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Abstract

Submodular maximization with a cardinal-
ity constraint can model various problems,
and those problems are often very large in
practice. For the case where objective func-
tions are monotone, many fast approxima-
tion algorithms have been developed. The
stochastic greedy algorithm (SG) is one such
algorithm, which is widely used thanks to
its simplicity, efficiency, and high empirical
performance. However, its approximation
guarantee has been proved only for mono-
tone objective functions. When it comes to
non-monotone objective functions, existing
approximation algorithms are inefficient rela-
tive to the fast algorithms developed for the
case of monotone objectives. In this paper,
we prove that SG (with slight modification)
can achieve almost 1/4-approximation guar-
antees in expectation in linear time even if
objective functions are non-monotone. Our
result provides a constant-factor approxima-
tion algorithm with the fewest oracle queries
for non-monotone submodular maximization
with a cardinality constraint. Experiments
validate the performance of (modified) SG.

1 INTRODUCTION

We consider the following submodular function maxi-
mization problem with a cardinality constraint:

maximize
S⊆V

f(S) subject to |S| ≤ k, (1)

where V is a finite ground set of n elements, f : 2V → R
is a non-negative submodular function, and k (≤ n)
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is a positive integer. As is conventionally done, we
assume the value oracle model (i.e., f(·) is a black-box
function) and discuss the complexity of algorithms in
terms of the number of oracle queries, which we call the
oracle complexity. Since the evaluation of f is often
expensive, to develop oracle-efficient algorithms has
been an important research subject.

For the case where f is monotone, the standard greedy
algorithm can achieve a (1− 1/e)-approximation guar-
antee with O(kn) queries (Nemhauser et al., 1978); this,
however, is often too costly when applied to practical
large-size instances. To deal with such large instances,
various fast algorithms have been developed (Badani-
diyuru and Vondrák, 2014; Wei et al., 2014). The
stochastic greedy algorithm (SG) (Mirzasoleiman et al.,
2015) is one such algorithm: In each iteration, instead of
finding the element with the maximum marginal gain at
the cost of up to n queries, we sample (roughly) n

k ln 1
ε

elements uniformly at random, where ε ∈ (e−k, 1), and
choose the element with the largest marginal gain out
of the sampled elements. SG requires about n ln 1

ε
oracle queries in total, and it is known to achieve a
(1− 1/e− ε)-approximation guarantee if f is monotone.
Thanks to its simplicity, efficiency, strong guarantee,
and high empirical performance, SG has been used in
various studies (Song et al., 2017; Hashemi et al., 2018).

Non-monotone submodular functions also appear in
many practical scenarios: sensor placement (Krause
et al., 2008), document summarization (Lin and Bilmes,
2010), feature selection (Iyer and Bilmes, 2012), and
recommendation (Mirzasoleiman et al., 2016). Unfor-
tunately, the problem becomes much harder if f is
non-monotone; for example, the approximation ratio of
the greedy algorithm can become arbitrarily poor (at
most 1/k-approximation) in general as in (Pan et al.,
2014, Appendix H.1). Although various constant-factor
approximation algorithms for non-monotone objectives
have been developed (Buchbinder et al., 2014, 2017;
Kuhnle, 2019), they often require much more oracle
queries than the aforementioned fast algorithms devel-
oped for monotone objectives, including SG. Therefore,
non-monotone submodular maximization with a cardi-
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Table 1: Comparison of Fast Algorithms for Non-monotone Submodular Maximization with Cardinality Constraint.

Approximation ratio Oracle complexity Remark

Our result 1
4 (1− δ)2 n ln 2 + nδ k

k−1 (expectation) Randomized
max{n, k + 2k

δ } × ln 2 + k (worst case)

Buchbinder et al. (2017) 1/e− ε O
(
n
ε2 ln 1

ε

)
Randomized

Kuhnle (2019) 1/4− ε O
(
n
ε ln n

ε

)
Deterministic

nality constraint is currently awaiting oracle-efficient
constant-factor approximation algorithms.

1.1 Our Contribution

We prove approximation guarantees of (modified) SG
for non-monotone objective functions, thus provid-
ing oracle-efficient approximation algorithms for non-
monotone submodular maximization with a cardinality
constraint. Below we detail our contributions:

• Assuming n ≥ 3k, we prove that SG can achieve a
1
4

(
1− 2 · k−1n−k

)2
-approximation guarantee in ex-

pectation by setting ε at 1
2 + k−1

n−k . Namely, if
n � k, SG can achieve an approximation ratio
close to 1/4 with about n ln 2 queries.

• We develop modified SG such that the sample size
in each iteration is also stochastic. The resulting al-
gorithm achieves a 1

4 (1−δ)2-approximation guaran-
tee in expectation. The expected and worst-case or-
acle complexities are bounded by n ln 2 +nδ k

k−1 =

O(n) and max{n, k + 2k
δ } × ln 2 + k ≤ O(n/δ),

respectively. Namely, modified SG is a random-
ized linear-time constant-factor approximation al-
gorithm. As will be discussed in Section 1.2, this
result provides a constant-factor approximation
algorithm with the fewest oracle queries.

