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Supplementary Material:

A Proof of Theorem 1 and Corollary 1

We now turn to the proof of Theorem 1. We will use the index ⌦ to denote that we take a vectorized version of
the elements of a matrix corresponding to the revealed entries. For example, AR

⌦ is thus a vector containing all
the revealed entries, while A⌦ contains the real values of the entries that have been revealed. The 2-norm of such
vectors is equivalent to their Frobenius norm; for example,

||�||F =
����AR

⌦ �A⌦

����
F
=
����AR

⌦ �A⌦

����
2
.

We begin by deriving an expression for the logarithmic error log Âij � logAij , which we will need both as
intermediate step towards our final bound. Before stating this equality, we recall our notation

D = logAR
⌦ � logA⌦ = log(A⌦ +�)� logA⌦.

Lemma A.1. The error on the logarithm of the individual estimates satisfies

log Âij � logAij = (ei � ej)
T
L
†
WRBW

R
D.

Proof. Eq. (2) may be rewritten as

B
T log z = logA⌦,

where, recall, B is the edge-vertex incidence matrix of the graph. Recalling Eq. (4) we obtain as a consequence
that

LWR log z = BW
R logAR

⌦ .

One solution of this system is z = L
†
WRBW

R logA⌦ where † represents the Moore-Penrose pseudoinverse.

Recall that ẑ is the solution constructed by our algorithm (see Eq. (5)), and we therefore have

log ẑ � log z = L
†
WRBW

R(logAR
⌦ � logA⌦)

= L
†
WRBW

R
D.

Hence using again logAij = log zi � log zj , we have that

log Âij � logAij = (log ẑi � log zi)� (log ẑj � log zj)

= (ei � ej)
T
L
†
WRBW

R
D.

Our next step is to bound how much e↵ect the perturbation � can have in terms of the resulting perturbation D

in the “log space.”

Lemma A.2. If �ij  (c� 1)Aij for every (i, j) 2 ⌦ for some c � 1, then

��AR
ijDij

��  c |�ij | ,

for every (i, j) 2 ⌦ and ���
���(WR)1/2D

���
���
F
 c ||�||F .
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Proof. By concavity of the logarithm, we have

��logAR
ij � logAij

�� 
��AR

ij �Aij

��max

 
1

AR
ij

,
1

Aij

!

= |�ij |max

 
1

AR
ij

,
1

Aij

!

Moreover, the assumption of the Lemma implies AR
ij  cAij for c � 1. Hence we can bound

��AR
ijD(i,j)

�� = A
R
ij

��logAR
ij � logAij

��

 |�ij |max

 
A

R
ij

AR
ij

,
A

R
ij

Aij

!

 c |�ij | ,

proving the first claim of the Lemma. The second one follows from the definition of the |⌦|⇥ |⌦| diagonal matrix
W

R whose elements are the (AR
ij)

2.

Our next lemma provides a first bound on the “logarithmic error.” We also include an estimate on how big the
(unrevealed) entries Âij can get, which we will use in the sequel.

Proposition A.1. If �ij  (c� 1)Aij for every (i, j) 2 ⌦ for some c � 1, then
���log Âij � logAij

���  c

q
RWR,ij ||�||F , (7)

where RWR,ij is the resistance distance between i and j on the weighted graph GWR . As a consequence,

Âij  Aijexp
⇣
c

q
RWR,ij ||�||F

⌘
. (8)

Proof. Let us introduce the notation

Qij = W
R

1
2
B

T
L
†
WR(ei � ej)(ei � ej)

T
L
†
WRBW

R
1
2
.

Then, using that log Âij � logAij is a scalar and Lemma A.1, we have

(log Âij � logAij)
2 = (log Âij � logAij)

T (log Âij � logAij)

= D
T
W

R
1
2
QijW

R
1
2
D. (9)

where, recall, LWR = BW
R
B

T . This implies that

(log Âij � logAij)
2 

���
���WR

1
2
D

���
���
2

F
�
ij
max, (10)

where �
ij
max is defined as

�
ij
max := �max(Qij)

= �max

✓
W

R
1
2
B

T
L

†
WR(ei � ej)(ei � ej)

T
L

†
WRBW

R
1
2

◆

= �max

✓
(ei � ej)

T
L

†
WRBW

R
1
2
W

R
1
2
B

T
L

†
WR(ei � ej)

◆

= (ei � ej)
T
L

†
WRLWRL

†
WR(ei � ej)

= (ei � ej)
T
L

†
WR(ei � ej), (11)

This quantity equals the resistance RWR,ij , see Vishnoi [2013]. We now have that Eq. (7) follows then from

(10) and the bound ||WR
1
2
D||2F  c ||�||2F of Lemma A.2. Finally, Eq. (7) immediately implies the bound of Eq.

