
9 Appendix

9.1 Code Base

https://github.com/jasonren12/PredictionFocusedTopicModel

9.2 Theorem Proofs

Theorem 1. Suppose that the channel switches ⇠d and the document topic distribution ✓d are conditionally

independent in the posterior for all documents, then � and ⇡ have disjoint supports over the vocabulary.

Proof. For simplicity of notation, we assume a single document and hence drop the subscripts on ⇠d and ✓d.
All of the arguments are the same in the multi-document case. If ⇠ and ✓ are conditionally independent in
the posterior, then we can factor the posterior as follows: p(⇠, ✓|w, y) = p(⇠|w, y)p(✓|w, y). We expand out
the posterior:

p(⇠, ✓|w, y) / p(⇠)p(✓)p(w, y|✓, ⇠)

/ p(⇠)p(✓)p(y|✓)
Y

n

p�(wn|✓)⇠np⇡(wn)
1�⇠n

= f(✓)g(⇠)
Y

n

p�(wn|✓)⇠n

for some functions f and g. Thus we see that we must have that
Q

n p�(wn|✓)⇠n factors into some r(✓)s(⇠).
We expand

Q
n p�(wn|✓)⇠n :

p�(wn|✓)⇠n =

 
X

k

�k,wn✓k

!⇠n

= I(⇠n = 0) + I(⇠n = 1)

 
X

k

�k,wn✓k

!

So that we can express the product as:

Y

n

p�(wn|✓)⇠n =
Y

n

(
I(⇠n = 0) + I(⇠n = 1)

 
X

k

�k,wn✓k

!)

In order to further simplify, let �0 = {n :
P

k �k,wn = 0} and �> = {n :
P

k �k,wn > 0}. In other words �0

is the set of n such that the word wn is not supported by �, and �> is the set of n such that the word wn is
supported by �.

We can rewrite the above as:

Y

n

p�(wn|✓)⇠n =

0

@
Y

n2�0

I(⇠n = 0)

1

A

0

@
Y

n2�>

(
I(⇠n = 0) + I(⇠n = 1)

X

k

�k,wn✓k

)1

A

Thus, we see that we can factor
Q

n p�(wn|✓)⇠n as a function of ✓ and ⇠ into the form r(✓)s(⇠) only if ⇠n = 0
or ⇠n = 1 with probability 1. We can check that this implies �>

k ⇡ = 0 for each k by the result of Theorem
2.

Theorem 2. �
>
⇡ = 0 if and only if there exists a ⇠⇤ s.t. p(⇠⇤|w, y) = 1

Proof. 1. Assume �
>
⇡ = 0. Then, conditional on wn, ⇠n = 1 with probability 1 if ⇡wn = 0 and ⇠n = 0

with probability 1 if ⇡wn > 0. So we have p(⇠⇤|w, y) = 1 for the ⇠⇤ corresponding to w as described
before.

10



2. Assume there exists a ⇠⇤ s.t. p(⇠⇤|w, y) = 1.

Then we have:

p(⇠⇤|w, y) =
p(w, y|⇠⇤)p(⇠⇤)P
⇠ p(w, y|⇠)p(⇠) = 1

p(w, y|⇠⇤)p(⇠⇤) =
X

⇠

p(w, y|⇠)p(⇠)

This implies p(w, y|⇠)p(⇠) = 0 8 ⇠ 6= ⇠⇤, which implies p(w, y|⇠) = 0 8 ⇠ 6= ⇠⇤

Then we have:

p(w, y|⇠) = p(y|w, ⇠)p(w|⇠)

=

✓Z

✓
p(y|✓)p(✓|w, ⇠)d✓

◆✓Z

✓
p(w|✓, ⇠)p(✓)d✓

◆

The first term will be greater than 0 because y|✓ is distributed Normal. We focus on the second term.

