A PROOFS

This appendix contains the proofs of the theorems from Section 3, which are adapted from Saad et al. (2020, Section 3) and included here for completeness.
Proposition A. 1 (Proposition 3.1 in main text). For integers k and l with $0 \leq l \leq k$, define $Z_{k l}:=2^{k}-$ $2^{l} \mathbf{1}_{l<k}$. Then

$$
\mathbb{B}_{k l}=\left\{\frac{0}{Z_{k l}}, \frac{1}{Z_{k l}}, \ldots, \frac{Z_{k l}-1}{Z_{k l}}, \frac{Z_{k l}}{Z_{k l}} \mathbf{1}_{l<k}\right\}
$$

Proof. For $l=k$, the number system $\mathbb{B}_{k l}=\mathbb{B}_{k k}$ is the set of dyadic rationals less than one with denominator $Z_{k k}=2^{k}$. For $0 \leq l<k$, any $x \in \mathbb{B}_{k l}$ when written in base 2 has a (possibly empty) non-repeating prefix and a non-empty infinitely repeating suffix, so that x has binary expansion $\left(0 . b_{1} \ldots b_{l} \overline{s_{l+1} \ldots s_{k}}\right)_{2}$. Now,

$$
2^{l}\left(0 . b_{1} \ldots b_{l}\right)_{2}=\left(b_{1} \ldots b_{l}\right)_{2}=\sum_{i=0}^{l-1} b_{l-i} 2^{i}
$$

and

$$
\begin{aligned}
\left(2^{k-l}-1\right)\left(0 . \overline{s_{l+1} \ldots s_{k}}\right)_{2} & =\left(s_{l+1} \ldots s_{k}\right)_{2} \\
& =\sum_{i=0}^{k-(l+1)} s_{k-i} 2^{i}
\end{aligned}
$$

together imply that

$$
\begin{aligned}
x & =\left(0 . b_{1} \ldots b_{l}\right)_{2}+2^{-l}\left(0 . \overline{s_{l+1} \ldots s_{k}}\right)_{2} \\
& =\frac{\left(2^{k-l}-1\right) \sum_{i=0}^{l-1} b_{l-i} 2^{i}+\sum_{i=0}^{k-(l+1)} s_{k-i} 2^{i}}{2^{k}-2^{l}} .
\end{aligned}
$$

Remark A.2. When $0 \leq l \leq k$, we have $\mathbb{B}_{k l} \subseteq$ $\mathbb{B}_{k+1, l+1}$, since if $x \in \mathbb{B}_{k l}$ then Proposition A. 1 furnishes an integer c such that $x=c /\left(2^{k}-2^{l} \mathbf{1}_{l<k}\right)=$ $2 c /\left(2^{k+1}-2^{l+1} \mathbf{1}_{l<k}\right) \in \mathbb{B}_{k+1, l+1}$. Further, for $k \geq 2$, we have $\mathbb{B}_{k, k-1} \backslash\{1\}=\mathbb{B}_{k-1, k-1} \subseteq \mathbb{B}_{k k}$, since any repeating suffix with exactly one digit can be folded into the prefix (except when the prefix and suffix are all ones).

Theorem A. 3 (Theorem 3.2 in main text). Let T be an entropy-optimal $D D G$ tree with a non-degenerate output distribution $\left(p_{i}\right)_{i=1}^{n}$ for $n>1$. The depth of T is the smallest integer k such that there exists an integer $l \in\{0, \ldots, k\}$ for which all the p_{i} are integer multiples of $1 / Z_{k l}$ (hence in $\mathbb{B}_{k l}$).

Proof. Suppose that T is an entropy-optimal DDG tree and let k be its depth (note that $k \geq 1$, as $k=0$ implies p is degenerate). Assume $n=2$. From Theorem 2.1, for each $i=1,2$, the probability p_{i} is a rational number where the number of digits in the shortest prefix and suffix of the binary expansion (which ends
in $\overline{0}$ if dyadic) is at most k. Therefore, we can express the probabilities p_{1}, p_{2} in terms of their binary expansions as

$$
\begin{aligned}
& p_{1}=\left(0 . b_{1} \ldots b_{l_{1}} \overline{s_{l_{1}+1} \ldots s_{k}}\right)_{2} \\
& p_{2}=\left(0 . w_{1} \ldots w_{l_{2}} \overline{u_{l_{2}+1} \ldots u_{k}}\right)_{2}
\end{aligned}
$$

where l_{i} and $k-l_{i}$ are the number of digits in the shortest prefix and suffix, respectively, of the binary expansions of each p_{i}.

