
Appendices

Other related work

Bandits with Knapsacks (BwK). This problem
was introduced by Badanidiyuru et al. (2018) and its
framework is as follows: there is a fixed set of n arms
denoted by X and there are d resources being con-
sumed. In each round t ∈ [T ], where T is a finite and
known time horizon, an algorithm picks an arm xt ∈ X
and upon committing to this action, it receives a re-
ward rt ∈ [0, 1] and consumes an amount ct,i ∈ [0, 1]
of resource i ∈ [d]. There is a hard budget constraint
Bi ∈ R+ for each resource i ∈ [d] and the algorithm
stops as soon as one or more budget constraint is vio-
lated. The overall reward of the algorithm equals the
sum of rewards in all the rounds preceding the stopping
time. The goal of the algorithm is to maximize the
expected total reward. Depending on the input model
for rewards and costs of the arms, the BwK has been
classified into stochastic BwK and adversarial BwK
categories. Our problem framework considers the ad-
versarial input model for the case with one resource,
i.e., d = 1. Nonetheless, the BwK problem is differ-
ent from our setting in the following several important
respects:

• The action set in the BwK problem is discrete and
finite whereas we consider convex and compact
domains X ⊂ Rn+.

• The rewards in the BwK problem are linear in
the arms. On the other hand, we consider more
general class of DR-submodular utility functions.

• The BwK problem only observes bandit feedback
for the reward and resource consumption while we
consider the full feedback setting.

• In the BwK problem, the budget constraints are
strict and the algorithm stops as soon as one of
the budget constraints is violated. However, in
our setting, we allow budget violations as long as
the total budget violation is sub-linear in the time
horizon T .

A Motivating applications

In the following, we present a number of other appli-
cations that could be cast into our framework. These
applications along with the online ad placement prob-
lem introduced in the Introduction section of the paper
show that the online continuous DR-submodular maxi-
mization problem with long-term budget constraints is
indeed well-motivated.
Crowdsourcing markets. In this problem, there ex-
ists a requester with a limited budget BT that sub-

mit jobs and benefits from them being completed.
There are n types of jobs available to be assigned
to workers arriving online. At each step t ∈ [T ], a
worker arrives and the requester has to assign a bun-
dle xt ∈ X = {x ∈ Rn+ : 0 � x � 1} of the jobs to
the worker. The worker has an unknown private cost
[pt]i ∀i ∈ [n] for performing one unit of the i-th job
where [pt]i denotes the i-th entry of vector pt. There-
fore, the total cost of the job assignments to this worker
equals 〈pt, xt〉. The rewards obtained by the requester
from this job assignment is a DR-submodular function
ft(xt). The DR property of the utility function cap-
tures the diminishing returns of assigning more jobs
to the worker, i.e., as the number of assigned jobs to
the worker increases, she has less time to devote to
each fixed job i ∈ [n] and therefore, the reward (qual-
ity of the completed task) obtained from the worker
performing one unit of job i decreases. In other words,
if x � y, ∇if(x) ≥ ∇if(y) ∀i ∈ [n] holds. The goal
is to maximize the overall rewards obtained by the
requester while the budget constraint is not violated as
well. Note that if the jobs are indivisible, for all t ∈ [T ],
the utility function ft corresponds to the multilinear
extension of the monotone submodular set function
Ft : 2n → R and using the lossless pipage rounding
technique of Calinescu et al. (2011), we allocate an
integral bundle of jobs to the workers at each step.
Welfare maximization with production cost. In
this problem, there is a seller who has n types of prod-
ucts for sale that may be produced on demand using a
fixed limited budget BT . At each step t ∈ [T ], an agent
(customer) arrives online and the seller has to assign a
bundle xt ∈ X = {x ∈ Rn+ : 0 � x � 1} of products to
the agent. Producing each unit of each product i ∈ [n]
costs an unknown amount [pt]i and the production cost
of the item may change over time {1, . . . , T} because
of the fluctuations of the prices of primitive resources.
Therefore, the total production cost at step t ∈ [T ]
equals 〈pt, xt〉. The agent has an unknown private
DR-submodular valuation function ft over the items
where the DR property characterizes the diversity of
the assigned bundle. Therefore, the utility obtained
by assigning the bundle xt equals ft(xt). The goal is
to maximize the overall valuation of the agents while
satisfying the budget constraint of the seller. Note that
if the products are indivisible, for all t ∈ [T ], the utility
function ft corresponds to the multilinear extension of
the monotone submodular set function Ft : 2n → R
and using the lossless pipage rounding technique of
Calinescu et al. (2011), we allocate an integral bundle
of products to the agents at each step.



