Supplementary Material for "An Asymptotic Rate for the LASSO Loss"

Cynthia Rush
Columbia University

1 SUPPLEMENTARY MATERIAL

In the supplementary material we include a number of Lemmas that will be used in the technical proofs of our main results. When the proof is straightforward, it is omitted.
Lemma 1 (Concentration of Square Roots). Let $c \neq 0$ and X_{n} be a random variable. If $P\left(X_{n}^{2}-c^{2} \geq \epsilon\right) \leq$ $K e^{-\kappa n \epsilon^{2}}$, then $P\left(\left|X_{n}\right|-|c| \geq \epsilon\right) \leq K e^{-\kappa n|c|^{2} \epsilon^{2}}$.
Lemma 2 (Gaussian Concentration). For i.i.d. standard Gaussian random variables $Z_{1}, Z_{2}, \ldots, Z_{N}$ and $0 \leq \epsilon \leq 1$,

$$
P\left(\left|\frac{1}{n} \sum_{i=1}^{n} Z_{i}^{2}-1\right| \geq \epsilon\right) \leq 2 \exp \left\{\frac{-n \epsilon^{2}}{8}\right\} .
$$

Lemma 3. Let $\operatorname{ker}(\mathbf{X})$ denote the kernel of a matrix $\mathbf{X} \in \mathbb{R}^{n \times p}$ and $\mathbf{v}_{1}, \mathbf{v}_{2} \in \mathbb{R}^{p}$ vectors with $\mathbf{v}_{1} \in \operatorname{ker}(\mathbf{X})^{\perp}$. Then $\sigma_{\text {min }}^{2}\left\|\mathbf{v}_{2}\right\|^{2} \leq\left\|\mathbf{X v}_{2}\right\|^{2} \leq \sigma_{\text {max }}^{2}\left\|\mathbf{v}_{2}\right\|^{2}$ where $\sigma_{\text {min }}^{2}(\mathbf{X})$ and $\sigma_{\text {max }}^{2}(\mathbf{X})$ are the minimum and maximum singular values of \mathbf{X} and $\hat{\sigma}_{\text {min }}^{2}\left\|\mathbf{v}_{1}\right\|^{2} \leq\left\|\mathbf{X v}_{1}\right\|^{2} \leq$ $\sigma_{\text {max }}^{2}\left\|\mathbf{v}_{1}\right\|^{2}$, where $\hat{\sigma}_{\text {min }}(\mathbf{X})$ is the minimum, non-zero singular value of \mathbf{X}.
Lemma 4 ((Kashin, 1977]). For any dimension $p>$ 0 , with probability at least $1-2^{-p}$, for any uniformly random subspace $\mathcal{V}_{(p, r)}$ with dimension $\lfloor p(1-r)\rfloor$ where $0 \leq r \leq 1$ is a positive constant, for all vectors $\mathbf{v} \in$ $\mathcal{V}_{(p, r)}$,

$$
c_{r}\|\mathbf{v}\| \leq\|\mathbf{v}\|_{1} / \sqrt{p},
$$

where c_{r} is a universal constant (not depending on p).
Lemma 5. Rudelson and Vershynin, 2010] Let \mathbf{X} be an $n \times p$ random matrix with i.i.d. $\mathcal{N}(0,1 / n)$ entries and $n \leq p$. If $\sigma_{\max }(\mathbf{X})$ and $\hat{\sigma}_{\text {min }}(\mathbf{X})$ are the minimum and maximum non-zero singular values of \mathbf{X} then for $\delta=n / p$, the probabilities $P\left(\sigma_{\max }(\mathbf{X}) \geq 1+\sqrt{\delta}+\epsilon\right)$ and $P\left(\hat{\sigma}_{\min }(\mathbf{X}) \leqq 1-\sqrt{\delta}-\epsilon\right)$ are upper bounded by $e^{-n \epsilon^{2} / 2}$. Let $\widetilde{\mathbf{X}}$ be an $n \times p$ random matrix with i.i.d. $\mathcal{N}(0,1 / n)$ entries and $n \geq p$. If $\sigma_{\max }(\widetilde{\mathbf{X}})$ and $\sigma_{\min }(\widetilde{\mathbf{X}})$ are the largest and smallest singular values of $\widetilde{\mathbf{X}}$ then, the probabilities $P\left(\sigma_{\max }(\widetilde{\mathbf{X}}) \geq 1+\frac{1}{\sqrt{\delta}}+\epsilon\right)$
and $P\left(\sigma_{\min }(\widetilde{\mathbf{X}}) \leq 1-\frac{1}{\sqrt{\delta}}-\epsilon\right.$) are upper bounded by $e^{-n \epsilon^{2} / 2}$.