• Experiments confirm the efficiency and high perfor-
mance of (modified) SG; they run much faster and
require far fewer queries than existing algorithms
while achieving comparable objective values. The
results demonstrate that we can use (modified)
SG as practical and theoretically guaranteed algo-
rithms even for non-monotone objectives.

Note, however, that the approximation guarantees are
required to hold only in expectation; the worst-case
approximation ratio can be arbitrarily bad. This is
why it is possible to achieve the constant-factor approx-
imation guarantee with oracle queries possibly fewer
than n, which may be counter-intuitive at first glance.

1.2 Related Work

SG was proposed by Mirzasoleiman et al. (2015) as an
accelerated version of the well-known greedy algorithm
(Nemhauser et al., 1978) for monotone submodular
maximization with a cardinality constraint. Hassidim
and Singer (2017) studied a variant of SG for monotone
objectives and proved a guarantee that holds with a
high probability. Guarantees of SG for monotone set
functions with approximate submodularity have also
been widely studied (Khanna et al., 2017; Hashemi
et al., 2018; de Veciana et al., 2019). Harshaw et al.
(2019) studied SG for maximizing set functions written
as f = g − c, where g is monotone weakly submod-
ular and c is non-negative modular; while f can be
non-monotone, they do not consider the whole class of
non-monotone submodular functions and their approx-
imation guarantee cannot be written with a multiplica-
tive factor unlike our results.

Constrained non-monotone submodular maximization
has been extensively studied (Lee et al., 2010; Gupta
et al., 2010; Feldman et al., 2011). For the cardinality-
constrained case, Buchbinder et al. (2014) proposed the
random greedy algorithm, which behaves differently
than SG. Specifically, it chooses an element uniformly at
random from the top-k most beneficial elements in each
iteration. While it achieves a 1/e-approximation guar-
antee, its oracle complexity is O (kn), which is as costly
as the standard greedy algorithm. They also achieved
the best approximation ratio, 1/e + 0.004, by combin-
ing the random greedy and continuous double greedy
algorithms. Buchbinder and Feldman (2018) derandom-
ized the random greedy algorithm and achieved a 1/e-
approximation guarantee with O(k2n) oracle queries;
1/e is the best ratio achieved by deterministic algo-
rithms. As regards hardness results, Vondrák (2013)
proved that to improve a 1/2-approximation guarantee
requires exponentially many queries when k = n/2.
For the case of k = o(n), Gharan and Vondrák (2011)
proved a stronger hardness of 0.491-approximation.

Regarding oracle-efficient algorithms, Buchbinder et al.
(2017) proposed the random sampling algorithm
(RS), which achieves a (1/e − ε)-approximation with
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O
(
n
ε2 ln 1

ε

)
oracle queries; to the best of our knowledge,

this is the only existing linear-time constant-factor ap-
proximation algorithm. More precisely, RS requires at
least 8n

ε2 ln 2
ε queries; hence, to obtain a non-negative ap-

proximation ratio, we need at least 8e2n ln(2e) ≥ 100n
queries. On the other hand, the expected and worst-
case oracle complexities of the modified SG are at
most n ln 2 + nδ k

k−1 and max{n, k + 2k
δ } × ln 2 + k,

respectively. Therefore, taking the constant factors
into account, SG is far faster than RS. In Section 4,
we experimentally confirm that this gap is crucial in
practice. Buchbinder et al. (2017) also developed an-
other algorithm that achieves a (1/e−ε)-approximation

guarantee with O
(
k
√

n
ε ln k

ε + n
ε ln k

ε

)
oracle queries

in expectation. Since k = Θ(n) in general, it is more
costly than SG. Recently, Kuhnle (2019) proposed a
deterministic (1/4− ε)-approximation algorithm with
O(nε ln n

ε ) queries, which is the best oracle complexity
among those of deterministic algorithms. Note that it
is also slower than SG due to the presence of the lnn
factor. Table 1 compares the above results and ours.

We remark that our work is different from (Qian et al.,
2018; Ji et al., 2020), which are seemingly overlap-
ping with ours. Their algorithms for non-monotone
objectives are not SG-style ones but variants of the
aforementioned random greedy algorithm. Hence, un-
like SG and the above efficient algorithms, their algo-
rithms generally require O(kn) queries. Approxima-
tion algorithms for non-monotone submodular maxi-
mization with more general constraints have also been
studied (Mirzasoleiman et al., 2016; Feldman et al.,
2017). If those algorithms are applied to the cardinality-
constrained case, we need Ω(kn) queries in general.