B Proof of Lemma 4.1

Since λt+1 = [λt − µ∇λLt(xt, λt)]+ = [(1 − δµ2)λt +
µgt(xt)]+ and λ1 = 0, we have:

λt+1 ≥ (1− δµ2)λt + µgt(xt)

≥ (1− δµ2)2λt−1 + µgt(xt) + (1− δµ2)µgt−1(xt−1)

≥ µ
t∑

s=1

(1− δµ2)t−sgs(xs) + (1− δµ2)t λ1︸︷︷︸
=0

= µ

t∑
s=1

(1− δµ2)t−sgs(xs).

Similarly, we can derive the other inequality as follows:

λt+1 ≤ |(1− δµ2)λt + µgt(xt)|
≤ (1− δµ2)λt + µ|gt(xt)|
≤ (1− δµ2)2λt−1 + µ|gt(xt)|+ (1− δµ2)µ|gt−1(xt−1)|

≤ µ
t∑

s=1

(1− δµ2)t−s|gs(xs)|+ (1− δµ2)t λ1︸︷︷︸
=0

= µ

t∑
s=1

(1− δµ2)t−s|gs(xs)|.

C Proof of Lemma 4.2

We have:

W−1∑
τ=0

λt+τgt+τ (x∗W ) =

W−1∑
τ=0

λtgt+τ (x∗W ) +

W−1∑
τ=0

(
λt+τ − λt

)
gt+τ (x∗W )

≤ λt
W−1∑
τ=0

gt+τ (x∗W ) +

W−1∑
τ=0

(
|λt+τ − λt|

)
|gt+τ (x∗W )|

(a)

≤ λt

W−1∑
τ=0

gt+τ (x∗W ) +

W−1∑
τ=0

( τ∑
s=1

|λt+s − λt+s−1|︸ ︷︷ ︸
(b)

)
|gt+τ (x∗W )|︸ ︷︷ ︸

≤G

,

where (a) is due to the triangle inequality.
Using the result of Lemma 4.1, for all non-negative

integers r ≥ 1, we can write:

λr ≤ µ
r−1∑
u=1

(1− δµ2)r−1−u |gu(xu)|︸ ︷︷ ︸
≤G

≤ µG
r−1∑
u=1

(1− δµ2)r−1−u

≤ µG
∞∑
u=0

(1− δµ2)u

=
µG

1− (1− δµ2)

=
G

δµ
.

Consider the term (b). If (1 − δµ2)λt+s−1 +
µgt+s−1(xt+s−1) < 0 (equivalently, −λt+s−1 ≥
µ

1−δµ2 gt+s−1(xt+s−1)), we have:

(b) = | − λt+s−1|

≤ µ

1− δµ2
|gt+s−1(xt+s−1)|

≤ µ

1− δµ2
G

≤ 2µG.

We will choose parameters δ and µ in our algorithm
such that δµ2 � 1 holds.
Otherwise, if (1− δµ2)λt+s−1 + µgt+s−1(xt+s−1) ≥ 0,
we have:

(b) = |(1− δµ2)λt+s−1 + µgt+s−1(xt+s−1)− λt+s−1|
= | − δµ2λt+s−1 + µgt+s−1(xt+s−1)|
≤ δµ2λt+s−1 + µ|gt+s−1(xt+s−1)|

≤ δµ2 G

δµ
+ µG

= 2µG.

Therefore, we can write:

W−1∑
τ=0

λt+τgt+τ (x∗W ) ≤

λt

W−1∑
τ=0

gt+τ (x∗W ) +

W−1∑
τ=0

( τ∑
s=1

2µG
)
G

= λt

W−1∑
τ=0

gt+τ (x∗W ) +

W−1∑
τ=0

2µG2τ

= λt

W−1∑
τ=0

gt+τ (x∗W ) + µG2W (W − 1).