(8).
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Our next step is to define some additional notation. The quantityKW0 will be the weighted Laplacian corresponding
to the bipartite graph with weights A2

ij , formally defined as

KW :=
X

i2Ix,j2Iy

(ei � ej)(Aij)
2(ei � ej)

T
.

Observe that if, in this definition, we replaced A
2
ij by the squares of the revealed entries, and also replaced the

sum with only the sum over the revealed entries, then the resulting quantity would be exactly LWR . We may
thus intuitively view the quantity KW as the Laplacian corresponding to the hypothetical scenario that all entries
are revealed without perturbations.

Inspired by the proof above, we will also define

Q = W
R

1
2
B

T
L
†
WRKWL

†
WRBW

R
1
2
,

and, finally, we will use the shorthand
�max := �max(Q).

The symmetry and nonnegative definiteness of Q implies �max is real and nonnegative.

Observe that the existing bounds from Eq. (7) and Eq. (8) allow us to derive a bound on the error Â�A via a
few straightforward manipulations. This can then be turned into a bound on ||A� Â||F . However, this approach
would be extremely conservative because the bounds of Eq. (7) and Eq. (8) are all worst-case, and a single �
will not be worst for all (i, j). Our next proposition shows how to exploit this fact.

Proposition A.2. Suppose �ij  (c � 1)Aij for every (i, j) 2 ⌦ for some c � 1 and Âij  �Aij for every
i 2 Ix, j 2 Iy and some � � 1. Then

���
���Â�A

���
���
2

F
 �

2
c
2
�max

⇣
KWLWR

†
⌘
||�||2F .

Before proceeding to the proof, we remark that KWL
†
WR is the product of two symmetric matrices, so its

eigenvalues are real; consequently, writing �max

⇣
KWLWR

†
⌘
makes sense.

Proof. Since
��eb � e

a
��  max(ea, eb) |b� a| and max(Âij , Aij)  �Aij by assumption, we have

���Âij �Aij

���  �Aij

���log Âij � logAij

��� .

If follows then from Eq. (9) that

(Âij �Aij)
2  �

2(Aij)
2(WR

1
2
D)TQij(W

R
1
2
D).

Summing over all pairs (i, j) 2 Ix ⇥ Iy leads to
���
���Â�A

���
���
2

F
 �

2
���
���WR

1
2
D

���
���
2

F
�max, (12)

Finally using LWR = BW
R
B

T ,

�max = �max(W
R

1
2
B

T
L
†
WRKWL

†
WRBW

R
1
2 )

= �max

⇣
KWL

†
WRBW

R
1
2
W

R
1
2
B

T
L
†
WR

⌘

= �max

⇣
KWL

†
WRLWRL

†
WR

⌘

= �max

⇣
KWL

†
WR

⌘
. (13)

The result now follows immediately from Eq. (12) and Lemma A.2.

Theorem 1 is then obtained by using Proposition A.2 with the bound � = exp
�
c
p

RWR,max ||�||F
�
guaranteed

by (8) in Proposition A.1.
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A.1 Corollary 1

In order to relate the bound of Theorem 1 to more usual characteristics of the graph, we now bound the eigenvalue
�max(KWL

†
WR).

Proposition A.3. Let ↵̄
0
,↵

R be respectively an upper bound on the entries of A and a lower bound on the
entries of AR. We then have

�max(KWL
†
WR) 

✓
↵̄
0

↵R

◆2
m+ n

�2(L)
,

where we recall that A 2 Rm⇥n and �2(L) is the algebraic connectivity (i.e., second-smallest eigenvalue) of the
unweighted bipartite graph G.

Proof. It follows from Lemma C.1 in Appendix C that

�max

⇣
KWL

†
WR

⌘
 �max(KW )�max(L

†
WR)

Since LWR is symmetric and has rank n� 1, we have �max(L
†
WR) = �2(LWR)�1. Because the absolute values of

the o↵-diagonal elements of LWR (i.e. the weights) are all at least (↵R)2, Lemma C.3 in Appendix C implies then

�2(LWR) � (↵R)2�2(L), (14)

where we remind that L is the Laplacian of the unweighted bipartite graph G representing the mask ⌦. A parallel
argument shows that �max(KW )  (↵̄0)2�max(K) = (m + n)(↵̄0)2, where K is the Laplacian of the complete
bipartite graph on Ix [ Iy, whose maximal eigenvalue is m+ n, from which the statement of this proposition
follows.

