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Abstract

A great variety of off-policy learning algo-
rithms exist in the literature, and new break-
throughs in this area continue to be made, im-
proving theoretical understanding and yield-
ing state-of-the-art reinforcement learning al-
gorithms. In this paper, we take a unifying
view of this space of algorithms, and consider
their trade-offs of three fundamental quan-
tities: update variance, fixed-point bias, and
contraction rate. This leads to new perspec-
tives on existing methods, and also naturally
yields novel algorithms for off-policy evalua-
tion and control. We develop one such algo-
rithm, C-trace, demonstrating that it is able
to more efficiently make these trade-offs than
existing methods in use, and that it can be
scaled to yield state-of-the-art performance
in large-scale environments.

1 Introduction

Off-policy learning is crucial to modern reinforcement
learning, allowing agents to learn from memorised data,
demonstrations, and exploratory behaviour [Szepesvári,
2010, Sutton and Barto, 2018]. As such, it is a long-
studied problem, with a variety of well-understood
associated algorithms; see [Precup et al., 2000, Kakade
and Langford, 2002, Dudík et al., 2014, Thomas and
Brunskill, 2016, Munos et al., 2016, Mahmood et al.,
2017, Farajtabar et al., 2018] for a representative selec-
tion of publications.

However, this paper is motivated by the observation
that in spite of this theoretical progress, several state-of-
the-art value-based reinforcement learning agents (no-
tably Rainbow [Hessel et al., 2018] and R2D2 [Kaptur-
owski et al., 2019]) eschew these off-policy algorithms,
attaining better performance by using uncorrected re-
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turns, which do not account for the fact that data is
generated off-policy. Further research has corroborated
this observation [Hernandez-Garcia and Sutton, 2019].
This raises two central research questions: (i) How
can we understand the strong performance of uncor-
rected returns? (ii) Can we distil these advantages,
and combine them with existing off-policy algorithms
to improve their performance?

One of the principal contributions of this paper is to
show that the performance of all off-policy evaluation
algorithms can be decomposed into three fundamen-
tal quantities: contraction rate, fixed-point bias, and
variance; see Figure 1 for a preliminary illustration.
Intuitively, fixed-point bias describes the error of an
algorithm in the limit of infinite data, contraction rate
describes the speed at which an algorithm approaches
its infinite-data limit, and variance describes to what
extent randomly observed data can perturb the algo-
rithm.

This decomposition yields an interpretation of the em-
pirical success of uncorrected returns, and an answer
to question (i) above; namely, that they are efficiently
making a trade-off between fixed-point bias and the
other fundamental quantities. Further, this suggests
an answer to question (ii) — that we may be able to
improve existing off-policy algorithms by incorporating
a means of making such a trade-off. This leads us to
the development of C-trace, a new off-policy algorithm
that achieves strong empirical performance in several
large-scale environments.

We develop the trade-off framework mentioned above
in Section 2, proving the existence of the three funda-
mental quantities described above, and showing that all
off-policy algorithms necessarily make an implicit trade-
off between these quantities. We then use this frame-
work to develop new off-policy learning algorithms,
α-Retrace and C-trace, in Section 3, and study its
contraction and convergence properties. Finally, we
demonstrate their empirical effectiveness in tabular
domains and when applied to two deep reinforcement
learning agents, DQN [Mnih et al., 2015] and R2D2
[Kapturowski et al., 2019], in Section 4.
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Figure 1: Trade-offs made by n-step uncorrected returns (dark blue [n = 1] through to light blue [n = 20]), n-step
importance corrected returns (dark green [n = 1] through to light green [n = 3]), Retrace (red open circle). Also
pictured is the new method α-Retrace (dark red [α = 1] through to light red [α = 0]), introduced in Section 3.
All quantities are calculated for a fixed evaluation problem in a small, randomly generated MDP; see Appendix
Section C.1 for further environment details. In each plot, the magnitude of the points illustrates the relative scale
of the third trade-off variable.