D Proof of Lemma 4.3

Fix k ∈ [K]. Using L-smoothness of the function Lt,
we have:

Lt(x(k+1)
t , λt) ≥

Lt(x(k)t , λt) +
1

K
〈∇xLt(x(k)t , λt), v

(k)
t 〉 −

L

2K2
‖v(k)t ‖22

(a)

≥ Lt(x(k)t , λt) +
1

K
〈∇xLt(x(k)t , λt), v

(k)
t 〉 −

LR2

2K2

= Lt(x(k)t , λt) +
1

K
〈∇xLt(x(k)t , λt), v

(k)
t − x∗W 〉

+
1

K
〈∇xLt(x(k)t , λt), x

∗
W 〉 −

LR2

2K2

= Lt(x(k)t , λt) +
1

K
〈∇xLt(x(k)t , λt), v

(k)
t − x∗W 〉

+
1

K
〈∇ft(x(k)t ), x∗W 〉 −

1

K
λt〈∇gt(x(k)t ), x∗W 〉 −

LR2

2K2

(b)
= Lt(x(k)t , λt) +

1

K
〈∇xLt(x(k)t , λt), v

(k)
t − x∗W 〉

+
1

K
〈∇ft(x(k)t ), x∗W 〉 −

1

K
λtgt(x

∗
W )− 1

K
λt
BT
T
− LR2

2K2
,

where (a) is due to the assumption that diam(X ) ≤
R. Note that in order to obtain (b), we have used
linearity of the budget functions for all t ∈ [T ] to write

〈∇gt(x(k)t ), x∗W 〉 = 〈pt, x∗W 〉 = gt(x
∗
W ) + BT

T . More
general assumptions such as convexity would not be
enough for the proof to go through.
Considering that ft(x) is monotone DR-submodular
for all t ∈ [T ], we can write:

ft(x
∗
W )− ft(x(k)t )

(c)

≤ ft(x
∗
W ∨ x

(k)
t )− ft(x(k)t )

(d)

≤ 〈∇ft(x(k)t ), (x∗W ∨ x
(k)
t )− x(k)t 〉

= 〈∇ft(x(k)t ), (x∗W − x
(k)
t ) ∨ 0〉

(e)

≤ 〈∇ft(x(k)t ), x∗W 〉,

where for a, b ∈ Rn, a ∨ b denotes the entry-wise
maximum of vectors a and b, (c) and (e) are due to
monotonocity of ft and (d) uses concavity of ft along
non-negative directions.
Therefore, we conclude:

Lt(x(k+1)
t , λt) ≥ Lt(x(k)t , λt)

+
1

K
〈∇xLt(x(k)t , λt), v

(k)
t − x∗W 〉

+
1

K

(
ft(x

∗
W )− ft(x(k)t )

)
− 1

K
λtgt(x

∗
W )

− 1

K
λt
BT
T
− LR2

2K2
.

Equivalently, we can write:

ft(x
∗
W )− ft(x(k+1)

t ) ≤ (1− 1

K
)
(
ft(x

∗
W )− ft(x(k)t )

)
− λt

(
gt(x

(k+1)
t )− gt(x(k)t )

)
+

1

K
λtgt(x

∗
W ) +

1

K
λt
BT
T

+
LR2

2K2
+

1

K
〈∇Lt(x(k)t , λt), x

∗
W − v

(k)
t 〉

= (1− 1

K
)
(
ft(x

∗
W )− ft(x(k)t )

)
+

1

K

[
λt
BT
T
− λt〈pt, v(k)t 〉

+ λtgt(x
∗
W ) +

LR2

2K
+ 〈∇Lt(x(k)t , λt), x

∗
W − v

(k)
t 〉
]
.

(1)

Replacing t by t+ τ in inequality (1) and taking the
sum over τ ∈ {0, . . . ,W−1} and t ∈ {1, . . . , T−W+1},
we obtain:

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (x

(k+1)
t+τ )

)
≤

(1− 1

K
)

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (x

(k)
t+τ )

)
+

1

K

T−W+1∑
t=1

W−1∑
τ=0

[
− λt+τ 〈pt+τ , v(k)t+τ 〉+ λt+τgt+τ (x∗W )

+ λt+τ
BT
T

+
LR2

2K
+ 〈∇Lt+τ (x

(k)
t+τ , λt+τ ), x∗W − v

(k)
t+τ 〉

]
.