Proof. The result for $\widetilde{\mathbf{X}}$ follows directly from the cited result. The result for \mathbf{X} uses the following fact: let \mathbf{M}_{1} be an $m \times n$ matrix and let \mathbf{M}_{2} be an $n \times m$ matrix, with $n \geq m$, then the n eigenvalues of $\mathbf{M}_{2} \mathbf{M}_{1}$ are the m eigenvalues of $\mathbf{M}_{1} \mathbf{M}_{2}$ with the extra eigenvalues being 0 . So we note that if \mathbf{X} is an $n \times p$ matrix with $p \geq n$ then the p eigenvalues of $\mathbf{X}^{*} \mathbf{X}$ are the n eigenvalues of $\mathbf{X X} \mathbf{X}^{*}$ with the extra eigenvalues being 0 . The cited result tells us $P\left(\sigma_{\max }\left(\mathbf{X}^{*}\right) \geq 1+\sqrt{\delta}+\epsilon\right)$ and $P\left(\sigma_{\min }\left(\mathbf{X}^{*}\right) \leq 1-\sqrt{\delta}-\epsilon\right)$ are upper bounded by $e^{-n \epsilon^{2} / 2}$. We note that $\sigma_{\text {min }}\left(\mathbf{X}^{*}\right)=\lambda_{\text {min }}\left(\mathbf{X X}^{*}\right)$ and $\sigma_{\max }\left(\mathbf{X}^{*}\right)=\lambda_{\text {max }}\left(\mathbf{X X}^{*}\right)$. The lemma result follows from the stated fact.

Lemma 6. Let $\left\{\tau_{t}^{2}\right\}_{t \geq 0}$ be the state evolution sequence and let $\theta_{t}=\alpha \tau_{t}$ for all $t \geq 0$. Then,

$$
\begin{aligned}
& \left|P\left(\left|B-\tau_{t-1} Z_{t}\right|>\theta_{t}\right)-P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*}\right)\right| \\
& \quad \leq \frac{2 \mathbb{E}|B|}{\min \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}}\left|\tau_{t}-\tau_{*}\right| .
\end{aligned}
$$

In the above $B \sim p_{\boldsymbol{\beta}}$ is independent of Z_{t}, Z both standard Gaussian.

Proof. We first note that

$$
P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*}\right)=\mathbb{E}\left\{P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*} \mid B\right)\right\},
$$

and so we first study the conditional probability

$$
P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*} \mid B=b\right)=P\left(\left|b-\tau_{*} Z\right| \geq \theta_{*}\right) .
$$

First, using $\Phi(\cdot)$ to denote the Gaussian cdf, namely $\Phi(x)=P(Z \leq x)$ for standard Gaussian Z, and the fact that $\theta_{*}=\alpha \tau_{*}$,

$$
\begin{aligned}
& P\left(\left|b-\tau_{*} Z\right| \geq \theta_{*}\right) \\
& =P\left(b-\tau_{*} Z \geq \theta_{*}\right)+P\left(b-\tau_{*} Z \leq-\theta_{*}\right) \\
& =P\left(Z \leq\left(b / \tau_{*}\right)-\alpha\right)+P\left(Z \geq\left(b / \tau_{*}\right)+\alpha\right) \\
& =\Phi\left(\left(b / \tau_{*}\right)-\alpha\right)+\Phi\left(\left(-b / \tau_{*}\right)-\alpha\right) .
\end{aligned}
$$