1.1 Notation and preliminary definitions

Throughout, we consider a Markov decision process
(MDP) with finite state space X , finite action space
A, discount factor γ ∈ [0, 1), transition kernel P :
X × A → P(X ), reward distributions R : X × A →
P(R), and some initial state distribution ν0 ∈P(X ).
Given a Markov policy π : X → P(A), we write
(Xt, At, Rt)t≥0 for the process describing the sequence
of states visited, actions taken, and rewards received
by an agent acting in the MDP according to π, so
that Rt|Xt, At ∼ R(Xt, At) for all t ≥ 0. Additionally,
we write r(x, a) for the expected immediate reward
received after taking action a in state x. Given a
policy π, the task of evaluation is to learn the function
Qπ(x, a) = Eπ [

∑∞
t=0 γ

tRt|X0 = x,A0 = a], where Eπ
denotes expectation with respect to the distribution
over trajectories induced by π. The task of control is to
identify the Markov policy π∗ maximising the quantity
E [Qπ(X0, A0)], where A0 ∼ π(·|X0), and X0 ∼ ν0.
We also define the one-step evaluation operator Tµ :
RX×A → RX×A associated with a Markov policy µ :
X →P(A) by

(TµQ)(x, a) = (1)

r(x, a) + γ
∑

x′∈X ,a′∈A
P (x′|x, a)µ(a′|x′)Q(x′, a′) ,

for all Q ∈ RX×A, and (x, a) ∈ X ×A.

We now briefly give formal definitions of the key con-
cepts we seek to analyse in this paper.

Definition 1.1. An evaluation update rule for
evaluating a policy π under a behaviour policy µ is a
function T̂ : RX×A × (X × A × R)∗ → R that takes

as input a value function estimate Q and a trajectory
(xt, at, rt)t≥0 given by following µ, and outputs an up-
date for Q(x0, a0). There is an associated evaluation
operator T : RX×A → RX×A, given by

(TQ)(x, a)=Eµ
[
T̂ (Q, (Xt, At, Rt)

∞
t=0)

∣∣∣X0 = x,A0 = a
]
,

for all Q ∈ RX×a and (x, a) ∈ X ×A.
Definition 1.2. The contraction rate of an operator
T : RX×A → RX×A is given by

Γ = sup
Q,Q′∈RX×A

Q6=Q′

‖TQ− TQ′‖∞/‖Q−Q′‖∞ ,

An operator is said to be contractive if Γ < 1. We
can also consider state-action contraction rates via
the quantities supQ6=Q′ |(TQ)(x, a)−(TQ′)(x, a)|/‖Q−
Q′‖∞.

Definition 1.3. For a contractive operator T target-
ing a policy π, the fixed-point bias of T is given by
‖Qπ − Q̂π‖2, where Q̂π is the unique fixed point of T
(guaranteed to exist by the contractivity of T ).

Definition 1.4. The variance of an update
rule T̂ stochastically approximating an opera-
tor T at approximate value function Q and an
initial state-action distribution ν ∈ P(X × A) is
E(X0,A0)∼ν

[
Eµ
[
‖T̂ (Q, (Xt, At, Rt)

∞
t=0)−TQ‖22

∣∣∣X0, A0

]]
.

2 Contraction, bias, and variance

We begin with two motivating examples from recent
research in off-policy evaluation methods, illustrating
examples of the types of trade-offs we seek to describe
in this paper.
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n-step uncorrected returns. Recently proposed
agents such as Rainbow [Hessel et al., 2018] and R2D2
[Kapturowski et al., 2019] have made use of the uncor-
rected n-step return in constructing off-policy learning
algorithms. Consistent with these results, Hernandez-
Garcia and Sutton [2019] observed that these uncor-
rected updates frequently outperformed off-policy cor-
rections. Given an estimate Q̂ of the action-value func-
tion Qπ, the n-step uncorrected target for Q̂(x0, a0),
given a trajectory (x0, a0, r0, x1, a1, r1, . . . , xn) of expe-
rience generated according to behaviour policy µ, is
given by

n−1∑
s=0

γsrs + γnEA∼π(·|xn)

[
Q̂(xn, A)

]
. (2)

The adjective uncorrected contrasts this update target
against the n-step importance-weighted return target,
which takes the following form:

n−1∑
s=0

ρ1:sγ
srs + ρ1:n−1γ

nEA∼π(·|xn)