If $l_{1}=l_{2}$ then the conclusion follows from Proposition A.1. If $l_{1}=k-1$ and $l_{2}=k$ then the conclusion follows from Remark A. 2 and the fact that $p_{1} \neq 1$, $p_{2} \neq 1$. Now, from Proposition A.1, it suffices to establish that $l_{1}=l_{2}=: l$, so that p_{1} and p_{2} are both integer multiples of $1 / Z_{k l}$. Suppose for a contradiction that $l_{1}<l_{2}$ and $l_{1} \neq k-1$. Write $p_{1}=a / c$ and $p_{2}=b / d$ where each summand is in reduced form. By Proposition A.1, we have $c=2^{k}-2^{l_{1}}$ and $d=2^{k}-2^{l_{2}} \mathbf{1}_{l_{2}<k}$. Then as $p_{1}+p_{2}=1$ we have $a d+b c=c d$. If $c \neq d$ then either b has a positive factor in common with d or a with c, contradicting the summands being in reduced form. But $c=d$ contradicts $l_{1}<l_{2}$.

The case where $n>2$ is a straightforward extension of this argument.

Theorem A. 4 (Theorem 3.4 in main text). Suppose p is defined by $p_{i}=a_{i} / m(i=1, \ldots, n)$, where $\sum_{i=1}^{n} a_{i}=m$. The depth of any entropy-optimal sampler for p is at most $m-1$.

Proof. By Theorem 3.2, it suffices to find integers $k \leq$ $m-1$ and $l \leq k$ such that $Z_{k l}$ is a multiple of m, which in turn implies that any entropy-optimal sampler for p has a maximum depth of $m-1$.

Case 1: Z is odd. Consider $k=m-1$. We will show that m divides $2^{m-1}-2^{l}$ for some l such $0 \leq l \leq m-2$. Let ϕ be Euler's totient function, which satisfies $1 \leq$ $\phi(m) \leq m-1=k$. Then $2^{\phi(m)} \equiv 1(\bmod m)$ as $\operatorname{gcd}(m, 2)=1$. Put $l=m-1-\phi(m)$ and conclude that m divides $2^{m-1}-2^{m-1-\phi(m)}$.

Case 2: m is even. Let $t \geq 1$ be the maximal power of 2 dividing m, and write $m=m^{\prime} 2^{t}$. Consider $k=$ $m^{\prime}-1+t$ and $l=j+t$ where $j=\left(m^{\prime}-1\right)-\phi\left(m^{\prime}\right)$. As in the previous case applied to m^{\prime}, we have that m^{\prime} divides $2^{m^{\prime}-1}-2^{j}$, and so m divides $2^{k}-2^{l}$. We have $0 \leq l \leq k$ as $1 \leq \phi(m) \leq m-1$. Finally, $k=$ $m^{\prime}+t-1 \leq m^{\prime} 2^{t}-1=m-1$ as $t<2^{t}$.

Theorem A. 5 (Theorem 3.5 in main text). Let p be as in Theorem A.4. If m is prime and 2 is a primitive root modulo m, then the depth of an entropy-optimal $D D G$ tree for p is $m-1$.

Proof. Since 2 is a primitive root modulo m, the smallest integer a for which $2^{a}-1 \equiv 0(\bmod m)$ is precisely $\phi(m)=m-1$. We will show that for any $k^{\prime}<m-1$ there is no exact entropy-optimal sampler that uses k^{\prime} bits of precision. By Theorem A.4, if there were such a sampler, then $Z_{k^{\prime} l}$ must be a multiple of m for some $l \leq k^{\prime}$. If $l<k^{\prime}$, then $Z_{k^{\prime} l}=2^{k^{\prime}}-2^{l}$. Hence $2^{k^{\prime}} \equiv 2^{l}$ $(\bmod m)$ and so $2^{k^{\prime}-l} \equiv 1(\bmod m)$ as m is odd. But $k^{\prime}<m-1=\phi(m)$, contradicting the assumption that 2 is a primitive root modulo m. If $l=k^{\prime}$, then $Z_{k^{\prime} l}=2^{k^{\prime}}$, which is not divisible by m since we have assumed that m is odd (as 2 is not a primitive root modulo 2).

