Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

Supplementary Materials
Here, we provide the proofs of the main two theorems of this paper in Sections and 8 along with the necessary

lemmas and discussions. Moreover, we provide more numerical results over more complicated datasets and model
parameters in Section9.

7 Proof of Theorem 1

We brst introduce some additional notations which will be used throughput the proofs.

Additional notations. For each periodk =0,1,4aaK ! 1and iteration t =0,1,4aa ! 1 we denote
L "
Xgs1 = Xp + - 0 ij}T! Xk
ilS k "
1! )
$k+1 = Xg t+ ﬁ Q XEC’L’)TI Xk
il [n]
. 1t
Xt = = chl,)t' (18)
il [n]

We begin the proof of Theorem1 by noting a few key observations. Based on the above notations and the
assumptions we made earlier, the optimality gap of the parameter serverOs model at perikdi.e. E"Xj41 ! X’ "2
can be decomposed as stated in the following lemma.

Lemma 1. Consider any period k =0,848K ! 1 and the sequences {Xy+1 ,Br+1 , Xk 1} generated by the FedPAQ
method in Algorithm 1. If Assumption 1 holds, then

%

0, 0, 0,
E"Xp+1 ! x" n2 - E"Xpe1 ! $p41 "2y E%k+1 ! Yk’rég+ E&%k,r! X" (19)

where the expectation is with respect to all sources of randomness.
Proof. See Section7.1. O

In the following three lemmas, we characterize each of the terms in the right-hand side (RHS) of10).

Lemma 2. Consider the sequence of local updates in the FedPAQnethod in Algorithm 1 and let Assumptions 2,
3 and 4 hold. The optimality gap for the average model at the end of period K, i.e. Xy ¢, relates to that of the
initial model of the K-th period X as follows:

0 0 " #
E‘ﬁs’rm! x"%# 1+n"2 (@0 p ) E" X! x'?
#2 #2,
+1(11 1)2L2We 24 !ZF 2
+ 12011 1)L%#%e"}, (20)
for the stepsize ", # min{# 12, Y rx}.
Proof. See Section7.2. O

Lemma 3. For the proposed FedPAQmethod in Algorithm 1 with stepsize " # min{# r?,Y Lt} and under
Assumptions 1, 2, 3 and 4, we have

0, 0, . #2 #2
E‘%m ! 7,“053# 2%!2L2",§E"xk! X "2+2q!2F",%+2q(! ! 1)!2L2Fe"2, (21)
where Br41 and Xi ¢ are defined in (18).

Proof. See Section’.3. O
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Lemma 4. For the proposed FedPAQmethod in Algorithm 1 with stepsize " # min{# r?,Y Lt} and under

Assumptions 1-4, we have
Py .

E'Xpe1 | $por "0 # 8(1+q) !2L2"2E"x; ! x""PH 124224 (11 1)121 24%"] (22)

ntr
r(n! 1)
where t denotes the number of nodes contributing in each period of the FedPAQnethod.
Proof. See Section7.4. O

Now that we have established the main building modules for proving Theorem, let us proceed with the proof
by putting together the results in Lemmas 1&4. That is,

(w 4 ) .+
E'Xpea ! X "2 # E'xp ! X2 1402 (1 u" k)22 %+ r(nl 1)4(1 Q)
) n(n! r) #2 5.
+ 1+29+8(1+ Q)m nl :
L2#2e'(' I 1)2"2
+ ) n+2q+8(1+ q)I:((:I:rL; Lz#ze(l 1 1) 24 (23)
Let us set the following notations:
$. = E"xy ! x"?,
" " ) . *
Co = 1;n"}f @ H"k:)T+2L2!2"E %+ o 1) 41+0q)
Cy = Lng 1+2qg+8(1+ q)?((:!!;; #FZ
C, = F]fL)Z#:
Cs = %3 n+2q+8(1+ q)?((rr]‘| 3 sze (24)

Consider Cy, the coelcient of E"x;! x""?in (23). One can show that if the condition in (11) in Theorem 1 is
satisbed, then we haveCy # 1! %p! " . (See Section7.6). Therefore, for each periodk $ ko we have

) *
1 2
$k+1 # 1| 2“!" i $k+ %GC |2u£+ %CZ' (| | 1)2||2+ u C3(' | 1)| 2u ) (25)
Now, we substitute the stepsize"; = 4+’ '/ kt+1 in (25) which yields
) *
2 1 (' o1)? 1 e 1

s

R ) (T VD AN TSV BTN A ey s (26)

In Lemma 5, we show the convergence analysis of such sequence. In particular, we take=1/! ,a= C; +
Co(!! 1)°/' andb= C3(' ! 1)/! 2 in Lemma 5 and conclude for anyk $ ko that