[
Q̂(xn, A)

]
, (3)

where we write ρt = π(at|xt)/µ(at|xt), and ρs:t =∏t
u=s ρu for each 1 ≤ s ≤ t. Empirically, the former

has been observed to work very well in these recent
works, whilst the latter is often too unstable to be used;
this fact is often attributed to the high variance of the
importance-weighted update, with the uncorrected up-
date having relatively low variance by comparison. We
also observe that the uncorrected update is a stochas-
tic approximation to the operator (Tµ)n−1Tπ, whilst
the importance-weighted update is a stochastic approx-
imation to (Tπ)n. From this, it follows that under
usual stochastic approximation conditions, a sequence
of importance-weighted updates will converge to the
true action-function Qπ associated with π, whilst the
uncorrected updates will converge to the value function
of the time-inhomogeneous policy that follows π for
a single step, followed by n − 1 steps of µ, and then
repeats; see Proposition B.1 in Appendix Section B for
further explanation.

The above discussion shows that we may view the use
of uncorrected returns as trading off update variance
for accuracy of the operator fixed point ; an example
of the classical bias-variance trade-off in statistics and
machine learning, albeit in the context of fixed-point
iteration.

Retrace. Munos et al. [2016] proposed an off-policy
evaluation update target, Retrace, given in its forward-
view version by

Q̂(x0, a0)+
∑
s≥0

ρ̄1:sγ
s∆s , (4)

where we write ρ̄t = min(1, ρt), and ρ̄s:t =
∏t
u=s ρ̄u

for each 1 ≤ s ≤ t, and define the temporal difference
(TD) error ∆s by

∆s
def
= rs + γEA∼π(·|xs+1)

[
Q̂(xs+1, A)

]
− Q̂(xs, as) .

By clipping the importance weights associated with
each TD error, the variance associated with the up-
date rule is reduced relative to importance-weighted
returns, whilst no bias is introduced; the fixed point
of the associated Retrace operator remains the true
action-value function Qπ. However, the clipping of
the importance weights effectively cuts the traces in
the update, resulting in the update placing less weight
on later TD errors, and thus worsening the contrac-
tion rate of the corresponding operator. Thus, Retrace
can be interpreted as trading off a reduction in up-
date variance for a larger contraction rate, relative to
importance-weighted n-step returns.

We discuss more examples of off-policy learning algo-
rithms in Section 5. We also note that λ-variants of the
algorithms described above also exist; for clarity and
conciseness, we limit our exposition to the case λ = 1
in the main paper, noting that the results straightfor-
wardly extend to λ ∈ (0, 1).

We now briefly return to Figure 1, which quantitatively
illustrates the trade-offs discussed above. We highlight
several interesting observations. Whilst all importance-
weighted updates have no fixed-point bias, their vari-
ance grows exceptionally quickly with n. Retrace man-
ages to achieve a similar contraction rate to the 3-step
importance-weighted update, but without incurring
high variance. Our new algorithm, α-Retrace, appears
to be Pareto efficient relative to the n-step uncorrected
methods in the left-most plot; for any contraction rate
that an n-step uncorrected method achieves, there is a
value of α such that α-Retrace achieves this contrac-
tion rate whilst incurring less fixed-point bias; this is
corroborated by further empirical results in Appendix
Section B.

2.1 Downstream tasks and bounds

Whilst the trade-offs at the level of individual updates
described above are straightforward to describe, in
reinforcement learning we are ultimately interested
in one of two problems, either evaluation or control,
defined formally below.

The evaluation problem. Given a target policy
π, a budget of experience generated from a behaviour
policy µ, and a computational budget, compute an ac-
curate approximation Q̂ to Qπ, in the sense of incurring
low error ‖Q̂−Qπ‖, for some norm ‖ · ‖.
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The control problem. Given a budget of experience
and computation, find a policy π such that expected
return under π is maximised.