Recently, parallel non-monotone submodular maximiza-
tion algorithms have been widely studied (Balkanski
et al., 2018; Ene et al., 2019; Fahrbach et al., 2019).
Unlike us, they are interested in a different complexity
framework called the adaptive complexity, which is
defined with the number of sequential rounds required
when polynomially many oracle queries can be executed
in parallel. As summarized in (Fahrbach et al., 2019),
such parallel algorithms require more than Ω(n) oracle
queries; among them, a (0.039− ε)-approximation al-
gorithm of (Fahrbach et al., 2019) requires the fewest
queries, O( nε2 ln k), in expectation. Unlike those algo-
rithms, SG requires only O(n) queries in expectation.

1.3 Notation and Definitions

Given a set function f : 2V → R, we define fX(Y ) :=
f(X ∪ Y ) − f(X) for any X,Y ⊆ V . We sometimes
abuse the notation and regard v ∈ V as a subset
(e.g., we use fX(v) instead of fX({v})). We say f
is non-negative if f(X) ≥ 0 for any X ⊆ V , monotone

Algorithm 1 Stochastic Greedy (SG)

1: A0 ← ∅
2: for i = 1, . . . , k do
3: Get R by sampling dse elements from V \Ai−1
4: ai ← argmaxa∈R fAi−1(a)
5: if fAi−1

(ai) > 0 then Ai ← Ai−1 ∪ {ai}
6: else Ai ← Ai−1

7: return Ak

if fX(v) ≥ 0 for any X ⊆ V and v /∈ X, normal-
ized if f(∅) = 0, and submodular if f(X) + f(Y ) ≥
f(X ∪ Y ) + f(X ∩ Y ) for any X,Y ⊆ V , which is also
equivalently characterized by the following diminishing
return property: fX(v) ≥ fY (v) for any X ⊆ Y and
v /∈ Y . In this paper, all set functions are assumed
to be non-negative and submodular (not necessarily
monotone and normalized) unless otherwise specified.
In what follows, we use A∗ to denote an optimal solu-
tion to problem (1).

1.4 Organization

Section 2 reviews the details of SG and the proof for
the case of monotone objectives. In Section 3 we prove
the approximation guarantees of (modified) SG for the
case of non-monotone objectives. Section 4 presents the
experimental results. Section 5 concludes this paper.
All missing proofs are presented in the appendix.

2 STOCHASTIC GREEDY AND
PROOF FOR MONOTONE CASE

We here review the details of SG and the proof for
the case of monotone objectives (Mirzasoleiman et al.,
2015), which will help us to understand the main dis-
cussion presented in Section 3.

Let s := n
k ln 1

ε . In each iteration of SG (Algorithm 1),
we choose the best element from dse elements sampled
uniformly at random from V \Ai−1 without replace-
ment. We remark that Algorithm 1 is slightly different
from the original SG (Mirzasoleiman et al., 2015): since
the marginal gain can be negative due to the lack of
monotonicity, we let Algorithm 1 to reject elements
with non-positive marginal gains as in Steps 5 and 6
(elements with zero gains are rejected to simplify the
discussion in Section 3.2). As is usual with the proofs of
greedy-style algorithms, we first consider lower bound-
ing the marginal gain of each iteration as follows:

Lemma 1 (cf. (Mirzasoleiman et al., 2015)). If f is
non-negative and submodular, for i = 1, . . . , k, we have

E[f(Ai)− f(Ai−1)] ≥ 1− ε
k

E[fAi−1
(A∗)].
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While Mirzasoleiman et al. (2015) proved this lemma
implicitly relying on the monotonicity of f , we can
prove it even if f is non-monotone due to the non-
negativity of E[f(Ai) − f(Ai−1)], which is obtained
from Steps 5 and 6 (see, Appendix A for the proof).
This non-monotone version of the lemma will play an
important role in the proof of our main result presented
in Section 3.

We now see how to prove the (1−1/e−ε)-approximation
guarantee of SG for the case of monotone objectives.
Assume that f is monotone and normalized. We have
E[f(A∗ ∪Ai−1)] ≥ f(A∗) due to the monotonicity, and
thus Lemma 1 implies

E[f(Ai)− f(Ai−1)] ≥ 1− ε
k

(f(A∗)− E[f(Ai−1)]).

By using this inequality for i = 1, . . . , k and f(∅) = 0,
we obtain the desired result as follows:

E[f(Ak)] ≥ f(A∗)−
(

1− 1− ε
k

)k
(f(A∗)− f(∅))

≥
(

1− 1

e1−ε

)
f(A∗) ≥

(
1− 1

e
− ε
)
f(A∗).

In the above proof, the inequality, E[f(A∗ ∪Ai−1)] ≥
f(A∗), obtained with the monotonicity, played a key
role. As will be shown in Section 3.1, we can derive
a variant of the inequality for non-monotone f by us-
ing the randomness of SG, which enables us to prove
approximation guarantees without the monotonicity.