(2)

Applying inequality (2) recursively for all k ∈
{1, . . . ,K}, we obtain:

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (x

(K+1)
t+τ︸ ︷︷ ︸
=xt+τ

)
)
≤

ΠK−1
k=0 (1− 1

K
)

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (x

(0)
t+τ )

)
+

K−1∑
k=0

1

K
ΠK−1
j=k+1(1− 1

K
)

T−W+1∑
t=1

W−1∑
τ=0

[
− λt+τ 〈pt+τ , v(k)t+τ 〉

+ λt+τgt+τ (x∗W ) + λt+τ
BT
T

+
LR2

2K

+ 〈∇Lt+τ (x
(k)
t+τ , λt+τ ), x∗W − v

(k)
t+τ 〉

]
. (3)

Using the regret bound of Online Gradient Ascent
instance Ek ∀k ∈ [K], the following holds (Theorem



3.1. of Hazan et al., 2016):

T∑
t=1

〈∇xLt(x(k)t , λt), x
∗
W − v

(k)
t 〉 =

T∑
t=1

〈∇xLt(x(k)t , λt), x
∗
W 〉 −

T∑
t=1

〈∇xLt(x(k)t , λt), v
(k)
t 〉

≤ max
x

T∑
t=1

〈∇xLt(x(k)t , λt), x〉 −
T∑
t=1

〈∇xLt(x(k)t , λt), v
(k)
t 〉

≤ R2

µ
+
µ

2

T∑
t=1

‖∇xLt(x(k)t , λt)‖2

=
R2

µ
+
µ

2

T∑
t=1

‖∇xft(x(k)t )− λtpt‖2

(a)

≤ R2

µ
+
µ

2

T∑
t=1

(
2‖∇xft(x(k)t )‖2 + 2λ2t‖pt‖2

)
(b)

≤ R2

µ
+ β2µT + β2µ

T∑
t=1

λ2t ,

where (a) uses the inequality ‖a + b‖2 ≤ 2‖a‖2 +
2‖b‖2 ∀a, b ∈ Rn and (b) is due to β-Lipschitzness
of functions ft, gt for all t ∈ [T ].
Using the inequality (1− 1

K )K ≤ 1
e in (3), we have:

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (xt+τ )

)
≤

1

e

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (x

(0)
t+τ )

)
+

T−W+1∑
t=1

W−1∑
τ=0

K−1∑
k=0

1

K

[
− λt+τ 〈pt+τ , v(k)t+τ 〉+ λt+τgt+τ (x∗W )

+ λt+τ
BT
T

+
LR2

2K
+ 〈∇Lt+τ (x

(k)
t+τ , λt+τ ), x∗W − v

(k)
t+τ 〉

]
=

1

e

T−W+1∑
t=1

W−1∑
τ=0

(
ft+τ (x∗W )− ft+τ (0)︸ ︷︷ ︸

=0

)

+

T−W+1∑
t=1

W−1∑
τ=0

[
− λt+τgt+τ (xt+τ )− λt+τ

BT
T

+ λt+τgt+τ (x∗W ) + λt+τ
BT
T

+
LR2

2K

+

K−1∑
k=0

1

K
〈∇Lt+τ (x

(k)
t+τ , λt+τ ), x∗W − v

(k)
t+τ 〉

]
. (4)

Rearranging the terms in (4), we obtain:

T−W+1∑
t=1

W−1∑
τ=0

(
(1− 1

e
)ft+τ (x∗W )− ft+τ (xt+τ )

)
︸ ︷︷ ︸

(a)

+

T−W+1∑
t=1

W−1∑
τ=0

λt+τgt+τ (xt+τ )︸ ︷︷ ︸
(b)

≤

LR2

2K
W (T −W + 1) +

T−W+1∑
t=1

W−1∑
τ=0

λt+τgt+τ (x∗W )︸ ︷︷ ︸
(c)

+

K−1∑
k=0

1

K

T−W+1∑
t=1

W−1∑
τ=0

〈∇Lt+τ (x
(k)
t+τ , λt+τ ), x∗W − v

(k)
t+τ 〉︸ ︷︷ ︸

(d)

.