It is intuitively clear that for each of these problems,
an evaluation scheme with low contraction rate, low
update variance, and low fixed-point bias is advanta-
geous, but no update is known to possess all three of
these attributes simultaneously. What is less clear is
how these three properties should be traded off against
one another in designing an efficient off-policy learning
algorithm. For example, how much fixed-point accu-
racy should one be willing trade off in exchange for a
halved update variance? Such questions, in general,
have complicated dependence on the precise update
rule, policies in question, and environment, and so it
appears unlikely that too much progress can be made in
great generality. However, we can provide some some
insights from understanding this fundamental trade-off.

Proposition 2.1. Consider the task of evaluation of a
policy π under behaviour µ, and consider an update rule
T̂ which stochastically approximates the application
of an operator T̃ , with contraction rate Γ and fixed
point Q̃, to an initial estimate Q. Then we have the
following decomposition:

E
[
‖T̂Q−Qπ‖∞

]
≤

E
[
‖T̂Q− T̃Q‖22

]1/2
︸ ︷︷ ︸

(Root) variance

+ Γ‖Q− Q̃‖∞︸ ︷︷ ︸
Contraction

+ ‖Q̃−Qπ‖2︸ ︷︷ ︸
Fixed-point bias

.

Note that T̂ is arbitrary, and may, for example, repre-
sent the n-fold application of a simpler operator. This
result gives some sense of how these trade-offs feed
into evaluation quality; related decompositions are also
possible (see Appendix Section B). We next show that
there really is a trade-off to be made, in the sense that
it is not possible for an update based on limited data
to simultaneously have low variance, contraction rate,
and fixed-point bias across a range of MDPs.

Theorem 2.2. Consider an update rule T̂ with cor-
responding operator T , and consider the collection
M = M(X ,A, P, γ,Rmax) of MDPs with common
state space, action space, transition kernel, and dis-
count factor (but varying rewards, with maximum im-
mediate reward bounded in absolute value by Rmax).
Fix a target policy π, and a random variable Z, the
set of transitions used by the operator T̂ ; these could
be transitions encountered in a trajectory following
the behaviour µ, or i.i.d. samples from the discounted
state-action visitation distribution under µ. We denote
the mismatch between π and Z at level δ ∈ (0, 1) by

D(Z, π, δ)
def
= max{d(x,a),π(Ω) | Ω ⊆ X ×A s.t.

P(Z ∩ Ω 6= ∅) ≤ δ , (x, a)∈X×A} ,

where d(x,a),π is the discounted state-action visitation
distribution for trajectories initialised with (x, a), fol-
lowing π thereafter. Denoting the variance, contraction
rate, and fixed-point bias of T̂ for a particular MDP
M ∈ M by V(M), Γ(M) and B(M) respectively, we
have

sup
M∈M

[√
V(M) +

2Rmax

1− γ
Γ(M) +B(M)

]
≥

sup
δ∈(0,1)

(1− δ)D(Z, π, δ)Rmax/(1− γ) .

In addition to the above results, which we believe to be
novel, there is extensive literature exploring particular
aspects of these trade-offs, which we discuss further
in Section 5. Having made this space of trade-offs be-
tween contraction, bias, and variance explicit, a natural
questions is how other update rules might be modified
to exploit different parts of the space. In particular,
incurring some amount of fixed-point bias for reduced
variance made by n-step uncorrected returns in Rain-
bow and R2D2 is particularly effective in practice —
is there a way to introduce a similar trade-off in an
algorithm with adaptive trace lengths, such as Retrace?
We explore this question in the next section.

3 New off-policy updates: α-Retrace
and C-trace

The Retrace update in Equation (4) has been observed,
in certain scenarios, to cut traces prematurely [Mah-
mood et al., 2017]; that is, using n-step uncorrected
returns for suitable n leads to a superior contraction
rate relative to Retrace, outweighing the correspond-
ing incurred bias. A natural question is how Retrace
can be modified to overcome this phenomenon. In
the language of Section 2, is there a way that Retrace
can be adapted so as to trade off contraction rate for
fixed-point bias? The reduced contraction rate comes
from cases where the truncated importance weights
min(1, π(at|xt)/µ(at|xt)) appearing in (4) are small, so
a natural way to improve the contraction rate is to
move the target policy closer towards the behaviour.