3 PROOF FOR NON-MONOTONE
CASE

We present approximation guarantees of (modified) SG
for non-monotone objectives. In Section 3.1, we prove

the 1
4

(
1− 2 · k−1n−k

)2
-approximation guarantee of SG,

and in Section 3.2 we prove the 1
4 (1−δ)2-approximation

guarantee of modified SG.

3.1 1
4

(
1− 2 · k−1n−k

)2
-approximation of SG

We here make the following assumption:
Assumption 1. We assume that k ≥ 2 and n ≥ 3k
hold and that ε is set so as to satisfy 1/e ≤ ε < 1.

The first assumption, k ≥ 2, is natural since, if k = 1,
an α-approximation guarantee (∀α ∈ [0, 1]) can be
achieved in expectation by examining dαne elements,
which means any approximation ratio can be achieved
in linear time. Hence we assume k ≥ 2 in what follows.
The second assumption, n ≥ 3k, will be removed in
Section 3.2. The third assumption, 1/e ≤ ε < 1, can
be easily satisfied since ε is a controllable input.

We derive a variant of E[f(A∗ ∪ Ai−1)] ≥ f(A∗) for
non-monotone f . To this end, we use the following
lemma:
Lemma 2 (Buchbinder et al. (2014), Lemma 2.2). Let
g : 2V → R be submodular. Denote by A(p) a random
subset of A ⊆ V where each element appears with a
probability of at most p (not necessarily independently).
Then, E[g(A(p))] ≥ (1− p)g(∅).

Namely, if Ai−1 includes each a ∈ V with a probability
of at most p, then E[f(A∗∪Ai−1)] ≥ (1−p)f(A∗) holds.
Below we upper bound p by leveraging the randomness
of SG and prove the following lemma:
Lemma 3. Assume that 1/e ≤ ε < 1 holds. Then, for
i = 0, . . . , k, we have

E[f(A∗ ∪Ai)] ≥
(

1− 1

k
ln

1

ε
− 2

n− k

)i
f(A∗). (2)

Proof of Lemma 3. If i = 0, the lemma holds since
A0 = ∅. Below we assume i ≥ 1. In the i-th iteration,
conditioned on Ai−1, each a ∈ V \Ai−1 stays outside of
Ai with a probability of at least 1− dse

|V \Ai−1| . Hence,
after i iterations (i = 1, . . . , k), each a ∈ V stays
outside of Ai with a probability of at least

i∏
j=1

(
1− dse
|V \Aj−1|

)
≥

i∏
j=1

(
1− s+ 1

n− k

)

=

(
1− 1

k
ln

1

ε
− 1 + ln 1

ε

n− k

)i
.

Therefore, from ε ≥ 1/e, we obtain

Pr[a ∈ Ai] ≤ 1−
(

1− 1

k
ln

1

ε
− 2

n− k

)i
.

We define g(A) := f(A ∪ A∗), which we can easily
confirm to be submodular. From Lemma 2, we obtain

E[f(A∗ ∪Ai)] = E[g(Ai)]

≥
(

1− 1

k
ln

1

ε
− 2

n− k

)i
E[g(∅)]

=

(
1− 1

k
ln

1

ε
− 2

n− k

)i
f(A∗).

Hence the lemma holds.

We then consider lower bounding the RHS of (2) for
i = k − 1. Intuitively, if n � k and the 2

n−k term
is ignorably small, the RHS can be lower bounded
by εf(A∗) since

(
1− 1

k ln 1
ε

)k−1 ≈ e− ln 1
ε = ε. By

evaluating the RHS more carefully using Assumption 1,
we can obtain the following lemma (proof is provided
in Appendix B):
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Lemma 4. If Assumption 1 holds, we have(
1− 1

k
ln

1

ε
− 2

n− k

)k−1
≥ ε− 2 · k − 1

n− k .

We are now ready to prove the approximation guarantee
of SG for the case of non-monotone objectives.

Theorem 1. Let A be the output of Algorithm 1. If
Assumption 1 holds, we have

E[f(A)] ≥
(
ε− 2 · k − 1

n− k

)
(1− ε)f(A∗).

By setting ε = 1
2 + k−1

n−k , we obtain

E[f(A)] ≥ 1

4

(
1− 2 · k − 1

n− k

)2

f(A∗).

Note that 1/e ≤ 1
2 + k−1

n−k < 1 holds since n ≥ 3k. The
following proof is partly inspired by the technique used
in (Buchbinder et al., 2014).