We note that the bound of Proposition A.3 could be conservative in terms of the interplay between the values
in A,A

R and the graph, but is not very conservative in terms of the graph properties. Indeed, a slightly more
complicated argument shows that

�max

⇣
KWL

†
WR

⌘
�
✓
↵̄
R

↵0

◆2
min(m,n)

�2(L)
,

where ↵̄
R
,↵

0 are respectively an upper bound on the entries of AR and a lower bound on those of A.

Having established proposition A.3, we now have that Corollary 1 follows almost immediately. Indeed, since (↵R)2

bounds all weight in GWR from below, the largest resistance RWR,max in that graph is at most (↵R)�2
Rmax, with

Rmax the largest resistance of the corresponding unweighted graph G. The first part of Corollary 1 follows from
this observation, Proposition A.3 and Theorem 1. Let now D  m+n be the diameter of the graph G. The second
part of Corollary 1 follows from the classical bound Rmax  D  m+ n and from �2(L) � 4

D(m+n) �
4

(m+n)2 , see

Mohar [1991a].
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A Proofs of the Lower Bounds

A.1 Small disturbances: proof of Theorem 2

Let us recall the basic setup. We are given a mask ⌦ and a rank 1 matrix A = xy
T of which we will be revealed

the entries corresponding to ⌦ (i.e. AR
⌦). Our approach is to construct, for a given value of ||�||F two matrices

A
a
, A

b whose entries in ⌦ are both within ||�||F of the revealed matrix A
R. Lower bounding ||Aa � A

b|| will
then produce a lower bound on the error achievable by any algorithm which only takes into account the set of
revealed entries.

We take a fixed vector ⇣ 2 Rm+n and a su�ciently small constant �, both to be specified later. We let then
A

a = x
a(ya)T , Aa = x

b(yb)T with

x
a
i = xi(1 + �⇣i) x

b
i = xi(1� �⇣i) 8i 2 Ix

y
a
j = yj(1� �⇣j) y

b
j = yj(1 + �⇣j) 8j 2 Iy

We first compute the norm of �a := (Aa)⌦ �A
R
⌦ = (Aa �A).

||�a||2F = ||(Aa �A)⌦||2F (15)

=
X

(i,j)2⌦

(xiyj(1 + �⇣i)(1� �⇣j)� xiyj)
2

=
X

(i,j)2⌦

x
2
i y

2
j

�
�(⇣i � ⇣j)� ⇣i⇣j�

2
�2

= �
2
X

(i,j)2⌦

A
2
ij(⇣i � ⇣j)

2 + o(�2)

= �
2
⇣
T
LW ⇣ + o(�2), (16)

where LW is the Laplacian of the weighted bipartite graph on Ix [ Iy corresponding to ⌦ where the edge (i, j)
has weight A2

ij . Parallel arguments show that

�����b
����2
F
=
����(Ab �A)⌦

����2
F
= �

2
⇣
T
LW ⇣ + o(�2) (17)

and ����Ab �A
a
����2
F
= 4�2⇣TKW ⇣ + o(�2), (18)

where KW is the Laplacian of the weighted complete bipartite graph on Ix [ Iy with weight A2
ij . To select ⇣, we

let u be the eigenvector of KWL
†
W corresponding to �max(KWL

†
W ) and ⇣ := L

†
Wu. It follows from (16) and (17)

that �����`
����2
F
= �

2
⇣
T
u+ o(�2), (19)

for ` = a, b, and from (18) that

����Ab �A
a
����2
F
= 4�2⇣TKWL

†
Wu+ o(�2)

= 4�2�max(KWL
†
W )⇣Tu+ o(�2). (20)

Since u is an eigenvector corresponding to the largest eigenvalue of KWL
†
W , it is not a multiple of the all-ones vector

(that would make it an eigenvector corresponding to the smallest eigenvalue of KWL
†
W , which has nonnegative

eigenvalues since it is the product of two nonnegative definite matrices). Thus the definition ⇣ := L
†
Wu implies

u = LW ⇣, and ⇣
T
u = u

T
L
†
Wu > 0, since u is not proportional to the all-ones vector. Hence (18) and (20) imply

that for ` = a, b, ���
���Ab �A

a
���
���
2

F
= 4�max(KWL

†
W )

���
����`

���
���
2

F
+ o(

���
����`

���
���
2

F
). (21)

Suppose now that AR
ij = Aij for every (i, j) 2 ⌦, and that A is in the interior of the set of allowed matrices A. For

su�ciently small � and thus ||�||F , we will have Aa
, A

b 2 A, ||�a||2F  (1+✏)
�����b

����2
F
and

�����b
����2
F
 (1+✏) ||�a||2F ,



Minimax Rank-1 Matrix Factorization

so that both A
a
, A

b would be possible values of A even if the algorithm explicitly uses the set A and a bound
�̄ � (1 + ✏) ||�||2F . It follows then from the triangular inequality and (21) that for any estimate Â there would
hold ���

���Â�A

���
���
2
� �max(KWL

†
W )
�����`

����2
F
+ o(

�����`
����2
F
). (22)

for at least one choice among A = A
a or A = A

b. To conclude the result, we need to relate �max(KWL
†
W ) to

�max

⇣
KWL

†
WR

⌘
.

