similar to Section 5.2, in all of the above scenarios, the data samples are uniformly distributed among n = 50
nodes. We also keep the communication-computation ratio and the batchsize to be Ccomm/Ccomp = 1000/1 and
B = 10 respectively, and finely tune the stepsize for every training.

Figure 2: Training Loss vs. Training Time: Neural Network on CIFAR-10 dataset with 248K parameters.

Figure 3: Training Loss vs. Training Time: Neural Network on CIFAR-100 dataset.
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Figure 4: Training Loss vs. Training Time: Neural Network on Fashion-MNIST dataset.
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