Proof of Theorem 1. We prove

E[f(Ai)]

f(A∗)
≥ i

k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−1
(1− ε) (3)

for i = 0, . . . , k by induction. If i = 0, the RHS of
(3) becomes 0, and so the inequality holds due to the
non-negativity of f . Assume that (3) holds for every
i′ = 0, . . . , i− 1. Then we have

E[f(Ai)]

= E[f(Ai−1)] + E[f(Ai)− f(Ai−1)]

≥ E[f(Ai−1)] +
1− ε
k

E [f(A∗ ∪Ai−1)− f(Ai−1)]

(Lemma 1)

=

(
1− 1− ε

k

)
E[f(Ai−1)]

+
1− ε
k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−1
f(A∗)

(Lemma 3)

≥
(

1− 1

k
ln

1

ε
− 2

n− k

)
E[f(Ai−1)]

+
1− ε
k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−1
f(A∗)

(1− ε ≤ ln 1
ε ≤ ln 1

ε + 2k
n−k )

≥
(

1− 1

k
ln

1

ε
− 2

n− k

)
× i− 1

k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−2
(1− ε)f(A∗)

+
1− ε
k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−1
f(A∗)

(Assumption of induction)

=
i

k

(
1− 1

k
ln

1

ε
− 2

n− k

)i−1
(1− ε)f(A∗).

Hence (3) holds for i = 0, . . . , k; for i = k, we have

E[f(Ak)] ≥
(

1− 1

k
ln

1

ε
− 2

n− k

)k−1
(1− ε)f(A∗).

Finally, by using Lemma 4, we can lower bound the
approximation ratio by

(
ε− 2 · k−1n−k

)
(1− ε).

Note that, while Lemma 1 motivates us to let ε to be
small, the opposite is true regarding Lemma 3. Thus we
set ε ≈ 1/2 to balance the effects of the two inequalities.

3.2 1
4 (1− δ)2-approximation of Modified SG

As shown in Section 3.1, the approximation ratio of
SG becomes close to 1/4 if n� k. In this section, we
first consider improving the ratio by adding sufficiently
many dummy elements to V . We then present mod-
ified SG that can achieve a 1

4 (1 − δ)2-approximation
guarantee without using dummy elements explicitly.

Let D be a set of dummy elements and V = V ∪ D;
i.e., we have fA(a) = 0 for any A ⊆ V and a ∈ D. We
add sufficiently many dummy elements to V so that
N := |V | becomes equal to max{n, k + d(2k − 1)/δe},
where δ ∈ (0, 1) is an input parameter; smaller δ means
that we add more dummy elements. Note that we have
N ≥ k + 2(k − 1)/δ and N ≥ n. We can also easily
prove N ≥ 3k by induction; this enables us to remove
the second assumption of Assumption 1.

We now consider performing SG on V . Let A be the
output of SG and A∗ = argmaxS⊆V :|S|≤k f(S). Thanks
to Theorem 1, we have

E[f(A)] ≥
(
ε− 2 · k − 1

N − k

)
(1− ε)f(A∗).

If we set ε = 1
2 + k−1

N−k , we obtain

E[f(A)] ≥ 1

4

(
1− 2 · k − 1

N − k

)2

f(A∗)

≥ 1

4
(1− δ)2f(A∗) ≥ 1

4
(1− δ)2f(A∗),

where the second inequality comes from N ≥ k+ 2(k−
1)/δ and the last inequality comes from V ⊆ V . Fur-
thermore, since no elements with zero marginal gains
are added to the current solution in each iteration, A
includes no elements in D (i.e., A ⊆ V ). Therefore, A
is a feasible 1

4 (1− δ)2-approximate solution.
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Algorithm 2 Modified SG

1: N ← max{n, k + d(2k − 1)/δe} and s← N
k ln 1

ε
2: A0 ← ∅
3: for i = 1, . . . , k do
4: Draw r ∼ H (dse , |V \Ai−1|, N − |Ai−1|)
5: Get R by sampling r elements from V \Ai−1
6: ai ← argmaxa∈R fAi−1

(a)
7: if fAi−1

(ai) > 0 then Ai ← Ai−1 ∪ {ai}
8: else Ai ← Ai−1

9: return Ak

We then discuss the oracle complexity of performing
SG on V . In each iteration, we sample dse elements
to get R, where s := N

k ln 1
ε , and then we compute

ai = argmaxa∈R fAi−1(a). Note that, if a ∈ D, we do
not need to compute fAi−1(a) since the value is always
equal to 0; i.e., any a ∈ D is taken out of consideration.
Therefore, only the number of elements belonging to
R∩V matters to the oracle complexity, which conforms
to the hypergeometric distribution with a population
of size |V \Ai−1|, dse draws, and |V \Ai−1| targets. We
denote the distribution by H(dse , |V \Ai−1|, |V \Ai−1|).
Note that its mean is bounded as follows:

dse |V \Ai−1||V \Ai−1|
≤
(
N

k
ln

1

ε
+ 1

)
n

N − k

≤ n

k
ln

1

ε
+

n

k − 1
δ,

where the last inequality comes from N ≥ k + 2(k −
1)/δ and ε ≥ 1/e. Thus, the total oracle complexity
is at most n ln 1

ε + nδ k
k−1 in expectation, which can

be arbitrarily close to n ln 1
ε if δ is sufficiently small.