Observe first that LWR = L
†
W because A

R
ij = Aij . We define the function t ! K̃W (t) 2 R(n+m)⇥(n+m) by

(K̃W (t))ij = xi(1 + t⇣i)yj(1� t⇣j) 8i 2 Ix, j 2 Iy

(K̃W (t))ji = (K̃W (t))ij 8i 2 Ix, j 2 Iy

(K̃W (t))ii = �
X

j2Iy

(K̃W (t)) 8i 2 Ix,

(K̃W (t))jj = �
X

i2Ix

(K̃W (t)) 8j 2 Iy,

and the other entries being 0. Observe that K̃W is analytic, KW = K̃W (0), KW = K̃W (�) if A = A
a and

K̃W (��) if A = A
b. Besides, � = ⇥(||�||F ). Lemma C.2 and L

†
W = LWR imply then

�max

⇣
KWL

†
W

⌘
= �max

⇣
KWL

†
WR

⌘
+ o(||�||F ),

which implies the result of Theorem 2 together with (22).

A.2 Larger disturbances: proof of Theorem 3

We begin with the claim (a) about the exponential factor. For any given n, we take A = ee
T , and the mask

⌦ = {(i, i), i = 1, . . . , n} [ {(i, i� 1), i = 2, . . . , n}, that is, the entries on the main diagonal and the first other
diagonal. We then take the disturbances

�ii = 0 �i(i�1) = �,

for all i for which these are defined and for some � > 0. The revealed entries are then

A
R
ii = 1 A

R
i(i�1) = 1 + �,

Clearly, ||�||2F = (n� 1)�2 so � = ||�||F /
p
n� 1. We then define the rank-1 matrix A by Aij = (1+ �)i(1+ �)�j ,

and observe that AR is an exact subsample of A because A
R
ij = Aij for every (i, j) 2 ⌦. Moreover, it is not an

exact subsample of any other matrix because the graph corresponding to the ⌦ is connected. Hence any consistent

algorithm returns by definition Â = A, so that (Â�A)ij = (1 + �)i�j � 1. In particular, remembering � =
||�||Fp
n�1

,

we have

���
���Â�A

���
���
2

F
� (Â1n �A1n)

2

=
�
(1 + �)n�1 � 1

�2

=

 ✓
1 +

||�||Fp
n� 1

◆n�1

� 1

!2

=: En.

When n grows for a fixed ||�||F , we obtain

lim
n!1

En =
⇣
e
||�||F

p
n�1 � 1

⌘2
.



Julien M. Hendrickx, Alex Olshevsky, Venkatesh Saligrama

We conclude part (a) of Theorem 3 by observing that the both A
R
ij and Aij are uniformly bounded, and that the

graph GWR corresponding to the mask ⌦ is a line graph on 2n nodes, with n� 1 weights 1 + � and n weights 1,
so that

RWR,max = n+ (n� 1)(1 + �) = n+ (n� 1)

✓
1 +

||�||Fp
n� 1

◆
,

so that
p
n� 1 =

q
RWR,max(

1
2 �O(n�1/2)).

We now move to part (b). For any fixed even n, we let again A = ee
T , and we consider the mask ⌦ = {(i, j) :

i, j  n
2 } [ {(i, j) : i, j � n

2 } [ {(1, n)}, i.e. we reveal the upper left-hand side quarter of the matrix and the
lower right-hand side one, and the most upper right-hand side entry. We take �i,j = 0 for every revealed entry

except �1,n = 1
f � 1 for f > 3, so that AR

ij = 1 for all (i, j) 2 ⌦ except AR
1,n = 1/f . Clearly, all ||�||2F  1, and

max(i,j)2⌦
�ij

Aij
and max(i,j) Aij are bounded independently of n, f , while minAR

ij = f
�1. Observe now that AR

is an exact subsample of the rank-1 matrix

Af =

✓
ee

T
f
�1

ee
T

fee
T

ee
T

◆
,

where the vectors e are of dimension n/2, and of no other rank-1 matrix. Hence any consistent algorithm would
return Â = A on the data A

R. Focusing on the error on the lower left-hand side block, and using f > 3, we would
get ���

���Â�A

���
���
2

F
� n

2

4
(f � 1)2 � n

2

9
f
2 =

n
2

9
(min

ij
A

R
ij)

�2
.