(ko +1/1)2 1 (12 1 M 1
#— + + + . 27
% (K+1/1)2 S0t O PO T kwn TG (K+1/1)2 27)
Finally, rearranging the terms in (27) yields the desired result in Theorem1, that is
" ! 2 " ! 11 1) 11
Ex, ! x' "2 # (ko! +1) E'x, | x'"2+ Cy . Cz( 1) N 1 28)

(kI +1)2 0 Kl +1 Kl +1 Skl +1)2
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7.1 Proof of Lemma 1

Let F;, ; denote the history of all sources of randomness by theth iteration in period k. The following expectation
arguments are conditional on the historyF; + which we remove in our notations for simplicity. Since the random
subset of nodesS;, is uniformly picked from the set of all the nodes[n], we can write

1t
Estk+1 = Xg + Eskf Q Xsc’).[! Xk
r S
1 ] "
=x.+  Pr[S.=S 1 O
Xk, rSe = S]- Q X3! Xg
S# [n] 1S «
'S':T) * "
11nt 1! ()
= — - |
Xk n r r! 1 ‘ Q Xk«,'l" Xk
T’I " il [n]
1- i
—xk+ﬁ Q ch,)T!Xk
il [n]
= $pe1 - (29)

Moreover, the quantizer Q(3 is unbiased according to Assumptionl, which yields

| "
Xi + = EoQ XS;,)T! Xk

il [n]

Eq 841

1t G
ﬁ sz,r
il [n]

= Yk,‘r- (30)

Finally, since the two randomnesses induced by the quantization and random sampling are independent, together
with (29) and (30) we can conclude that:

0, 0,
" "2 B B ¥
E"Xp+1 ! X = E/9)<k+1 D B + B ! Xpo+ Xpo ! X Z

0 g, 0 0
= E"Xpe1 ! $pr " H E‘%kﬂ ! YM&L Eé&k,r! x"%. (31)

7.2 Proof of Lemma 2

According to update rule in Algorithm 1, local model at nodei for each iterationt = 0,444 ! 1 of period
k=0,a4aK ! 1 can be written as follows:

Xitea = Xip 0 "R X, (32)
where all the nodes start the period with the initial model xSf)O = Xg. In parallel, let us debPne another sequence
of updates as follows:

%prrr = %! "R%F %, (33)

also starting with % o = x;. The auxiliary sequence{ %, ;} represents Gradient Descent updates over the global
loss function f while xg)t captures the sequence of SGD updates on each local node. However, both sequences

are initialized with x; at the beginning of each periodk. To evaluate the deviation &k,r I x” /3, we link the
two sequences. In particular, let us debne the following notations for eack =0,a4aK ! 1andt=0,4ad ! 1

1! # , -
ee= X0, 1%t %, (34)

il [n]

One can easily observe thatte, o = 0 as ij?o = %0 = X and %f ; is unbiased for%f . However, Ee;: &0 for

t$ 1. In other words, % ]%fi(xx)t) is not unbiased for %f (%, ;). We also dePneey, = ey o+ 48# e, rg1

il [n
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and g = %f (%.,0) + aéa# %f (% s1). Now, the average model obtained at the end of periok can be written
as

o 1t
T ﬁi' [n]Xk,r
. O n n 2
1! i oo 1! i
=xp! w1, x() +aak = %f; x{%g, 3
il [n] il [n]
= Xp! "k (Qrt €r). (35)

Therefore, the optimality gap for the averaged model can be written as

E%k’r ! X"?ég = E"Xk ! "kgk ! X" "2 ! 2"kEIXk ! Ilkgk ! X",ek( + "iE"ekuz
#E"X,! "pgr! X2
+N"ZE "X, ! "hor! X "2y %"Eek"2
-|t- "]E:E" ek;“z

" 1
= 1+ nn]% E“Xk' "kgkl X n2 + ﬁ"Eek"z + "iE“ekuz, (36)

where we used the inequality! 2'a,b( # & a"%+ &%1"p"? for any two vectors a,b and scalar& > 0. In the
"u2

following, we bound each of the three terms in the RHS of §6). First, consider the term"x; ! ".g,! x "° and
recall the auxiliary sequence{%,.} debned in 37). For every t and k we have
0, 0, 0, 0,
%/%,m ! X"(%:%/%,t! " 9%F (%) ! x %
0, "0 4 . 5 0, 0,
B By 2 Yt X e 000+ 2% (04 ) B
" B B
# 010 2u+ L2 Yo 0 x
0 0,
# (1! U"k)%/%,t! x"‘ﬂg. (37)