Therefore, by setting ε = 1
2+ k−1

N−k ≥ 1
2 , we can achieve a

1
4 (1−δ)2-approximation guarantee with at most n ln 2+

nδ k
k−1 oracle queries in expectation. Furthermore, the

worst-case oracle complexity is also bounded by

k dse = N ln
1

ε
+ k ≤ max

{
n, k +

2k

δ

}
× ln

1

ε
+ k.

Finally, we see that no dummy elements are needed
explicitly. As mentioned above, only the elements
in R ∩ V affects the behavior of SG performed on
V , and so an algorithm with the same behavior can
be obtained by sampling R ⊆ V as follows: Draw
r ∈ [0, dse] from the hypergeometric distribution
H (dse , |V \Ai−1|, N − |Ai−1|) and get R by sampling
r elements uniformly at random from V \Ai−1 without
replacement. Algorithm 2, called modified SG, presents
the details. To conclude, we obtain the following result:
Theorem 2. Fix ε and δ so that ε ∈ [1/e, 1) and
δ ∈ (0, ε) hold, respectively. Then, Algorithm 2 outputs
solution A that satisfies

E[f(A)] ≥ (ε− δ) (1− ε)f(A∗).
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Figure 1: MSG Performance with Various δ Values.

The expected and worst-case oracle complexities are at
most n ln 1

ε + nδ k
k−1 and max

{
n, k + 2k

δ

}
× ln 1

ε + k,
respectively. If we set ε = 1

2 + k−1
N−k , we have

E[f(A)] ≥ 1

4
(1− δ)2 f(A∗).

The expected and worst-case oracle complexities are
bounded by n ln 2+nδ k

k−1 and max
{
n, k + 2k

δ

}
×ln 2+k,

respectively.

Note that Algorithm 2 can also achieve a (1− 1
e − ε)-

approximation guarantee if f is monotone since it is
equivalent to Algorithm 1 performed on V and the
obtained solution is feasible as explained above.

4 EXPERIMENTS

We evaluate (modified) SG via experiments. All the
algorithms are implemented in Python3, and all the
experiments are conducted on a 64-bit macOS (Mojave)
machine with 3.3 GHz Intel Core i7 CPUs and 16 GB
RAM. In Section 4.1, we examine the empirical effect
of the δ value on the behavior of modified SG. We
then compare the following four kinds of algorithms
with synthetic and real-world instances in Sections 4.2
and 4.3, respectively.

• SG (Algorithm 1): We consider two algorithms,
SG1 and SG2, that employ ε = 0.01 and ε = 1/2,
respectively. The approximation guarantee of SG1
is not proved since it violates ε ≥ 1/e; we here
use it as a heuristic method and study its em-
pirical behavior. SG2 achieves a 1

4

(
1− 4 · k−1n−k

)
-

approximation guarantee if Assumption 1 holds.

• Modified SG (MSG) (Algorithm 2): As with SG,
we consider two algorithms: MSG1 (ε = 0.01)
and MSG2 (ε = 1/2). In Sections 4.2 and 4.3,
we let δ = 0.1. The approximation guarantee
of MSG1 is not proved, while MSG2 achieves a
0.2-approximation guarantee.
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Figure 2: Comparison of Algorithms with Synthetic Cut-function Maximization Instances.

• Random sampling (RS) (Buchbinder et al., 2017):
A randomized (1/e− ε)-approximation algorithm
with O

(
n
ε2 ln 1

ε

)
oracle queries. We set ε = 0.3 as

in the experiments of (Kuhnle, 2019), which yields
about a 0.07-approximation guarantee.

• Fast interlace greedy (FIG) (Kuhnle, 2019): A
deterministic (1/4− ε)-approximation algorithm
with O

(
n
ε ln n

ε

)
oracle queries. As in the experi-

ments of (Kuhnle, 2019), we set a parameter of the
algorithm (denoted by δ in the original paper) at
0.1, which yields a 0.1-approximation guarantee.

When implementing those algorithms in practice, we
may employ various acceleration methods including the
lazy evaluation (Minoux, 1978; Leskovec et al., 2007)
and memoization (Iyer and Bilmes, 2019). However, we
here do not use them since our aim is to make simple
and clear comparisons of the algorithms.

4.1 Empirical Effects of δ Values

We consider a synthetic instance of maximizing a cut
function, which is non-negative and submodular. We
construct an Erdős–Rényi (ER) random graph with
n = 100 nodes, edge probability p = 1/2, and uniform
edge weights. The objective function to be maximized
is a cut function defined on the graph, where we can
choose up to k = 10 nodes. We apply MSG1 and MSG2
with δ = 10−10, 10−9 . . . , 10−1 to the instance.

The numbers of oracle queries and objective values
are shown in Figures 1a and 1b, respectively, where
each curve and error band indicate the average and
standard deviation calculated over 100 trials. While
the ε value affects the performance (smaller ε leads to
better objective values and more queries), the increase
in the δ value has little effect. This suggests that, while
δ is introduced to handle the 2 · k−1n−k term that appears
in the approximation ratio derived in Section 3.1, it
is actually not essential. We leave it an open problem
whether we can prove an approximation guarantee
without introducing parameters like δ. In what follows,
we let δ = 0.1.