Z

✓
p(w|✓, ⇠)p(✓)d✓ =

Z

✓
p(✓)

Y

n

p�(wn|✓)⇠np⇡(wn)
1�⇠nd✓

Let X be the set of ⇠ that di↵er from ⇠⇤ in one and only one position, i.e. ⇠n = ⇠
⇤
n for all n 2

{1, . . . N} \ {i} and ⇠i 6= ⇠
⇤
i . For each ⇠ 2 X,

R
✓ d✓p(✓)

Q
n p�(wn|✓)⇠np⇡(wn)1�⇠n = 0. Since all

functions in the integrand are non-negative and continuous, p�(wn|✓)⇠np⇡(wn)1�⇠n = 0 for all ✓ for the
unique i with ⇠i 6= ⇠

⇤
i . Since this holds for every element of X, we must have that p�(wn|✓) = 0 for all

⇠n = 0 and p⇡(wn) = 0 for all ⇠n = 1, proving � and ⇡ are disjoint, provided the minor assumption
that all words in the vocabulary wn are observed in the data. In practice all words are observed in the
vocabulary because we choose the vocabulary based on the training set.

9.3 ELBO (per doc)

Let ⇤ = {↵,�, ⌘, �,⇡, p}. Omitting variational parameters for simplicity:

log p(w,y|⇤) = log

Z

✓

X

z

X

⇠

p(✓, z, ⇠,w,y|⇤)d✓

= logEq

✓
p(✓, z, ⇠,w,y|⇤)

q(✓, z, ⇠)

◆

� Eq[log p(✓, z, ⇠,w,y)]� Eq[q(✓, z, ⇠)]

Let ELBO = Eq[log p(✓, z, ⇠,w,y|⇤)]� Eq[q(✓, z, ⇠)]

Expanding this:

ELBO = Eq[log p(✓|↵)] + Eq[log p(z|✓)] + Eq[log p(y|✓, ⌘, �)]
+ Eq[log p(⇠|p)] + Eq[log p(w|z,�, ⇠,⇡)]
� Eq[log q(✓|�)]� Eq[log q(z|�)]� Eq[log q(⇠|')]
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The distributions of each of the variables under the generative model are:

✓d ⇠ Dirichlet(↵)

zdn|✓d ⇠ Categorical(✓d)

⇠dn ⇠ Bernoulli(p)

wdn|zdn, ⇠dn = 1 ⇠ categorical(�zdn)

wdn|zdn, ⇠dn = 0 ⇠ Categorical(⇡)

yd|✓d ⇠ GLM(✓; ⌘, �)

Under the variational posterior, we use the following distributions:

✓d ⇠ Dirichlet(�d)

zdn ⇠ Categorical(�dn)

⇠dn ⇠ Bernoulli('wdn)

This leads to the following ELBO terms:

Eq[log p(✓|↵)] = log�

 
X

k

↵k

!
�
X

k

log�(↵k) +
X

k

(↵k � 1)Eq[log ✓k]

Eq[log p(z|✓)] =
X

n

X

k

�nkEq[log ✓k]

Eq[log p(w|z,�, ⇠,⇡)] =
X

n

 
X

v

wnv'v

!
⇤
 
X

k

X

v

�nkwnv log �kv

!
+

 
1�

 
X

v

wnv'v

!! 
X

v

wnv log ⇡v

!

Eq[log p(⇠|p)] =
X

n

 
X

v

wnv'v

!
log p+

 
1�

 
X

v

wnv'v

!!
log(1� p)

Eq[q(✓|�)] = log�

 
X

k

�k

!
�
X

k

log�(�k) +
X

k

(�k � 1)Eq[log ✓k]

Eq[q(z|�)] =
X

n

X

k

�nk log �nk

Eq[q(⇠|')] =
X

n

 
X

v

wnv'v

!
log

 
X

v

wnv'v

!
+

 
1�

 
X

v

wnv'v

!!
log

 
1�

 
X

v

wnv'v

!!