Similarly,

$$
P\left(\left|b-\tau_{t} Z_{t}\right| \geq \theta_{t}\right)=\Phi\left(\left(b / \tau_{t}\right)-\alpha\right)+\Phi\left(\left(-b / \tau_{t}\right)-\alpha\right)
$$

and by Jensen's inequality,

$$
\begin{align*}
& \left|P\left(\left|B-\tau_{t} Z_{t}\right|>\theta_{t}\right)-P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*}\right)\right| \\
& =\left|\mathbb{E}\left\{P\left(\left|B-\tau_{t} Z_{t}\right|>\theta_{t} \mid B\right)-P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*} \mid B\right)\right\}\right| \\
& \leq \mathbb{E}\left\{\left|P\left(\left|B-\tau_{t} Z_{t}\right|>\theta_{t} \mid B\right)-P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*} \mid B\right)\right|\right\} \tag{1}
\end{align*}
$$

Then, letting $h(b):=\mid P\left(\left|B-\tau_{t} Z_{t}\right|>\theta_{t} \mid B=b\right)-$ $P\left(\left|B-\tau_{*} Z\right| \geq \theta_{*} \mid B=b\right) \mid$, we have

$$
\begin{align*}
& h(b)=\left|\mathbb{E}\left\{\mathbb{I}\left\{\left|b-\tau_{t} Z_{t}\right|>\theta_{t}\right\}-\mathbb{I}\left\{\left|b-\tau_{*} Z\right| \geq \theta_{*}\right\}\right\}\right| \\
& =\left|P\left(\left|b-\tau_{t} Z_{t}\right|>\theta_{t}\right)-P\left(\left|b-\tau_{*} Z\right| \geq \theta_{*}\right)\right| \\
& \leq \mathbb{E}\left|\Phi\left(\left(b / \tau_{t}\right)-\alpha\right)-\Phi\left(\left(b / \tau_{*}\right)-\alpha\right)\right| \\
& \quad+\mathbb{E}\left|\Phi\left(\left(-b / \tau_{t}\right)-\alpha\right)-\Phi\left(\left(-b / \tau_{*}\right)-\alpha\right)\right| \tag{2}
\end{align*}
$$

Now we note that the Gaussian cdf is Lipschitz. Indeed, for $x>y$, and $\phi(\cdot)$ the Gaussian pdf,

$$
|\Phi(x)-\Phi(y)|=\int_{y}^{x} \phi(z) d z \leq|x-y|
$$

and so (2) gives the following upper bound

$$
\begin{equation*}
h(b) \leq|b|\left|\frac{1}{\tau_{t}}-\frac{1}{\tau_{*}}\right|+\mathbb{E}|B|\left|\frac{1}{\tau_{*}}-\frac{1}{\tau_{t}}\right|=2|b| \frac{\left|\tau_{*}-\tau_{t}\right|}{\tau_{t} \tau_{*}} . \tag{3}
\end{equation*}
$$

Finally, note from (1) and (3) that $T \leq \mathbb{E}[h(B)] \leq$ $\frac{2 \mathbb{E}|B|}{\min \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}}\left|\tau_{*}-\tau_{t-1}\right|$.
Lemma 7. Let $\lambda>0$ and $\alpha=\alpha(\lambda)$, then for $0 \leq t \leq$ T^{*},
$P\left(\left|\frac{1}{p}\left\|\boldsymbol{\beta}^{t}\right\|^{2}-\mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right]\right| \geq \epsilon\right) \leq K_{t} e^{-\kappa_{t} n \epsilon^{2}}$.
Moreover, with $\hat{\mathrm{B}}:=\tilde{\mathrm{C}} \mathrm{C}^{2}+4 \tilde{\mathrm{C}} \mathrm{C} / c_{\text {min }}$ and $\tilde{\mathrm{B}}=1+$ $\max \left(6 \sigma_{0}^{2}+6 \max \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}\left(1+\alpha^{2}\right), \tilde{\mathrm{C}}\right)$, where $\tilde{\mathrm{C}}$ and C are independent of t and are defined in the proof below, $c_{\text {min }}$ is the concentrating values for the minimum (non-zero) singular values of the matrix \mathbf{X} as defined in Lemma 4, Condition (4) in the main document, σ_{0}^{2} is defined in Eq. (8) in the main document, and σ^{2} is the noise variance in the problem, we have

$$
P\left(\|\widehat{\boldsymbol{\beta}}(\lambda)\|^{2} / p \geq \hat{\mathrm{B}}\right) \leq K e^{-\kappa n}
$$

and

$$
P\left(\left\|\boldsymbol{\beta}^{t}\right\|^{2} / p \geq \tilde{\mathrm{B}}\right) \leq K_{t} e^{-\kappa_{t} n}
$$