Algorithm 1 α-Retrace for policy iteration
Initialise target policy π̃ and behaviour µ.
for each policy improvement round: do
Select α ∈ [0, 1], and set new target policy π =
απ̃ + (1− α)µ.
Learn Q̂π : X × A → R via Retrace under be-
haviour policy µ.
Set π̃ = Greedy(Q̂π).
Set new behaviour policy µ.

end for
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To this end, we propose α-Retrace, a family of algo-
rithms that applies Retrace to a target policy given by
a mixture of the original target and the behaviour, thus
achieving the aforementioned trade-off. In Algorithm 1,
we describe how α-Retrace can be used within a (mod-
ified) policy iteration scheme for control. Note that
1-Retrace is simply the standard Retrace algorithm.
We refer back to Figure 1, the left-most plot of which
shows that this mixture coefficient precisely yields a
trade-off between fixed-point bias and contraction rate
that we sought at the end of Section 2.

The means by which α should be set is left open at
this stage; adjusting it allows a trade-off of contraction
rate and fixed-point bias. In Section 3.2, we describe
a stochastic approximation procedure for updating α
online to obtain a desired contraction rate.

Specificity to Retrace. Whilst the mixture target
of α-Retrace is a natural choice, we highlight that this
choice is in fact specific to the structure of Retrace.
In Appendix Section D.1, we visualise trade-offs made
by analogous adjustment to the TreeBackup update
[Precup et al., 2000], showing that mixing the behaviour
policy into the target simply leads to an accumulation
of fixed-point bias, with limited benefits in terms of
contraction rate or variance.

3.1 Analysis

We now provide several results describing the contrac-
tion rate of α-Retrace in detail, and how the fixed-point
bias introduced by α < 1 may be useful in the case of
control tasks. We begin with a preliminary definition.

Definition 3.1. For a state-action pair (x, a) ∈
X × A, Two policies π1, π2 are said to be (x, a)-
distinguishable under a third policy µ if there exists
x′ ∈ X in the support of the discounted state visitation
distribution under µ starting from state-action pair
(x, a), such that π1(·|x′) 6= π2(·|x′), and are said to be
(x, a)-indistinguishable under µ otherwise.

Proposition 3.2. The operator associated with the
α-Retrace update for evaluating π given behaviour µ
has a state-action-dependent contraction rate of

C(α|x, a)
def
= 1− (1− γ)× (5)

Eµ

[ ∞∑
t=0

γt
t∏

s=1

((1− α) + αρ̄s)

∣∣∣∣∣(X0, A0) = (x, a)

]
,

for each (x, a) ∈ X ×A. Viewed as a function of α ∈
[0, 1], this contraction rate is continuous, monotonically
increasing, with minimal value 0, and maximal value
no greater than γ. Further, the contraction rate is
strictly monotonic iff π and µ are (x, a)-distinguishable
under µ.

Figure 2: Interpolating between target policy π and be-
haviour policy µ with α ∈ {0.0, 0.2, 0.8, 1.0} produces
different expected trajectories shown by each coloured
line. As the mixture policy more closely resembles the
behaviour policy, α-Retrace allows more off-policy data
to be used (dashed line, numbers indicate expected
trace-length), cuts traces (coloured points) later, yield-
ing lower contraction rates equivalent to n-step meth-
ods with larger n. C-trace adapts α online to achieve
a stable trace length throughout training.

The exact contraction rate of α-Retrace is thus
sup(x,a)∈X×A C(α|x, a), which inherits the continu-
ity and monotonicity properties of the state-action-
dependent rates. Our next result motivates the use of
α-Retrace within control algorithms.

Proposition 3.3. Consider a target policy π, let µ
be the behavioural policy, and assume that there is a
unique greedy action a∗(x) ∈ A with respect to Qπ at
each state x for each x ∈ X . Then there exists a value
of α ∈ (0, 1) such that the greedy policy with respect to
the fixed point of α-Retrace coincides with the greedy
policy with respect to Qπ, and the contraction rate for
this α-Retrace is no greater than that for 1-Retrace.
Further, if π and µ are (x, a)-distinguishable under µ
for all (x, a) ∈ X × A, then the contraction rate of
α-Retrace is strictly lower than that of 1-Retrace.