Eq[log p(y|✓, ⌘, �)] =
1

2
log 2⇡� � 1

2�

�
y
2 � 2y⌘>Eq[✓] + ⌘

>
Eq[✓✓

>]⌘
�

Other useful terms:

Eq[log ✓k] =  (�k)� 

0

@
KX

j=1

�j

1

A

Z̄ :=

P
n ⇠nznP
n ⇠n

2 RK

Eq[✓] =
�

�>1

�0 :=
X

k

�k

�̃j :=
�jP
k �k

Eq[✓✓
>]ij =

�̃i(�(i, j)� �̃j)

�0 + 1
+ �̃i�̃j
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9.4 Lower Bounds on the Log Likelihood

Remark that the likelihood for the words of one document can be written as follows:

p(w) =

Z

✓
d✓p(✓|↵)

(
NY

n=1

[p ⇤ p�(wn|✓) + (1� p)p⇡(wn)]

)

We would like to derive a lower bound to the joint log likelihood p(y,w) of one document that resembles
the prediction constrained log likelihood since they exhibit similar empirical behavior. Write p(y,w) as
E⇠[p(y|w, ⇠)p(w|⇠)] and apply Jensen’s inequality:

log p(y,w) � E⇠[log p(y|w, ⇠)] + E⇠[log p(w|⇠)]
Focusing on the second term we have:

log p(w|⇠) = log

Z

✓
d✓p(✓|↵)

NY

n=1

p�(wn|✓)⇠np⇡(wn)
1�⇠n

Applying Jensen’s inequality again to push the log further inside the integrals:

log p(w|⇠) �
Z

✓
d✓p(✓|↵)

(
NX

i=1

⇠n log p�(wn|✓) +
NX

n=1

(1� ⇠n) log p⇡(wn)

)

Note that ✓ and ⇠ are independent, so we have:

log p(y,w) � E[log p(y|w, ⇠)] + E

"
NX

i=1

⇠n log p�(wn|✓) +
NX

n=1

(1� ⇠n) log p⇡(wn)

#

where the expectation is taken over the ⇠ and ✓ priors. This gives the final bound:

log p(y,w) � E[log p�(y|W1(⇠))] + pE[log p�(w|✓)] + (1� p) log p⇡(w)

We have used the substitution: p(y|w, ⇠) = p�(y|W1(⇠)). Conditioning on ⇠, y is independent from the set
of wn with ⇠n = 0, so we denote W1(⇠) as the set of wn with ⇠n = 1. It is also clear that p(y|W1(⇠), ⇠) =
p�(y|W1(⇠)). By linearity of expectation, this bound can easily be extended to all documents.

Note that this bound is undefined on the constrained parameter space: �>
⇡ = 0; if p 6= 0 and p 6= 1. This is

clear because log p⇡(w) or log p�(wn|✓) is undefined with probability 1. We can also see this directly, since
p(y,w|⇠) is non-zero for exactly one value of ⇠ so E[log p(y,w|⇠)] is clearly undefined. We derive a tighter
bound for this particular case as follows. Define ⇠

⇤(⇡,�,w) as the unique ⇠ such that p(w|⇠) is non-zero.
We can write p(y,w) = p(y,W |⇠⇤(⇡,�,w))p(⇠⇤(⇡,�,w)). For simplicity, I use the notation ⇠

⇤ but keep in
mind that it’s value is determined by �, ⇡ and w. Also remark that the posterior of ⇠ is a point mass as ⇠⇤.
If we repeat the analysis above we get the bound:

log p(y,w) � p�(y|W1(⇠
⇤)) + E

"
NX

n=1

⇠
⇤
p�(wn|✓)