Proof. Note that the concentration for the norm of $\boldsymbol{\beta}^{t}$ follows from Theorem 1 in the main document using the pseudo-Lipschitz function $\phi(a, b)=a^{2}$. Namely, we know that
$P\left(\left|\frac{1}{p}\left\|\boldsymbol{\beta}^{t}\right\|^{2}-\mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right]\right| \geq \epsilon\right) \leq K_{t} e^{-\kappa_{t} n \epsilon^{2}}$,
where, for each $0 \leq t \leq T^{*}$,

$$
\begin{aligned}
& \mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right] \\
& \stackrel{(a)}{=} \mathbb{E}\left[\left(B+\tau_{t} Z-\theta_{t}\right)^{2} \mathbb{I}\left\{B+\tau_{t} Z>\theta_{t}\right\}\right] \\
& +\mathbb{E}\left[\left(B+\tau_{t} Z+\theta_{t}\right)^{2} \mathbb{I}\left\{B+\tau_{t} Z<-\theta_{t}\right\}\right] \\
& \stackrel{(b)}{\leq} \mathbb{E}\left[\left(B+\tau_{t} Z-\theta_{t}\right)^{2}\right]+\mathbb{E}\left[\left(B+\tau_{t} Z+\theta_{t}\right)^{2}\right] \\
& \stackrel{(c)}{\leq} 6 \mathbb{E}\left\{B^{2}\right\}+6 \tau_{t}^{2} \mathbb{E}\left\{Z^{2}\right\}+6 \theta_{t}^{2} \\
& \leq 6 \sigma_{0}^{2}+6 \tau_{t}^{2}+6 \alpha^{2} \tau_{t}^{2} \stackrel{(d)}{\leq} 6 \sigma_{0}^{2}+6 \max \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}\left(1+\alpha^{2}\right) .
\end{aligned}
$$

In the chain above, step (a) follows from the definition of the soft-thresholding function in Eq. (4) of the main document, step (b) since the indicator function is upper bounded by 1 and we're considering the expectation of a positive term, step (c) from Rush and Venkataramanan, 2015, Lemma C.3], and step (d) since $\tau_{t}^{2} \leq \max \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}$. The result in the lemma statement follows since

$$
\begin{aligned}
& P\left(\left\|\boldsymbol{\beta}^{t}\right\|^{2} / p \geq \tilde{\mathrm{B}}\right) \\
& \leq P\left(\left\|\boldsymbol{\beta}^{t}\right\|^{2} / p \geq \mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right]+\epsilon\right) \\
& \leq P\left(\left|\left\|\boldsymbol{\beta}^{t}\right\|^{2} / p-\mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right]\right| \geq \epsilon\right)
\end{aligned}
$$

The first inequality above follows since $\tilde{\mathrm{B}} \geq 1+6 \sigma_{0}^{2}+$ $6 \max \left\{\tau_{0}^{2}, \tau_{*}^{2}\right\}\left(1+\alpha^{2}\right) \geq \epsilon+\mathbb{E}\left[\left(\eta\left(B+\tau_{t} Z ; \theta_{t}\right)\right)^{2}\right]$.

Now consider concentration for $\widehat{\boldsymbol{\beta}}$. We will first show that $\mathcal{C}(\widehat{\boldsymbol{\beta}})$ is lower bounded by a constant with high probability. We have the following upper bound on the LASSO cost function:

$$
\begin{align*}
& \mathcal{C}(\widehat{\boldsymbol{\beta}}) \leq \mathcal{C}(0)=\frac{1}{2}\|\mathbf{y}\|^{2}=\frac{1}{2}\|\mathbf{X} \boldsymbol{\beta}+\mathbf{w}\|^{2} \tag{5}\\
& \stackrel{(a)}{\leq}\|\mathbf{X} \boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2} \stackrel{(b)}{\leq} \sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2} \tag{6}
\end{align*}
$$