(5)

(a) could be lower bounded as follows:

(a) = WRT −
W−1∑
i=1

(W − i)
(
[(1− 1

e
)fi(x

∗
W )− fi(xi)]

+ [(1− 1

e
)fT−i+1(x∗W )− fT−i+1(xT−i+1)]

)
≥WRT − 2F

W−1∑
i=1

(W − i)

= WRT − FW (W − 1). (6)

Using Lemma 4.1 with (1− δµ2) ≤ 1, we have:

(b) = W

T∑
t=1

λtgt(xt)

−
W−1∑
i=1

(W − i)
(
λigi(xi) + λT−i+1gT−i+1(xT−i+1)

)
≥W

T∑
t=1

λtgt(xt)

−
W−1∑
i=1

(W − i)
(
µ(i− 1)G2 + µ(T − i)G2

)
≥W

T∑
t=1

λtgt(xt)−
G2

2
µW (W − 1)(T − 1). (7)

In order to bound (c), we use Lemma 4.2 and write:

(c) ≤
T−W+1∑
t=1

(
λt

W−1∑
τ=0

gt+τ (x∗W )︸ ︷︷ ︸
≤0

+G2µW (W − 1)
)

≤ µG2W (W − 1)(T −W + 1). (8)



Finally, for a fixed k ∈ [K], we can bound (d) as follows:

(d) = W

T∑
t=1

〈∇Lt(x(k)t ), x∗W − v
(k)
t 〉

−
W−1∑
i=1

(W − i)
(
[〈∇Li(x(k)i ), x∗W − v

(k)
i 〉︸ ︷︷ ︸

≥−βR(1+λi)

]

+ [〈∇LT−i+1(x
(k)
T−i+1), x∗W − v

(k)
T−i+1〉︸ ︷︷ ︸

≥−βR(1+λT−i+1)

]
)

≤ R2W

µ
+ β2µTW + β2µW

T∑
t=1

λ2t

+

W−1∑
i=1

(W − i)
(
2βR+ βR λi︸︷︷︸

≤(i−1)µG

+βR λT−i+1︸ ︷︷ ︸
≤(T−i)µG

)

=
R2W

µ
+ β2µTW + β2µW

T∑
t=1

λ2t + βRW (W − 1)

+
βRG

2
µW (W − 1)(T − 1). (9)

Using the regret bound for Online Gradient Descent
(Theorem 3.1. of Hazan et al., 2016), we have:

T∑
t=1

(
Lt(xt, λt)− Lt(xt, λ)

)
=

T∑
t=1

(
− λtgt(xt) +

δµ

2
λ2t + λgt(xt)−

δµ

2
λ2
)

≤ λ2

µ
+
µ

2

T∑
t=1

‖∇λLt(xt, λt)‖2

≤ λ2

µ
+
µ

2

T∑
t=1

(
− gt(xt) + δµλt

)2
(a)

≤ λ2

µ
+
µ

2

T∑
t=1

(2g2t (xt) + 2δ2µ2λ2t )

≤ λ2

µ
+G2µT + δ2µ3

T∑
t=1

λ2t , (10)

where we use (a+ b)2 ≤ 2a2 + 2b2 ∀a, b ∈ R to derive
inequality (a).
Combining (5), (6), (7), (8), (9) and (10), dividing both

sides by W and rearranging the terms, we conclude:

RT + CTλ+
δµ

2

T∑
t=1

λ2t −
δµ

2
Tλ2 − λ2

µ
≤

(F + βR)(W − 1) +
G

2
(G+ βR)µ(W − 1)(T − 1)

+
R2

µ
+ (G2 + β2)µT +G2µ(W − 1)(T −W + 1)

+
LR2

2K
(T −W + 1) + (δ2µ3 + β2µ)

T∑
t=1

λ2t .

Note that if T is large enough such that WT ≥ 16R2

holds, we can write:

δ2µ2 + β2 = 16β4.
R2

β2WT
+ β2

=
16R2

WT
β2 + β2

≤ 2β2

=
δ

2
.

Therefore, we can remove the terms
∑T
t=1 λ

2
t from both

sides of the inequality. Ignoring these terms, we obtain
the desired result.
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