3.2 C-trace: adapting α online

An empirical shortcoming of Retrace noted earlier is
its tendency to pessimistically cut traces. Adapting
the mixture parameter α within α-Retrace yields a
natural way to ensure that a desired trace length (or
contraction rate) is attained. In this section, we propose
C-trace, which uses α-Retrace updates whilst dynami-
cally adjusting α to attain a target contraction rate Γ;
a schematic illustration is given in Figure 2.

The contraction rate sup(x,a)∈X×A C(α|x, a) is difficult
to estimate online, so we work instead with the averaged
contraction rate Cν(α) = E(X,A)∼ν [C(α|X,A)], where
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ν is the training distribution over state-action pairs;
where clear, we will drop ν from notation. It follows
straighforwardly from Proposition 3.2 that Cν(α) is
monotonic in α. This suggests that a standard Robbins-
Monro stochastic approximation update rule for α may
be applied to guide Cν(α) towards Γ — we describe
such a scheme below. To avoid optimisation issues
with the constraint α ∈ [0, 1], we parameterise α as
σ(φ), where σ is the standard sigmoid function, and
φ ∈ R is an unconstrained real variable. For brevity,
we will simply write α(φ). Since σ is monotonic and
continuous, the contraction rate is still monotonic and
continuous in φ.

Recall from (5) that the contraction rate C(α|x, a) of
the α-Retrace operator with target π and behaviour µ
can be expressed as an expectation over trajectories
following µ, and thus can be unbiasedly approximated
using such trajectories; given an i.i.d. sequence of
trajectories (x

(k)
t , a

(k)
t , r

(k)
t )t≥0, we write Ĉ(k)(α(φ)) for

the corresponding estimates of C(α(φ)). If the target
contraction rate is Γ, we can adjust an initial parameter
φ0 ∈ R using these estimates according to the Robbins-
Monro rule

φk+1 = φk − εk
(
Ĉ(k)(α(φk))− Γ

)
∀k ≥ 0 , (6)

for some sequence of stepsizes (εk)∞k=0. The following
result gives a theoretical guarantee for the correctness
of this procedure.

Proposition 3.4. Let (x
(k)
t , a

(k)
t , r

(k)
t )∞t=0 be an i.i.d.

sequence of trajectories following µ, with initial state-
action distribution given by ν. Let Γ be a target con-
traction rate such that Cν(1) ≥ Γ. Let the stepsizes
(εk)∞k=0 satisfy the usual Robbins-Monro conditions∑∞

k=0 εk = ∞,
∑∞
k=0 ε

2
k < ∞. Then for any initial

value φ0 following the updates in (6), we have φk → φ∗

in probability, where φ∗ ∈ R is the unique value such
that Cν(α(φ∗)) = Γ.

C-trace thus consists of interleaving α-Retrace evalua-
tion updates with α parameter updates as in (6).

Convergence analysis. It is possible to further de-
velop the theory in Proposition 3.4 to prove convergence
of C-trace as a whole, using techniques going back to
those of Bertsekas and Tsitsiklis [1996] for convergence
of TD(λ), and more recently used by Munos et al. [2016]
to prove convergence of a control version of Retrace,
as the following result shows.

Theorem 3.5. Assume the same conditions as Propo-
sition 3.4, and additionally that: (i) trajectory lengths
have finite second moment; (ii) immediate rewards
are bounded. Let (φk)∞k=0 be defined as in Equa-
tion (6) and (Qk)∞k=0 be a sequence of Q-functions, with
Qk+1 obtained from applying Retrace updates target-
ing α(φk)π+ (1−α(φk))µ to Qk with trajectory k+ 1,

using stepsize εk. Then we have α(φk)→ α(φ∗) =: α∗

and Qk → Qα
∗π+(1−α∗)µ almost surely.