where step (a) follows by Cauchy-Schwarz and step (b) from Lemma 3. Now for $\epsilon^{\prime} \in(0,1)$, note that $\left(c_{\max }+\right.$ $\left.\epsilon^{\prime}\right)\left(\sigma_{0}^{2}+\epsilon^{\prime}\right)+\sigma^{2}+\epsilon^{\prime} \leq\left(c_{\max }+1\right)\left(\sigma_{0}^{2}+1\right)+\sigma^{2}+1$ and we label $\mathrm{C}:=\left(c_{\max }+1\right)\left(\sigma_{0}^{2}+1\right)+\sigma^{2}+1$. Considering the above, then,

$$
\begin{align*}
& P\left(\left(\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right) / p \geq \mathrm{C}\right) \\
& \leq P\left(\sigma_{\max }^{2}(\mathbf{X}) \geq c_{\max }+\epsilon^{\prime}\right)+P\left(\|\boldsymbol{\beta}\|^{2} / p \geq \sigma_{0}^{2}+\epsilon^{\prime}\right) \\
& \quad+P\left(\|\mathbf{w}\|^{2} / p \geq \sigma^{2}+\epsilon^{\prime}\right) \\
& \quad \begin{array}{l}
(c) \\
\leq
\end{array} K e^{-\kappa n \epsilon^{\prime 2}} \tag{7}
\end{align*}
$$

In the above, step (c) follows from Lemma 5 the assumption given in Eq. (8) in the main document, and Lemma 2. Then using (6) and (7),

$$
\begin{align*}
& P(\mathcal{C}(\widehat{\boldsymbol{\beta}}) / p \geq \mathrm{C}) \\
& \leq P\left(\left(\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right) / p \geq \mathrm{C}\right) \leq K e^{-\kappa n \epsilon^{\prime 2}} \tag{8}
\end{align*}
$$

Now we will relate $\|\widehat{\boldsymbol{\beta}}\|^{2} / p$ to $\mathcal{C}(\widehat{\boldsymbol{\beta}}) / p$ and other terms lower-bounded by a constant with high probability. We write $\widehat{\boldsymbol{\beta}}=\widehat{\boldsymbol{\beta}}^{\perp}+\widehat{\boldsymbol{\beta}}^{\|}$where $\widehat{\boldsymbol{\beta}}^{\perp} \in \operatorname{ker}(\mathbf{X})^{\perp}$ and $\widehat{\boldsymbol{\beta}}^{\|} \in \operatorname{ker}(\mathbf{X})$. Since $\widehat{\boldsymbol{\beta}}^{\|} \in \operatorname{ker}(\mathbf{X})$ and $\operatorname{ker}(\mathbf{X})$ is a random subspace of size $p-n=p(1-\delta)$, by Kashin Theorem (Lemma 4), we have that for some constant $\nu_{1}=\nu_{1}(\delta)$,

$$
\begin{equation*}
P\left(\left\|\widehat{\boldsymbol{\beta}}^{\|}\right\|_{2}^{2} \geq \nu_{1}\left\|\widehat{\boldsymbol{\beta}}^{\|}\right\|_{1}^{2} / N\right) \leq K e^{-p} \tag{9}
\end{equation*}
$$

Denote the event $\left\{\|\widehat{\boldsymbol{\beta}}\|_{\|_{2}^{2}} \geq \nu_{1}\|\widehat{\boldsymbol{\beta}}\|_{1}^{2} / p\right\}$ by \mathcal{E}, and by the above $P(\mathcal{E}) \leq K e^{-p}$. Conditioned on \mathcal{E}^{c}, we have the following bound

$$
\begin{align*}
& \|\widehat{\boldsymbol{\beta}}\|^{2}=\|\widehat{\boldsymbol{\beta}}\|^{2}+\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2} \stackrel{(a)}{\leq} \frac{\nu_{1}}{p}\left\|\widehat{\boldsymbol{\beta}}^{\|}\right\|_{1}^{2}+\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2} \\
& \stackrel{(b)}{\leq} \frac{2 \nu_{1}}{p}\|\widehat{\boldsymbol{\beta}}\|_{1}^{2}+\frac{2 \nu_{1}}{p}\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|_{1}^{2}+\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2} \tag{10}\\
& \stackrel{(c)}{\leq} \frac{2 \nu_{1}}{p}\left(\frac{1}{\lambda} \mathcal{C}(\widehat{\boldsymbol{\beta}})\right)^{2}+\left(2 \nu_{1}+1\right)\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2}
\end{align*}
$$