In the above derivations, we used the facts thaf is p-strongly convex and its gradient isL -Lipschitz (Assumptions
2 and 4). The stepsize is also picked such that';, # # 2. Now, conditioned on the history F ¢ and using (37)

we have

lek l llkgk ! X" w2 — %/%7-( ' X"%
0, 0,
# (1! li"k)ﬂ%/%,o! Xuoﬂg
=L )T X2 (38)

term’ Ee,f"2 in §,36). By%ebnition, we h?gloe Ee%: Ee,, + ad#& Ee,(s1 and hence

Secondly, consi%er theg/
"Eep"l# (1! 1) /I]Eek71/3+ aaa(!! 1) /;Eek,ﬂ;l . The brst term “Ee;, 1 70 can be bounded using Assumptions
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2 and 3 as follows:

"
E%f, x\h 1% f %,
il [n]

I # -
E%f x{) 1% f %

ESpof x() 196 1 og

SFERSS SRS

so°\°o\o°\o°\°££.>o°\°

il [n]

LZ! E%((i) ! %1%

Sl Sk

B
E

-1
n

EU}/é/ofi(xk) 196 f (xk)({é

In general, for eacht =1 d4aa ! 1 we can write

0 0 ! #
%)Eemég = &1 E%f ; xgj)t

il [n]

SIS

ST

il [n]
g

il [n]

S|k Sk

#

il [n]

19 f

#
E%f x{", 1% f

ESpof x( 1961 o,

! » %
L2 Ec/éﬁjft! O/%,t%.

0,
L
%o! "p%f %o %

%c t

,()/%,t

o\o°\°§'o\°.>o°\°°\°°\o°\°

(39)

(40)
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Let us denoteay, ; =

0,

n

0, 0,
1! B, it
a,w: ﬁ E({g;’)t' 0/%,75(%;
il [n] 0
1 ? (i) St T #
= = E({é Xip! "k%f; Xpp ladaal "%t Xx)e
" _ -#[0(
I %! "% %o 'adal ", %f %
®.0 k70 R0 :aaa:l 70 %% 1 %
% o, " %
=L E%/of XU 1% f %o +add % XU, 1% %ugq B
n k4 o i k.0 s 2 k,it$1 > £
it [n] .
1!?.._#,_ e
# "2+ 2 E&é/ofi X 1% f 0% + AAR %l X5, 1% T Yus
il [n] 0
1!f"' S e
#UR e S0 EGRE XD 19 T X % XD 1% f %y
raaa o, xUgy 191 xPg, +%f xPg, 1% %usr
0,
242, 1 2! ? ' (4) ’ # !
#2424 202 E(é/of X% 1% f o +aaate x\Vg, 1% f Y%ust
il [n]
0 0,
L f f Y
# ||2#2+(t| 1)L2n2n E ()| ()/%lf+aaa| 1)L2u2n
il [n] il [n]

1

SR

%o é’ao"\

= TP

= U2+ (1 DL @+ Adf A

#1224 122 g 1+ AAfapsy

Therefore, for the sequencd ay, 1, a4 a; 51} We have shown that

ap # 1" IL22 a,  + A4d s

2n2
whereay, 1 # #°"

! #t$1
ape #1" 2 1+ IL%2

See Section’.5 for the detailed proof. Therefore, we have

"Eey"Z# (1! 1)%ek71%+ aaa(! ! 1)%5%13;1%

# (11 1)L%(ay + 444 as 1) 4
#1001 1)2L%#22 14122 !
Now, we use the inequalityl + x # e” and conclude that
"Eep"2# 1 (11 1)2L242" 267 LNk
Therefore, if 1 2L2"2 # 1, we have

"Eep"?# 1 (11 1)2L%#%e"2.

. We can show by induction, that such sequence satisbes the following inequality:

/ &
i [n] E/&Sj)t ! O/%,tCé. In the following, we will derive a recursive bound ona;. That is,

(41)

(42)

(43)

(44)

(45)

(46)



Reisizadeh, Mokhtari, Hassani, Jadbabaie, Pedarsani

0, 0,
Finally, vy bour?the third termin ( 36), thatis E" ek"z. Using the dePnition, we know thatE" ek"z # ! E‘%k,0°%+
aaa'E @k,wl/g. Firstly, note that

X}0

% | " (/
E‘%k,o‘% = Efi %, (")#!% f ’%C,O'O;

il [n]

il [n]