4.2 Synthetic Instance

We compare the algorithms with two synthetic cut-
function maximization instances. One is a larger ver-
sion of the above instance: We construct an ER ran-
dom graph with n = 1000, p = 1/2, and uniform edge
weights. Another is defined with a Barabási–Albert
(BA) random graph with n = 5000 nodes and uniform
edge weights, which is constructed as follows: Starting
from 50 nodes, we alternately add a new node and
connect it to 50 existing nodes. For the ER and BA
instances, we consider various cardinality constraints
with k = 50, 100, . . . , 500 and k = 250, 500, . . . , 2500,
respectively. We apply SG1, SG2, MSG1, MSG2, RS,
and FIG to the instances and observe the running times,
numbers of oracle queries, and objective values. The
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Figure 3: Comparison of Algorithms with Real-world Mutual Information Maximization Instances.

results of the randomized algorithms are shown by the
mean and standard deviation calculated over 10 trails.

Figure 2 summarizes the results. With both ER and BA
instances, SG and MSG run much faster and require far
fewer oracle queries than RS and FIG. For each ε value,
MSG tends to be more efficient than SG. Regarding
the ER instances, SG1, MSG1, and FIG achieve almost
the same objective values. The objective value of SG2
is slightly worse than them. MSG2 performs worse
than those above, but it still outperforms RS by a
considerable margin. As regards the BA instances,
SG1 and MSG1 outperform FIG when k is small, and
the opposite is true when k is large. Objective values
of SG2 and MSG2 are worse than that of FIG, but
they are far better than that of RS. To conclude, SG-
style algorithms are far more efficient than the existing
methods, while achieving comparable objective values.

4.3 Real-world Instance

We compare the algorithms with real-world instances.
We employ the mutual information as an objective
function. Given a positive semidefinite matrix X ∈
RV×V , we let X[S] denote the principal submatrix of
X indexed by S ⊆ V . We define the entropy function as
H(S) := ln detX[S] (H(∅) := 0), which is submodular
due to the Ky Fan’s inequality. We assume that the
smallest eigenvalue of X is larger than or equal to
1, which makes the entropy function monotone and
non-negative. The mutual information is defined as
f(S) = H(S) +H(V \S)−H(V ), which is known to be
submodular (Krause et al., 2008; Sharma et al., 2015).
The function is non-negative since f(S) = H(S) +
H(V \S) − H(V ) ≥ H(∅) = 0 for any S ⊆ V due to
the submodularity of H(·) and H(∅) = 0.

We consider a feature selection instance based on mu-
tual information maximization (Iyer and Bilmes, 2012;
Sharma et al., 2015). Given a matrix A, whose column
indices correspond to features, we define the mutual
information with X := I + A>A. To obtain matrix

A, we use “Geographical Original of Music” dataset
available at (Olson et al., 2017). The dataset has 117
features, and we create additional

(
117
2

)
second-order

polynomial feature vectors as in (Bertsimas et al., 2016).
By adding some of them to the original 117 features
and normalizing the columns of resulting A, we obtain
n × n matrices X for n = 200, 300, . . . , 1000. We let
k = 200. We apply the algorithms to the instances
with various n values. The results are again shown by
the mean and standard deviation over 10 trials.

Figure 3 summarizes the results. As with the results
of synthetic instances, the SG-style algorithms are far
more efficient than FIG and RS. Oracle queries of
all the algorithms increase very slowly with n in the
semi-log plot, which is consistent with the fact that
their oracle complexities are (nearly) linear in n. The
results of objective values are also similar to those of
the synthetic instances: The objective values of SG-
style algorithms are as good as or slightly worse than
that of FIG, but they are far better than that of RS.

5 CONCLUSION AND DISCUSSION

We proved approximation guarantees of (modified) SG
for non-monotone submodular maximization with a car-
dinality constraint. We first proved a 1

4

(
1− 2 · k−1n−k

)2
-

approximation guarantee of SG under some assump-
tions; this yields a positive approximation ratio if n is
sufficiently larger than k. We then developed modified
SG and proved its 1

4 (1 − δ)2-approximation guaran-
tee without using the assumptions. We also showed
that modified SG requires at most n ln 2 + nδ k

k−1 and
max{n, k+ 2k

δ }× ln 2 + k oracle queries in expectation
and in the worst-case, respectively. This result pro-
vides a constant-factor approximation algorithm with
the fewest oracle queries. Experiments demonstrated
that (modified) SG can run much faster and require
far fewer oracle queries than existing methods while
achieving comparable objective values.
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Appendix

A PROOF OF LEMMA 1

We here prove the following lemma:

Lemma 1 (cf. (Mirzasoleiman et al., 2015)). If f is
non-negative and submodular, for i = 1, . . . , k, we have

E[f(Ai)− f(Ai−1)] ≥ 1− ε
k

E[fAi−1(A∗)].