#
+

NX

n=1

(1� ⇠
⇤) log p⇡(wn) + p(⇠⇤)

which is to be optimized over � and ⇡. Note that the p(⇠⇤) term is necessary because of its dependence on �

and ⇡. Comparing this objective to our ELBO, we make a number of points. The true posterior is ⇠⇤ which
would ordinarily require a combinatorial optimization to estimate; however we introduce the continuous
variational approximation ⇠ ⇠ Bern('). Note that the true posterior is a special case of our variational
posterior (when ' = 1 or ' = 0). Since the parameterization is di↵erentiable, it allows us to estimate ⇠

⇤

via gradient descent. Moreover, the parameterization encourages � and ⇡ to be disjoint without explicitly
searching over the constrained space. Empirically, the estimated set of ' are correct in simulations, and
correct given the learned � and ⇡ on real data examples.
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9.5 Implementation details

In general, we treat ↵ (the prior for the document topic distribution) as fixed (to a vector of ones). We tune
pc-SLDA using Hughes et al. [2017b]’s code base, which does a small grid search over relevant parameters.
We tune sLDA and pf-sLDA using our own implementation and SGD. � and ⇡ are initialized with small,
random (exponential) noise to break symmetry. We optimize using ADAM with initial step size 0.025.

We model real targets as coming from N(⌘>✓, �) and binary targets as coming from Bern(�(⌘>✓))

9.6 pf-sLDA likelihood and prediction constrained training.

The pf-sLDA marginal likelihood for one document and target can be written as:

p(w, y) = p(y|w)

Z

✓

X

⇠

p(w, ✓, ⇠)

= p(y|w)

Z

✓
p(✓|↵)

Y

n

�
p ⇤ p�(wn|✓, ⇠n = 1,�) + (1� p) ⇤ p⇡(wn|⇠n = 0,⇡)

 

where n indexes over the words in the document. We see there still exist the p(y|w) and p ⇤ p�(w) that are
analagous to the prediction constrained objective, though the precise form is not as clear.

9.7 Data set details

• Pang and Lee’s movie review data set [Pang and Lee, 2005]: There are 5006 documents. Each document
represents a movie review, and the documents are stored as bag of words and split into 3754/626/626
for train/val/test. After removing stop words and words appearing in more than 50% of the reviews or
less than 10 reviews, we get |V | = 4596. The target is an integer rating from 1 (worst) to 10 (best).

• Yelp business reviews [Yelp, 2019]: We use a subset of 10,000 documents from the Yelp 2019 Data set
challenge . Each document represents a business review, and the documents are stored as bag of words
and split into 7500/1250/1250 for train/val/test. After removing stop words and words appearing in
more than 50% of the reviews or less than 10 reviews, we get |V | = 4142. The target is an integer star
rating from 1 to 5.

• Electronic health records (EHR) data set of patients with Autism Spectrum Disorder (ASD), introduced
in Masood and Doshi-Velez [2018]: There are 3804 documents. Each document represents the EHR of
one patient, and the features are possible diagnoses. The documents are split into 3423/381 for train/val,
with |V | = 3600. The target is a binary indicator of presence of epilepsy.

• Synthetic: We simulate a set of 5 data sets. Each data set is generated based on the pf-sLDA generative
process with � and ⇡ random, each with mass on 50 features. This means there are 100 total features,
50 relevant and 50 irrelevant. Other relevant parameters are K = 5, ↵ = 1, and p = 0.25. We use
these data sets to test the e↵ectiveness and reliability of the feature filtering of pf-sLDA under the
well-specified case when we have ground-truth.

9.8 Full Pang and Lee Movie Review Topics

See Table below.
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sLDA pc-sLDA, � = 10 pf-sLDA, p = 0.10
1 motion, way, love, per-

formance, best, picture,
films, character, charac-
ters, life

best, little, time, good, don,
picture, year, rated, films
just

wars, emotionally, allows,
academy, perspective,
tragedy, today, important,
oscar, powerful

⌘1 7.801 8.287 10.253

2 kind, poor, enjoyable, pic-
ture, excellent, money,
look, don films, year

little, just, good, doesn, life,
way, films, character, time,
characters

complex, study, emotions,
rare, perfectly, wonderful,
unique, power, fascinating,
perfect