% %

e ot ol

- E({é% %, (x)) 1% f (xk)é
F-

# 47
Foreacht =1,a4a ! 1we have
& &
0% O f I "# -
E‘%M‘Q: E‘fﬁ %, x, 1% f %, P
) ) R ) )(@)
il [n]
0 0
%’1! T IO T ?
= E %f, X\’ 1% f xi += % x” '%f %,
Jg‘IL il [n] o o n il [n] o £
#2 1! B, i
#o L2ﬁ B9, ! %ﬂtlé
il [n]
#2
= —+ L%a,.
L2ay, (48)
n
Summing overt =0,1,444a ! 1results in the following
0, 0, 0, 0,
Eey"? # | E&ém‘% + 444! E%m 1‘%
#2 s
# !2F+ IL%(a; + 444 agg1)
22 242 2" 2 2#T
# ! F+! (M L)LesmtL 1+ IL ety
#2
# !27+ 12(1 1 1)L2#%e"2, (49)
Now, we can put everything together and conclude Lemma2, as follows
0 0 " #
" " 1
E(g—k;[ ' X (% - ) 1+ nll i# E”Xk' "kgk' X n2 + HllEekllz + "]%E"ekuz
# 1+n"2 (L) W) E"X,! X2
2 2
+1(1 ! 1)2|_2#Fe",2€+ !2#—"5
+ 12001 1)L2#%e"). (50)

7.3 Proof of Lemma 3

According to the notations debned on (8), we can write
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% (%)

0,
E&&k+1 ! Xp,t ka

Sl
SSSSSKR

e
! " #
= E%k+i Q x{h 1 X !

il [n] il [n]

1
m

0,

? | " # 0" #

%% Q xgj))T! X ! xx)T! Xk
il [n]

'y

o # _
E({g} ng)rl Xi ! xi,”)r! Xk

ol sosts

%

0, 0,
T P
pal ERO 1, (51)
il [n]
where, we used Assumptionl. In particular, the last equality above follows from the fact that the random

quatizer is unbiased and the quantizations are carried out independently in each iteration and each worker.
Moreoveg, the last (}/nequality in (51) simply relates the variance of the quantization to its argument. Next, we

bound E/&Sj}r I X% for each workeri ) [n]. From the update rule in Algorithm 1 we have

. ) " . # " ' *
XECZ,)T = X! " %, XS’)O + 448 %f, chl.,)wl
; (‘)#
=xp! "k Qe+ e (52)
where we denote
; " : _ " - # )
el = f; x{) 1% %0 +adh % xgy 1% T Yhrst (53)

and gy = %f (%.0) + 444 %f (% «s1) as debned before. Using these notations we have

E%Ej}r ! xkg/é = ",%E%k - e(i)?o

k
B %
#2209, %+ 2--}3,;//5;)@ : %)

n2

Let us brst bound the brst term in (54), i.e. "gx"“. That is,

0, 0, 0, 0,
g2 #1986 (%.0) 8 + 46 1 Toat (94,518
" 4
(a) . .
# |L2 "Xk! X ||2+ ééé(l | H'Ik)T$l|'Xk! X w2
#1202, 1 X2, (55)

where we used the smoothness of the loss ?ncg}in (Assumption 2) and the result in (37) to derive inequality

(a). To bound the second term in (G4), i.e. E/fégf) 0, We can employ our result in @9) for the special casen = 1.
It yields that for ", # Y rx,

% o
Efégg‘)?é #1282 4 12011 1)L24%"2, (56)
Plugging (55) and (56) in (54) implies that
E%;?T! xk%# 202127 2E %, | X "+ 21282 2+ 2(1 1 1)1 21 2#%em], (57)
which together with (51) concludes Lemma3:

0, 0, . #2 #2
E‘%m ! mﬁég# 2%!2L2",§E"xk1 X "2+2q!2F",%+2q(! ! 1)!2L2Fe"2. (58)
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7.4 Proof of Lemma 4

/
For each nodei ) [n] denotez(z) = Q(x“) I xp)andz, =1 ] zkT Then,

Es, "Xp+1 ! $k+l "2 = ?L!l . Z(Z) ! Zp 1
k Sk /8'OZ|S ) k,T % 0
1 g " ( ) #5)
= —Es {i)Skt z;1! Zk
r2& ‘ /é! [n] e ' )6
0 0
1 ! _ B &
=5 Prii) sk]é;;! Z;mé
il [n]

+  Pri,j )S4l z;)! Zet, 201 740

1% S
!

il [n]
rt1 s Dy 5 D
+ mnT D AN zk,T,zk{T! Zpt
O My Y
1 ro! i -
= Yon 3&5;,’1! zm(é, (59)
’ il [n]

:?’ (i % Io% L0 ! | i
where we used the fact tha /%,C)T D Zpx% + gy Zix! ZeteZpc ! Zix = 0. Further taking expectation
with respect to the quantizer yields

| EQgE%S,)T! Zm{é # 2! é(“ &‘*ZnEQ%kT%

il [n] il [n]

| 0, 0,
#4 EQ?/&S}%
il [n]
! B #f
=4 EQ?? X! Xk£
19 B
#4(1+0q ﬁgfrl xk({é. (60)

il [n]

0, 0,
In the above derivations, we used the fact that under Assumptionl and for any x we haveE"ﬁ)Q(x)‘ég # (1+ q)"x"z.
Therefore, (60) together with the equality derived in (59) yields that