where step (a) holds since we are conditioning on \mathcal{E}^{c}, step (b) from the triangle inequality and CacuhSchwarz, and step (c) since $\lambda\|\widehat{\boldsymbol{\beta}}\|_{1} \leq \mathcal{C}(\widehat{\boldsymbol{\beta}})$ by the definition of the cost function and $\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|_{1} \leq \sqrt{p}\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|$ by Cauchy-Schwarz. Now we bound the second term on the RHS of 10 :

$$
\begin{align*}
& \left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2} \stackrel{(d)}{\leq} \frac{\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2}}{\hat{\sigma}_{\min }^{2}(\mathbf{X})} \leq \frac{\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}^{\perp}-\mathbf{y}+\mathbf{y}\right\|^{2}}{\hat{\sigma}_{\min }^{2}(\mathbf{X})} \\
& \stackrel{(e)}{\leq} \frac{2\left\|\mathbf{y}-\mathbf{X} \widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2}}{\hat{\sigma}_{\min }^{2}(\mathbf{X})}+\frac{2\|\mathbf{y}\|^{2}}{\hat{\sigma}_{\min }^{2}(\mathbf{X})} \tag{11}\\
& \leq \frac{2 \mathcal{C}(\widehat{\boldsymbol{\beta}})}{\hat{\sigma}_{\min }^{2}(\mathbf{X})}+\frac{2\|\mathbf{X} \boldsymbol{\beta}+\mathbf{w}\|^{\mathbf{2}}}{\hat{\sigma}_{\min }^{2}(\mathbf{X})}
\end{align*}
$$

In the above, step (d) follows from the fact that $\hat{\sigma}_{\text {min }}^{2}(\mathbf{X})\left\|\widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2} \leq\left\|\mathbf{X} \widehat{\boldsymbol{\beta}}^{\perp}\right\|^{2}$ by Lemma 3 and step (e) by Cauchy-Schwarz. Next note

$$
\begin{equation*}
\|\mathbf{X} \boldsymbol{\beta}+\mathbf{w}\|^{2} \leq 2\left(\|\mathbf{X} \boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right) \leq 2\left(\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right) \tag{12}
\end{equation*}
$$

by Cauchy-Schwarz and Lemma 3. Now plugging 11. and $\sqrt{12}$ into $\sqrt{10}$ we have for some constant $C=$
$\max \left\{\frac{2 \nu_{1}}{\lambda^{2}}, 4\left(2 \nu_{1}+1\right)\right\}>0$,

$$
\begin{equation*}
\frac{1}{p}\|\widehat{\boldsymbol{\beta}}\|^{2} \leq \tilde{\mathrm{C}}\left(\frac{\mathcal{C}(\widehat{\boldsymbol{\beta}})}{p}\right)^{2}+\frac{\tilde{\mathrm{C}}\left(\mathcal{C}(\widehat{\boldsymbol{\beta}})+\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right)}{p \hat{\sigma}_{\min }^{2}(\mathbf{X})} \tag{13}
\end{equation*}
$$

Now considering the above,

$$
\begin{align*}
& P\left(\frac{1}{p}\|\widehat{\boldsymbol{\beta}}\|^{2} \geq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{m i n}-\epsilon^{\prime}}\right) \\
& \leq P(\mathcal{E})+P\left(\left.\frac{1}{p}\|\widehat{\boldsymbol{\beta}}\|^{2} \geq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{m i n}-\epsilon^{\prime}} \right\rvert\, \mathcal{E}^{c}\right) \tag{14}
\end{align*}
$$