⌘2 5.994 8.127 8.792

3 running, subject, 20, char-
acter, message, charac-
ters, minutes just, make,
time

country, king, stone, dark,
political, parker, mood,
modern, dance, noir

jokes, idea, wasn, silly, pre-
dictable, acceptable, unfortu-
nately, tries, nice, problem

⌘3 5.735 4.407 6.258

4 acceptable, language,
teenagers, does, make,
good, sex , violence,
rated, just

subscribe, room, jane,
disappointment, michel,
screening, primarily, reply,
frustrating, plenty

tedious, poorly, horror, dull,
acceptable, parody, worse,
ridiculous, supposed, bad

⌘4 5.064 3.440 2.657

5 plot, time, bad, funny,
good, humor, little, isn,
action

script, year, little, good,
don, look, rated, picture,
just, films

suppose, lame, annoying, at-
tempts, failed, attempt, bor-
ing, awful, dumb, flat, comedy

⌘5 3.516 2.802 0.135

Table 4: We list the top 10 most likely words for each topic for the models specified. The topics are organized
from highest to lowest with respect to it’s corresponding coe�cient for the supervised task. In the context
of movie reviews, positive-sentiment words are listed in green, negative-sentiment words are listed in red,
and sometimes positive, sometimes negative or neutral, but sentiment-related words are listed in yellow.
Non-sentiment related words are listed in black.

9.9 Coherence details

We calculate coherence for each topic by taking the top N most likely words for the topic, calculating the
pointwise mutual information for each possible pair, and averaging. These terms are defined below.

coherence =
1

N(N � 1)

X

wi,wj2TopN

pmi(wi, wj)

pmi(wi, wj) = log
p(wi)p(wj)

p(wi, wj)

p(wi) =

P
d I(wi 2 doc d)

M

p(wi, wj) =

P
d I(wi and wj 2 doc d)

M

where M is the total number of documents and N is the number of top words in a topic. The final coherence
we report for a model is the average of all the topic coherences.

The numbers in the paper are reported with N = 50, but we found that the general trends (i.e. pf-sLDA
topics most coherent) were consistent across several values of N . For example, for the Pang and Lee Movie
Review Dataset, we have the following coherences:
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N 10 20 30 40 50
pc-sLDA 0.42 0.44 0.44 0.46 0.49
pf-sLDA 1.52 1.69 1.76 1.92 1.99

9.10 Coordinate Ascent Updates

9.10.1 E Step

Denote L' the terms of the ELBO that depend on ' and similarly for other parameters.

' update

L' =
X

n

 
X

v

wnv'v

! 
X

k

X

v

�nkwnv log �kv

!
+

 
1�

 
X

v

wnv'v

!! 
X

v

wnv log ⇡v

!

+
X

n

 
X

v

wnv'v

!
log p+

 
1�

 
X

v

wnv'v

!!
log(1� p)

�
X

n

 
X

v

wnv'v

!
log

 
X

v

wnv'v

!
+

 
1�

 
X

v

wnv'v

!!
log

 
1�

 
X

v

wnv'v

!!

@

@'j
L' =

X

n

wnj

 
X

k

X

v

�nkwnv log �kv

!
� wnj

 
X

v

wnv log ⇡v

!

+
X

n

wnj(log p� log(1� p))

�
X

n

wnj

 
log

 
X

v

wnv'v

!
� log

 
1�

 
X

v

wnv'v

!!!

=
X

n

wnj

 
X

k

�nk log �kj � log ⇡j

!

+
X

n

wnj(log p� log(1� p))

�
X

n

wnj (log'j � log (1� 'j))

Let

⌦j =
X

n

wnj

 
X

k

�nk log �kj � log ⇡j + log p� log(1� p)

!

.