) ¥ L% %
1 ! ;
E"Xk+]_ ! $k+]_ "2 # m 1! % 4(1 + q) Eé;?—r ! Xké . (61)

il [n]

Finally, we substitute the bound in (57) into ( 61) and conclude Lemma4 as follows:

8 9
n'r "
E'Xpe1 | Sy "2 # m8(1+ o) 2L2"2E X, ! X ME 412224 (11 1)1 2L 24%emt (62)
7.5 Proof of Equation  (43)
Let us Px the periodk and for simplicity of the notations in this proof, let us take a; = a;, and " = ";,. We

showed thata, # 1" 2#2 + |L2"?(a; + A4# a,51) foreveryt =2,444a | 1andalsoa; # "2#2. Fort=1, (43
holds. Assume that @43) holds also for{a;,aaaa;s 1}. Now, for a;, we have
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a #t 1"2H2+ 1IL2"2(ay + A4k ag1)
£$ 2 " #.

BT L2 22 122
1=0
a2z
= 1" 1 2P AL 22 4 [ 22
n #t$l
=" 2#2 1+ !L2n2 , (63)

as desired. Therefore, 43) holds for everyt =1,4aal ! 1

7.6 Discussion on stepsize "

Here we show that for anyk $ ko we haveCqy # 1! %u! " &, wWhere kg satisbes the condition in Theoreml, that
is
& ) * '
L B, 1 4n

First note that this condition on kg implies the following conditions on the stepsize', = 4+ */kt+1 for k $ ko:

’

M

. - W " : .
| - LI
¢ # min L 22+ By) and ¢ # min 2 (65)
Now consider the term (1! u"x)* in Co. We have
) W
nw T _ l-l! k
(1! pg) = 1! ]
# e$HTr|k
#10Wn+ p?r 22, (66)

where the brst inequality follows from the assumption"; # ¥, and the second inequality uses the fact that
e # 1+ x+ x? for x # 0. Therefore,
n #II #
Co# 1+n"2 1! W",+ 222 +B,12"2
" #
S1U T+ 12" R(By+ P+ " LD Wt o+ pBI g (67)

Note that from the assumption ", # ¥ Lt we haveO# W" , # # L # 1. This implies that 1! p" .+ p212"2 # 1.
Hence,

Co# 1! "+ 12"2(By+ u?)+ n"2, (68)
Now from the condition " ;! # 4 a(B,+ 12) we have
| 212 2 1 I
e (Br+ po) # s (69)
and from ", # 4 4n we have
" 1 .
U AT (70)

sine! $ 1. Plugging (69) and (70) in (68) yields that for any k $ ko we haveCo # 1! Ip!" .
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7.7 Skipped lemmas and proofs

Lemma 5. Let a non-negative sequence $, satisfy the following
*
) 2 a b

$orr # 1l ——— H +

K+ K K+ k)2~ (K+ kp)?' (71)

for every K $ Ko, where a,b, ¢,k are positive reals and Kq is a positive integer. Then for every K $ Ko we have

(Ko + k1)? a b

4 (k + kq)2 S + k + k1+ (k + k1)2°

(72)

Proof. We prove by induction on k $ ko. The claim in (72) is trivial for k = ko. Let (72) hold for s $ ko, that is

(ko + k1)2 a b
# . 7
$. 57 k)2 S, + o + AL (73)
We can then write
) *
2 a b
|
$5+1# 1! S+k1 ?S+S+k1+(s+kl)2 .
) *
2 (ko + k1)2 a b a b
# 1!
stk stk svk T srk? (v k)? ' (5% k)
_S+ kq! s+ki! 1 (S+ kq! 1)2
7(5_'_ k) (ko + k1) o + (5+ k)2 a+t (5+ kp) (74)
Now, take s¢= s+ k;. We have fors&$ 1 that
&| &| &| 2
sl 2 1 , s.l# 1, (s*! 1) 1 _ (75)
s® (s&+1)2 s® s&+1 s% (s4+1)2
Plugging (75) in (74) yields that the claim in ( 72) holds for s+ 1 and hence for anyk $ ko. O

8 Proof of Theorem 2

We begin the proof of Theorem2 by noting the following property for any smooth loss function.

Lemma 6. Consider the sequences of updates {Xg+1 ,8Bk+1 . Xk} generated by FedPAQnethod in Algorithm 1.
If Assumptions 1 and 2 hold, then

Ef (Xp+1) # Ef (Xi 1) + %Eg%kﬂ ! Yk,r% + %E"$k+1 D Xpet "2, (76)
for any period k =0,44aK ! 1.
Proof. See SectiorB.2. O
In the following three lemmas, we bound each of the three terms in the RHS of 75).