First note $P(\mathcal{E}) \leq K e^{-p}$ by (9), and

$$
\begin{align*}
& P\left(\left.\frac{1}{p}\|\widehat{\boldsymbol{\beta}}\|^{2} \geq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{\min }-\epsilon^{\prime}} \right\rvert\, \mathcal{E}^{c}\right) \\
& \begin{aligned}
& \stackrel{(a)}{\leq} P\left(\tilde{\mathrm{C}}\left(\frac{\mathcal{C}(\widehat{\boldsymbol{\beta}})}{p}\right)^{2}+\right. \frac{\tilde{\mathrm{C}}\left(\mathcal{C}(\widehat{\boldsymbol{\beta}})+\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right)}{N \hat{\sigma}_{\min }^{2}(\mathbf{X})} \\
&\left.\geq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{\min }-\epsilon^{\prime}}\right) \\
& \begin{aligned}
& \stackrel{(b)}{\leq} P\left(\frac{\mathcal{C}(\widehat{\boldsymbol{\beta}})}{p} \geq \mathrm{C}\right)+P\left(\sigma_{\max }^{2}(\mathbf{X}) \frac{\|\boldsymbol{\beta}\|^{2}}{p}+\frac{\|\mathbf{w}\|^{2}}{p} \geq \mathrm{C}\right) \\
&+P\left(\hat{\sigma}_{\min }^{2}(\mathbf{X}) \leq c_{\min }-\epsilon^{\prime}\right)
\end{aligned} \\
& \begin{array}{l}
(c) \\
\leq
\end{array} K e^{-\kappa n \epsilon^{\prime 2}} .
\end{aligned}
\end{align*}
$$

In the above, step (a) follows by (13), step (b) since if

$$
\begin{array}{r}
\left\{\frac{\mathcal{C}(\widehat{\boldsymbol{\beta}})}{p} \leq \mathrm{C}\right\} \cap\left\{\frac{1}{p}\left(\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right) \leq \mathrm{C}\right\} \\
\cap\left\{\hat{\sigma}_{\min }^{2}(\mathbf{X}) \geq c_{\min }-\epsilon^{\prime}\right\}
\end{array}
$$

then

$$
\begin{array}{r}
\tilde{\mathrm{C}}\left(\frac{\mathcal{C}(\widehat{\boldsymbol{\beta}})}{p}\right)^{2}+\frac{\tilde{\mathrm{C}}\left(\mathcal{C}(\widehat{\boldsymbol{\beta}})+\sigma_{\max }^{2}(\mathbf{X})\|\boldsymbol{\beta}\|^{2}+\|\mathbf{w}\|^{2}\right)}{p \hat{\sigma}_{\min }^{2}(\mathbf{X})} \\
\leq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{\min }-\epsilon^{\prime}} \tag{16}
\end{array}
$$

and step (c) from (7), (8), and Lemma 5 . Finally, labeling $\hat{\mathrm{B}}:=\tilde{\mathrm{C}} \mathrm{C}^{2}+4 \mathrm{C} \mathrm{C} / c_{\text {min }} \geq \tilde{\mathrm{C}} \mathrm{C}^{2}+2 \tilde{\mathrm{C}} \mathrm{C} /\left(c_{\text {min }} / 2\right)$, it follows from (14) - 15 that,

$$
\begin{aligned}
P\left(\frac{\|\widehat{\boldsymbol{\beta}}\|^{2}}{p} \geq \hat{\mathrm{B}}\right) & \leq P\left(\frac{\|\widehat{\boldsymbol{\beta}}\|^{2}}{p} \geq \tilde{\mathrm{C}} \mathrm{C}^{2}+\frac{2 \tilde{\mathrm{C}} \mathrm{C}}{c_{\min }-c_{\min } / 2}\right) \\
& \leq K e^{-\kappa n c_{m i n}^{2} / 4}
\end{aligned}
$$

References

[Kashin, 1977] Kashin, B. S. (1977). Diameters of some finite-dimensional sets and classes of smooth functions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 41(2):334-351.
[Rudelson and Vershynin, 2010] Rudelson, M. and Vershynin, R. (2010). Non-asymptotic theory of random matrices: extreme singular values. In Proceedings of the International Congress of Mathematicians 2010 (ICM 2010) (In 4 Volumes) Vol. I: Plenary Lectures and Ceremonies Vols. II-IV: Invited Lectures, pages 1576-1602. World Scientific.
[Rush and Venkataramanan, 2015] Rush, C. and Venkataramanan, R. (2015). Finite sample analysis of approximate message passing. Proc. IEEE Int. Symp. Inf. Theory. Full version: https://arxiv.org/abs/1606.01800