Truncated trajectory corrections. The method
described above for adaptation of α is impractical in
scenarios where episodes are particularly long, when
the MDP is non-episodic, and when only partial seg-
ments of trajectories can be processed at once. Since
such cases often arise in practice, this motivates modifi-
cations to the update of (6). Here, we describe one such
modification which will be crucial to the deployment
of C-trace in large-scale agents in Section 4. Given a
truncated trajectory (xt, at, rt)

N
t=0, Retrace necessarily

must cut traces after at most N time steps, and so
can achieve a contraction rate of γN at the very lowest.
We thus adjust the target contraction rate accordingly,
and arrive at the following update:

φk+1 = φk − εk
(
Ĉ(k)(α(φk))−max(Γ, γN )

)
. (7)

4 Experiments

Having explored the types of trade-offs α-Retrace
makes relative to existing off-policy algorithms, we now
investigate the performance of these methods in the
downstream tasks of evaluation and control described
in Section 2.1.

Evaluation. In the left sub-plot of Figure 3, we com-
pare the performance of α-Retrace, n-step uncorrected
updates, and n-step importance-weighted updates, for
various values of the parameters concerned, at an off-
policy evaluation task. In this particular task, the
environment is given by a chain MDP (see Appendix
Section C.1), the target policy is optimal, and the be-
haviour is the uniform policy. We plot Q-function L2

error against number of environment steps; see full
details in Appendix Section C.2. Standard error is
indicated by the shaded regions.

The best performing methods vary as a function of
the number of environment steps experienced. For low
numbers of environment steps, the best performing
methods are n-step uncorrected updates for large n,
and α-Retrace for α close to 0. Intuitively, in this
regime, a good contraction rate outweighs fixed-point
bias. As the number of environment steps increases, the
fixed-point bias kicks in, and the optimally-performing
α gradually increases from close to 0 to close to 1.
Note that typically the high variance of the importance-
weighted updates preclude them from attaining any
reasonable level of evaluation error.

Control. In the right sub-plot of Figure 3, we compare
the performance of a variety of modified policy iteration
methods, each using a different off-policy evaluation
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Figure 3: Left: Performance of a variety of off-policy evaluation methods on a small MDP; for further details, see
text of Section 4. Right: Performance of a variety of modified policy iteration methods on a small MDP; for
further details, see text of Section 4.

method. We use the same MDP as in the evaluation ex-
ample above, and plot the sub-optimality of the learned
policy (measured as difference between expected return
under a uniformly random initial state for optimal
and learned policies) against the number of policy im-
provement steps performed. In this experiment, the
behaviour policy is fixed as uniform throughout. As
with evaluation, we see that initial improvements in
policy are strongest with highly-contractive methods
incorporating some fixed-point bias, with less-biased
approaches catching up (and ultimately surpassing) for
greater amounts of environment interaction.

4.1 C-trace-R2D2

To test the performance of our methods at scale, we
adapted R2D2 [Kapturowski et al., 2019] to replace the
original n-step uncorrected update with Retrace and
C-trace. For C-trace we targeted the contraction rate
given by an n-step uncorrected update, using a discount
rate of γ = 0.997 and n = 10. Based on the Pareto
efficiency of α-Retrace relative to n-step uncorrected
returns exhibited empirically in small-scale MDPs, we
conjectured that this should lead to improved perfor-
mance. The agent was trained on the Atari-57 suite
of environments [Bellemare et al., 2013] with the same
experimental setup as in [Kapturowski et al., 2019],
a description of which we include in Appendix Sec-
tion E.1. High-level results are displayed in Figure 4,
plotting mean human-normalised performance, median
human-normalised performance, and mean human-gap
(across the 57 games) against wall-clock training time;
detailed results are given in Appendix Section F.1. We
also provide empirical verification that C-trace-R2D2
successfully attains its target contraction rate in prac-
tice in Appendix Section F.3.

C-trace-R2D2 attains comparable or superior perfor-
mance relative to R2D2 and Retrace-R2D2 in all
three performance measures. Thus, not only does C-
trace-R2D2 match state-of-the-art performance for dis-

tributed value-based agents on Atari, it also achieves
the earlier stated goal of bridging the gap between the
performance of uncorrected returns and more principled
off-policy algorithms in deep reinforcement learning.