Lemma 7. Let Assumptions 2 and 3 hold and consider the sequence of updates in FEdPAQnethod with stepsize
". Then, for every period Kk =0,488K ! 1 we have

T$l 0, 0,
Ef (Xr ) # Ef (Xz)! } 023%)1‘ (Yk-_’t)(%
) t=0 0
$1
" 1 1 " 1 2 n2 f ’ (7) f
R - - ST GLE Vi Eé/f x{) %
t=0 4! [n]
2 11
+ "2%#?! ot (n +1)7( 5 b2 (77)
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Proof. See SectiorB.3. O
Lemma 8. If Assumptions 1 and 3 hold, then for sequences {$+1,Xr 1} defined in (18) we have
0 0 #2 1 1 1% @ #?
£, 7“‘53# q—1"2+q 1" 2 éyf x0, 98. (78)
n n il [n] t=0
Proof. See SectiorB.4. O
Lemma 9. Under Assumptions 1 and 3, for the sequence of averages {$r+1} defined in (18) we have
<
) * = 1 T8 1? " #(/ @
E'$1 | Xprr "2 11 A1+ Q) n#2Im 242 Lé/of X, 9 (79)
r(n! 1) n > 1 [n] =0 °A
Proof. See SectiorB.5. O

After establishing the main building modules in the above lemmas, we now proceed to prove the convergence rate
in Theorem 2. In particular, we combine the results in Lemmas6E® to derive the following recursive inequality
on the expected function value on the models updated at the parameter servers, i.§x; :k=1,4aaK}:
Ef (Xp+1) # Ef (X)
1 "[$ 1 o

L5 % (xkt)‘f8
T . tesr, B u
T$1] % , £

1
=1L 1+7 +4 1+q! "1 202111 1)2 Eger x(?
2n a! r(nl 1)( 9! ( ) o g0l Xt
t=0 4! [n]
( +
#2  #2nlr #2 Q1)
||2 + | T 4 T + u37 + 2
(1 g)! = 4rn! 1 m(m 1) ———=L (80)
For sulciently small ", such that .
1 n!
' "1 L —qg+4 1+ 2L )2 1
Sa+a (1 ) (1S, (81)
we have
1’$l 0, )
Ef (ki) # EF O 2 E904f ()%
= +
L #2  #2nl ¢ ),
n2®- | ” " u3
+ 2(1+ g)! - +4 1 (n+1) 5 (82)

In Section 8.1 we show that if the stepsize is picked as = Y. 7andthe T ans! satisfy the condition (16) in
Theorem 2, then (81) also holds. Now summing 82) over k =0,a4aK ! 1 and rearranging the terms yield that

KS11$1 o
> e%bet (x,, )%
k=0 t=0 N
; L #2  #2nlr |('!1)
! +K'2Z(1+q! —+4— + K" +
#Eo)! T+ K 2S(A+ QL AT+ K (n ) (83)
or
I_($l'_[$l 0,
Ki' %t (x, )%
" k=0 t=0 ( +
2(f (xo) ! 1) #2 #2nl r o, #2 )
i S Sl 7 S I + T 44 - 2T pt (1! _
# K L(1+q . 4 ] . (n+1)( 1)L (84)
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Picking the stepsize" = Y 7= 11 Rt results in the following convergence rate:

E'($11_f$1 0, 0,
: e%bet (x,. )%
k=0 t=0 ( +
2L(f (x0)! ") #2  #2nlr 1 #2 111
— 2 T4+ (1+ —+ ——— * _+ __(n+
# 1+ 9 n rnl 1 T n(n b T’ (85)

which completes the proof of Theorem2.

8.1 Discussion on stepsize

Here, we consider the constraint on the stepsize derived in8(l) and show that if " is picked according to Theorem
2, then it also satisbes 81). First, let the stepsize satisfy 1! L" $ 0.1. Now, if the following holds
*
1 ntr
“ag+4 — + " o+ 201m\2 )
L nq 4r(n! l)(1 q ! 2L4(1")° # 0.1, (86)

the condition in (81) also holds. It is straightforward to see when g6) holds. To do so, consider the following
quadratic inequality in terms of y = "I :

2L2y? + LB,y ! 0.1# O, (87)
where
_1 ntr
We can solve the quadratic form in @7) for y = "I which yields

B___
B3+0.8! B,
4L '
This implies that if the parameter ! and the stepsize" satisfy (89) and " # 0.9, then the condition (81) is
satisped. In particular, for our pick of " = ¥ 7T, the condition " # 091 holds if T $ 2; and the constraint in
(89) is equivalent to having

" (89)