Proof. Assume that all random quantities are condi-
tioned on Ai−1. Since R consists of dse elements sam-
pled uniformly at random from V \Ai−1, we have

Pr[R ∩ {A∗\Ai−1} = ∅] ≤
(

1− |A
∗\Ai−1|
|V \Ai−1|

)dse
≤
(

1− |A
∗\Ai−1|
|V \Ai−1|

)s
≤ exp

(
−s |A

∗\Ai−1|
|V \Ai−1|

)
≤ exp

(
−s |A

∗\Ai−1|
n

)
From the concavity of 1− exp

(
−s xn

)
as a function of

x = |A∗\Ai−1| ∈ [0, k], we obtain

Pr[R ∩ {A∗\Ai−1} 6= ∅]

≥
(

1− exp

(
−sk

n

)) |A∗\Ai−1|
k

≥ (1− ε) |A
∗\Ai−1|
k

(A1)

We now consider bounding f(Ai)− f(Ai−1) from be-
low. Since ai is chosen by the greedy rule from R and
f(Ai) − f(Ai−1) is non-negative, if R ∩ {A∗\Ai−1}
is nonempty, f(Ai) − f(Ai−1) is at least as large
as [fAi−1(a)]+ in expectation, where a ∈ V is cho-
sen uniformly at random from R ∩ {A∗\Ai−1} and
[x]+ := max{x, 0} for any x ∈ R. Furthermore, since
R contains each element of A∗\Ai−1 equally likely, we
can take a ∈ V to be sampled uniformly at random
from A∗\Ai−1. As a result, we obtain

E[f(Ai)− f(Ai−1)]

≥ Pr[R ∩ {A∗\Ai−1} 6= ∅]×
∑
a∈A∗\Ai−1

[fAi−1
(a)]+

|A∗\Ai−1|

≥ 1− ε
k

∑
a∈A∗\Ai−1

[fAi−1(a)]+

≥ 1− ε
k

∑
a∈A∗\Ai−1

fAi−1
(a)

≥ 1− ε
k

fAi−1
(A∗),

where the second inequality comes from (A1) and the
last inequality comes from the submodularity. By tak-
ing expectation over all possible realizations of Ai−1,
we obtain the lemma.

Note that, the use of clipping [·]+ is crucial when f is
non-monotone. Without it, the values in the second
and third lines can be negative due to the lack of
the monotonicity; in this case, the inequality does not
hold. However, thanks to the non-negativity of f(Ai)−
f(Ai−1), we can clip the marginal gain, which enables
us to prove the lemma even if f is non-monotone.

B PROOF OF LEMMA 4

We here prove the following lemma:
Lemma 4. If Assumption 1 holds, we have(

1− 1

k
ln

1

ε
− 2

n− k

)k−1
≥ ε− 2 · k − 1

n− k .

To prove this, we use the following two lemmas.
Lemma 5. If 0 ≤ y ≤ x ≤ 1, we have

(x− y)m ≥ xm −my
for any integer m ≥ 1.

Proof. We prove the claim by induction. If m = 1,
the inequality holds trivially. Assume that it holds for
every m′ = 1, . . . ,m− 1. Then, we have

(x− y)m ≥ (x− y)(xm−1 − (m− 1)y)

≥ xm − (m− 1)xy − xm−1y
≥ xm −my,

where the last inequality comes from x ≤ 1.

Lemma 6. If 0 ≤ γ ≤ 1, we have(
1− γ

x

)x−1
≥ e−γ

for any x ≥ 1.

Proof. Let g(x) =
(
1− γ

x

)x−1. By considering loga-
rithmic differential, we obtain

d

dx
g(x) = g(x)

(
ln
(

1− γ

x

)
+
γ

x
· x− 1

x− γ

)
≤ g(x)

((
1− γ

x

)
− 1 +

γ

x
· x− 1

x− γ

)
= −g(x)

γ

x
· 1− γ
x− γ

≤ 0.

Hence g(x) decreases as x becomes larger. Since
limx→+∞ g(x) = e−γ , we obtain the claim.
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We are now ready to prove Lemma 4.

Proof of Lemma 4. Note that we have

0 ≤ 2

n− k ≤ 1− 1

k
ln

1

ε
≤ 1

thanks to k ≥ 2, n ≥ 3k, and ε ≥ 1/e (see, Assump-
tion 1). Therefore, by using Lemma 5, we obtain(

1− 1

k
ln

1

ε
− 2

n− k

)k−1
≥
(

1− 1

k
ln

1

ε

)k−1
− 2 · k − 1

n− k .

Furthermore, since ln 1
ε ≤ 1 due to ε ≥ 1/e, Lemma 6

implies (
1− 1

k
ln

1

ε

)k−1
≥ e− ln 1

ε = ε.

Hence we obtain the claim.
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