4.2 C-trace-DQN

To illustrate the flexibility of C-trace as an off-policy
learning algorithm, we also demonstrate its perfor-
mance within a DQN architecture [Mnih et al., 2015].
We use Double DQN [Van Hasselt et al., 2016] as a
baseline, and modify the one-step Q-learning rule to
use n-step uncorrected returns, Retrace, and C-trace.
As for the R2D2 experiment, we set the C-trace contrac-
tion target using n = 10, demonstrating the robustness
of this C-trace hyperparameter across different archi-
tectures. Further, we found the behaviour of C-trace
to be generally robust to the choice of n; see Appendix
Section F.2. Full experimental specifications are given
in Appendix Section E.2, with detailed results in Ap-
pendix Section F.2; a high-level summary is displayed
in Figure 4. All sequence-based methods significantly
outperform Double DQN, as we would expect. We
notice that the performance gap between n-step and
Retrace is not as large here as for R2D2. A possible
explanation for this is that the data distribution used
by DQN is typically “more off-policy” than R2D2, as
the latter uses a distributed set of actors to increase
data throughput. As with the R2D2 experiments we
see that C-trace-DQN achieves similar learning speed
as the targeted n-step update, but with improved final
performance. One interpretation of these results is that
the improved contraction rate of C-trace allows it to
learn significantly faster than Retrace, while the better
fixed-point error allows it to find a better long-term
solution than n-step uncorrected.
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Figure 4: High-level performance of variants of R2D2 (top row) and DQN (bottom row) on the Atari suite of
environments. R2D2-based methods are averages of two seeds. DQN-based methods are averages of three seeds.
(Left) Mean human-normalised score, (Centre) median human-normalised score, and (Right) human gap.

5 Related work

A central observation of this work is that the fixed-point
bias can be explicitly traded-off to improve contraction
rates. To our understanding, this is the first work to
directly study this possibility, and further to draw atten-
tion to three fundamental quantities to be traded-off
in off-policy learning. However, investigating trade-
offs in off-policy RL, and in particular parametrising
methods to allow a spectrum of algorithms is a long-
standing research topic [Sutton and Barto, 2018]. The
most closely related methods come from a line of work
that consider the bias-variance trade-off due to boot-
strapping. In our framework, we understand this as
a trade-off between variance and contraction rate, but
without modifying the fixed-point. The recently intro-
duced Q(σ) algorithm uses the σ hyperparameter to
mix between importance-weighted n-step SARSA and
TreeBackup [De Asis et al., 2018]. In another recent re-
lated approach, Shi et al. [2019] uses σ to mix between
TreeBackup(λ) and Q(λ), although neither of these
approaches adaptively set σ based on observed data.
We have developed an adaptive method for adjusting
α to achieve a desired trace length, and believe an in-
teresting direction for future work would be to develop
the adaptive methods described in this paper for use
in other families of off-policy learning algorithms.

Conservatively updating policies within control algo-
rithms is a well-established practice; Kakade and Lang-
ford [2002] consider a trust-region method for policy
improvement, motivated by inexact policy evaluation

due to function approximation. In contrast, in this
work we consider regularised policy improvement as a
means of improving evaluation of future policies, even in
the absence of function approximation. More recently,
this approach also led to several advances in policy
gradient methods [Schulman et al., 2015, 2017] based
on trust regions. Although not the focus of this work,
there has been also been much progress on correct-
ing state-visitation distributions [Sutton et al., 2016,
Thomas and Brunskill, 2016, Hallak and Mannor, 2017,
Liu et al., 2018], another form of off-policy correction
important in function approximation, as illustrated in
the classic counterexample of Baird [1995].

6 Conclusion

We have highlighted the fundamental role of variance,
fixed-point bias, and contraction rate in off-policy learn-
ing, and described how existing methods trade off these
quantities. With this perspective, we developed novel
off-policy learning methods, α-Retrace and C-trace,
and incorporated the latter into several deep RL agents,
leading to strong empirical performance.

Interesting questions for future work include applying
the adaptive ideas underlying C-trace to other families
of off-policy algorithms, investigating whether there
exist new off-policy learning algorithms in unexplored
areas of the space of trade-offs, and developing a deeper
understanding of the relationship between these funda-
mental properties of off-policy learning algorithms and
downstream performance on large-scale control tasks.
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