B, .,
B+0.8! By" =

| # 90
5 (90)
8.2 Proof of Lemma 6
Recall that for any L-smooth function f and variablesx,y we have
4 5 L B
f(x)# f(y)+ %f(y),x!y + EHX! y"e. (91)
Therefore, we can write
f(Xhe1) = F(Brer + Xpr ! $pa1)
4 5 L 2
# P (Bpr)+ %F (Bre1 ) Xper ! Spe1 + Euxk+l D $pe1"”. (92)

We take expectation of both sides of 92) and since $,.; is unbiased forx.+1, that is Es, Xx+1 = $r+1 (See
(29), it yields that

L
Ef (Xien) # Ef ($101) + SE"Spa | Xt ™°. (93)
Moreover, $;+1 is also unbiased forXy, ¢, i.e. Eq8k+1 = Xk (See B0)), and sincef is L-smooth, we can write
L 0] 0,
Ef ($p+1) # Ef (Xp o) + EE(%MI ! Yk,TO%- (94)

which together with (93) concludes the lemma.
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8.3 Proof of Lemma 7

According to the update rule in Algorithm 1, for everyt =0,44a! ! 1 the average model is

1! taT
Xt = Xpyp ! "ﬁ 9%of ; Xscl)t . (95)
il [n]
Sincef is L-smooth, we can write
0, 0,
Ny 1 " ()#D '-? : ’ ()#J
(o) # £ () 1" (<), — %f x) *"22?;}% ot xil B (96)

The inner product term above can be written in expectation as follows:

c ] " #D 1! E " #F
2E %f(xkt) =%, xP) S 2B % (Xi), f x ),

i! [n]

il [n]
0 0 ® o #af
£t (m,t)"ﬁh % | Eéyf x ) f

il [n]

! s #if
!%' Eg;/of (X) 1% f x{, ﬁ , (97)

il [n]

where we used the identity2'a,b( = "a"2+"p 21" al b"? for any two vectors a, b. In the following, we bound
each of the three terms in the RHS of 97). Starting with the third term, we use the smoothness assumption to

write

é’-;)f (Xpe) 1% f x“’ %# Lzy&k,t! xﬁc’?fé. (98)

Moreover, local modelsx , and average modek, ; are respectively

) n # n #
xscz)t = xp! " %f(xg) + %f; xg)l + dafh %f; chl,)t$1 , (99)
and
0 2
1! 1! T E 1! ! #
Kee=Xpe! "1 W)+ = by xP) +aae = wf; xUg, 3. (100)

Jl [n]

3! [n] 3! [n]
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Therefore, the expected deviation of each local model form the average model can be written as

E‘{/?h ! ﬁg

' " n #?
1! . 1! 4
# 2" ZEfl %)+ = o, xY) +aaac wi, xVg, 9
it [n] nj! [n] " %
? 0
#
+ 2" 2EYUf (x) + x§j’l + A48 %, x;m f
0 0 042
2 #2%4! 1 LU o) #$

# 2 ?tFJr(/A‘@L %f (X) + = %f x,;; +aas - % X;hg1 ﬁ‘é’

t [n] it [n] p
( % "o " #E’ﬁ
#2022 500 () + o Xy + aaa okl x(gy B

0
2 | 0 0
# 2"2t#F+2"2t1 % ‘ﬁ%f (xk)°73+ %

gt [n] gt [n]

| 4% | % 4%
e <o) Boanel T

( B # o i
+2" 242 + 272 85%‘(xk)%+£m‘ X f+ aaa% xOs1 B (101)

Summing (101) over all the workersi ) [n] yields
. )
E‘f/éh,t ! ijfé
il [n]

| 0 0
# 222 +2"%t1 °75/of(x,€)°§3+

j!dn] Jtl

[ Q
+2"2t#2n+2"%t1 oﬁ)’/of (x,c)‘fg +

i ISty OV ?ﬁ

e <)%+ aae c&?yof ey B
n] J! [n]

!

B o #Y "9

il [n] il [n] il [n]
§ 2
1 0 0 1 " #f ] e - ) #af
=2"2#2(n+1)+4"%t1 ot (xk)‘%+ %f X)) f+ aas f/?%f xPe1 #3 . (102)
gt [n] gt [n] gt [n]
Finally, summing (102 overt =0,a4a ! 1 results in the following:
181 i:
Ef/;kkt ’;ﬁ
t=0 ! [n]
T$1 81 0 ) Q ] ?’ " #f !
#2220+ t+a2 (1 BB Pt x) f+ CET &f/of xﬁjiu f3
t=0 =0 jl [n] 3t [n] 3t [n]
k2l f ) ()#?
#22(n+ 1)1 (0 1)+2"21 (01 1) {-}f Xy 98 (103)
t=0 il [n]
Next, we bound the third term in ( 96). Using Assumption 3 we have
&
o}) " #f " #% "# "#
E %f; x\, %= Efl % x{, + Efl %fi x(, 1% f x{), 4
1' [n] 1! [n] 0 0/ 0
R #% #2
# ER XU B T (104)

il [n]
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Summing (104) over iterations t =0,44aal ! 1 yields