Setting the gradient to 0 and solving, we get the following update:

'v  
exp(⌦j/

P
n wnj)

1 + exp(⌦j/
P

n wnj)

This update makes intuitive sense. It looks like the ratio between the probability of � and ⇡ explaining the
word, weighted by p, normalized, sigmoided to make it a valid probability.
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� update

Assuming y depends on ✓ for now.

L� =
X

n

X

k

�nk

0

@ (�k)� 

0

@
KX

j=1

�j

1

A

1

A

+
X

n

 
X

v

wnv'v

! 
X

k

X

v

�nkwnv log �kv

!

�
X

n

X

k

�nk log �nk

Let wn = v and using Lagrange Multipliers with the constraint
P

k �nk = 1:

@

@�nk
L� =  (�k)� 

0

@
KX

j=1

�j

1

A+ 'v log �kv � 1� log �nk + �

This gives the update:

�nk / �
'v

kv exp

0

@ (�k)� 

0

@
KX

j=1

�j

1

A

1

A

This is the same update as LDA, with � weighted by '.

� Update

L� =
X

k

(↵k � 1)

0

@ (�k)� 

0

@
KX

j=1

�j

1

A

1

A

+
X

n

X

k

�nk

0

@ (�k)� 

0

@
KX

j=1

�j

1

A

1

A

� log�

 
X

k

�k

!
�
X

k

log�(�k) +
X

k

(�k � 1)

0

@ (�k)� 

0

@
KX

j=1

�j

1

A

1

A

� 1

2�2

�
y
2 � 2y⌘>Eq[✓] + ⌘

>
Eq[✓✓

>]⌘
�

The gradient of � consists of two components; the first (for the first three lines) is the same as in LDA:

@

@�i
L1� =  0(�i)

 
↵i +

X

n

�ni � �i

!
� 0

 
X

k

�k

!
X

k

 
↵k +

X

n

�nk � �k

!

The second term is as follows:
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@L2�
@�i

=� 1

2�2
[�2yd(

⌘k

�0
�
PK

j=1 ⌘i�dj

�2
0

) + 2
X

i 6=k

⌘i⌘k
��di�2

0(�0 + 1) + �dk�di(2�0(�0 + 1) + �
2
0)

�4
0(�0 + 1)2

+ ⌘
2
k
(1� 2�dk)�2

0(�0 + 1) + �dk(�dk � 1)(2�0(�0 + 1) + �
2
0)

�4
0(�0 + 1)2

+ 2
X

i 6=k

⌘k⌘i
�i�

2
0 � 2�0�i�k

�4
0

+ ⌘
2
k
2�k�2

0 � 2�0�2
k

�4
0

]

9.10.2 M Step

⇡ Update

L⇡ =
X

n

 
1�

 
X

v

wnv'v

!! 
X

v

wnv log ⇡v

!

Taking the derivative and using lagrange multipliers with the constraint
P

v ⇡v = 1, we get:

@

@⇡j
L⇡ =

X

n

 
1�

X

v

wnv'v

!
wnj

⇡j
+ �

=
X

n

(1� 'j)
wnj

⇡j
+ �

This gives the update:

⇡j / (1� 'j)
X

n

wnj

This is an intuitive update - it is the proportion the word appears, weighted by '.

� update

L� =
X

n

 
X

v

wnv'v

! 
X

k

X

v

�nkwnv log �kv

!

Adding a Lagrange multiplier for constraint
P

v �kv = 1 8k and then taking gradient:

@

@�kj
L� =

X

n

'j�nkwnj

�kv
+ �

This gives the update:

�kj /
X

n

'j�nkwnj

This is the same update as sLDA, but weighted by '.

↵ update

This should be exactly the same as in LDA and sLDA via Newton-Raphson.

⌘ update

Same form as sLDA updates, but replace E[Z̄] and E[Z̄Z̄
>] with E[✓] and E[✓✓>].
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� update

Same form as sLDA updates, but replace E[Z̄] and E[Z̄Z̄
>] with E[✓] and E[✓✓>].
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