"2L f %f , Xscz)tﬁ#..zléi- ! Eé:/f X(z)f --2L#2 (105)

t=0 )‘h il [n] =0 il [n]
Now we can sum @6) for t =0,44aal ! 1 and use the results in (03 and (105 to conclude:
T$1 o
Ef (Xpc) # Ef (x;) ! 7.. et ()
t=0
0 n
L TS Z #?
JERS Y
2n _
t=0 4! [n]
L L : #§ﬁ
. o E({/(%f (Ree) 1% £ x() %
t=0 il [n]
@ &
L f "#
e wt, <0 B
s R
il [n]
T$1 o
# Ef (x4) ! 7.. et () B
t=0
) * st P #af
11 1 SRR
- = RN Egef “’f
2n" 2n n ( ) o &)Y Xkt 98
t=0 4! [n]
L #2 #2 Q1)
m2= 7 w3 2
+ o (n+1) 5 L% (106)
8.4 Proof of Lemma 8
According to depPnitions in (18) and using Assumption 1 we have
0 0 1! % . %
E‘%M ! ijg# = qE«//é;}T! x,;é. (107)

il [n]
Using the model update in 99) and Assumption 3, we can write

% o Y - g . #%

Eé;’}r! x,fffg: "ZE[‘éé@fi(ka %, x\) +aad %uf; x\g, %
o o F o
= "2EYef 4(x,) 1%  (xx) + add %E; xP, 1wt xP B

? 0
- "2%% (Xpr) + A48 %f xgpm é//i

1s198 " #df
# 221 4 2 é('%f X f (108)
t=0
Summing (108) over all workersi ) [n] and using (107) yields
0 0 #2 1 1 T3 @p o : #?
E‘@M ! m,ﬁg# " 24 q5!" 2 éﬁf x, 9, (109)

il [n] t=0

as desired in Lemmas8.
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8.5 Proof of Lemma 9

The steps to prove the bound in G1) for strongly convex losses in Lemma4 can also be applied for non-convex
losses. That is, we can usefl) and together with (108 conclude the following:

) * 1% %
1 r ) 7
E"$k+1 ' Xk+1 "2# m 1' H 4(1+ q) Jgi’)rl Xk[é
4 )
1 ) = i #%0
#m 1 - 41+ q) n#? 2412 [//f/of Xt 98 p - (110)

il [n] t=0
9 Additional Numerical Results

To further illustrate the practical performance of the proposed FedPAQ method, in this section we provide more
numerical results using di"erent and more complicated datasets and model parameters. The network settings,
communication and computation time models remain the same as those in SectioB. The following Pgures
demonstrate the training time corresponding to the following scenarios:

¥ Figure 2: Training time of a neural network with four hidden layers and more than 248K parameters over
10K samples of the CIFAR-10 dataset with 10 labels.

¥ Figure 3: Training time of a neural network with one hidden layer over 10K samples of the CIFAR-100
dataset with 100 labels.

¥ Figure 4: Training time of a neural network with one hidden layer over 10K samples of the Fashion-MNIST
dataset with 10 labels.

Similar to Section 5.2, in all of the above scenarios, the data samples are uniformly distributed among = 50
nodes. We also keep the communication-computation ratio and the batchsize t0 b€ om/C comp = 1000/ 1 and
B =10 respectively, and bnely tune the stepsize for every training.

) —_—s =1 — QSGD

6 —s=5 6 —FedPAQ
5.5 —s=10 5.5 —FedAvg

—No Quantization (FedAvg)
5 5
k=1 k=1
L5 15
1

4 k=T/T k=T/7 ¢ k=T/T
35 l \ 3.5 \

3 3 3 3 -

10% 10" 108 10° 10° 10" 10% 10° 10" 10% 10* 10* 10° 100

Training Time Training Time Training Time Training Time

Figure 2: Training Loss vs. Training Time: Neural Network on CIFAR-10 dataset with 248K parameters.

60 80
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\ \ 20 / 2 . \ ’ E=T/1 h=1
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0 0 e ~——
10? 10* 100 10! 10? 10° 10* 10* 10° 10°
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Figure 3: Training Loss vs. Training Time: Neural Network on CIFAR-100 dataset.
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10
5.5
ehk=1|=—s=1 9 —r =10 —QSGD
5 —s=5 —FedAvg
—_—s =10 8 —FedPAQ
45
—No Quantization (FedAvg) 7
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5
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Figure 4: Training Loss vs. Training Time: Neural Network on Fashion-MNIST dataset.
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