B Proof of Theorem 4 and Corollary 2

High-level idea of proof: We have already seen in Section 5.1 that (x, (y�1)T (where the inverse is taken
element-wise) is an eigenvector of the unperturbed matrix M . We therefore need to to argue that when looking
at the eigenvector of the perturbed matrix M

R, we can recover a good approximation to (x, (y�1)T ).

In general, this is tricky: it might involve expressions depending on the eigenvectors of the matrices M or MR,
which would be di�cult to bound explicitly. However, two things make it possible in our case. The first is that
the matrices M and M

R correspond to reversible Markov chains, which allows us to make use of a number of
bounds appearing in the literature. The second is that the projection step is key: the assumption that the entries
of A lie in [↵,↵] allows us to project the resulting stationary distributions, which will therefore never be too small
or too big; this allows us to go from an error bound on y

�1 to an error-bound on y. As we have discussed in
the main text of the paper, this seemingly minor di↵erence is crucial: without a-priori bounds on entries of A,
exponential growth is unavoidable due to our lower bounds.

Proof. We first observe that that dividing A
R by a constant c, and dividing the lower and upper bounds by a the

same constant c, while multiplying the output of Algorithm 1 by c does not a↵ect the final estimate Â. Moreover,
both sides of Theorem 4 scale linearly with c if AR

, A,� are multiplied by c. Hence we can assume without loss
of generality that µ =

p
↵̄↵ = 1, so that Aij 2 [⇢�1

, ⇢] for every i, j.

Our first step is to upper bound the di↵erence between the matrices MR and M .

Lemma B.1. ����MR �M
����
1  2max (||�||1 , ||�||1) ,

where the norms are the induced matrix norms, with �ij = 0 for all (i, j) 62 ⌦.

Proof. For any scalars x, y > 0, we have the inequality
����

x

1 + x
� y

1 + y

���� =
��� 1
1+x � 1

1+y

���

= |y�x|
(1+x)(1+y)

 |y � x| .
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Hence we have for every (i, j) 2 ⌦

��MR
ij �Mij

�� =
��MR

ji �Mji

��  |�ij | . (23)

Observe now that for a given matrix N whose rows sum to 0, we have

||N ||1 = max
`

X

k

|N`k| = max
`

0

@|N``|+
X

k 6=`

|N`k|

1

A

= max
`

0

@

������
�
X

k 6=`

N`k

������
+

X

k 6=`

|N`k|

1

A

 2max
`

X

k 6=`

|N`k| .

Since the rows of MR �M sum to zero, we have then

����MR �M
����
1  2 max

`2Ix[Iy

X

k2Ix[Iy

��MR
`k �M`k

�� . (24)

Consider first a ` = i 2 Ix. Then by the bipartite structure of MR
,M , the only o↵-diagonal nonzero

��MR
ik �Mik

��
are those for which k 2 Iy. Hence, using (23), we have

X

k2Ix[Iy

��MR
ik �Mik

�� =
X

j2Iy

��MR
ij �Mij

��


X

j2Iy

|�ij |

 ||�||1 .

On the other hand, if ` = j 2 Iy, then

X

k2Ix[Iy

��MR
jk �Mjk

�� =
X

i2Ix

��MR
ji �Mji

��


X

i2Ix

|�ij |

 ||�||1 .

The result follows then from Eq. (24).

The next part of the proof exploits results on the perturbations of stationary distributions of (discrete-time)
Markov chains. Our first step is to introduce a reference stationary distribution associated with the true matrix.
Recall that we have assumed all entries of A to be in [⇢�1

, ⇢] so that µ = 1; Lemma C.4, proved in a subsequent
appendix, implies that A = xy

T for some vectors x 2 Rm
, y 2 Rn with all xi and y

�1
j in [⇢�1

, ⇢].

Furthermore, we have seen in Section 5.1 that (xT
, (y�1)T ) is a left-eigenvector of M corresponding to its

eigenvalue 0. We next define normalized version ⇡
0 for which

����⇡0
����
1
= 1. Due to the bounds on the entries of

(xT
, (yT )�1) discussed in the previous paragraph, we see that the elements of ⇡0 all lie in [ ⇢�2

m+n ,
⇢2

m+n ]. Moreover,
the values of ⇡̂ (see Algorithm 1 for a definition of ⇡̂) lie in the same interval (see Algorithm 1: those values of ⇡̂
that are outside this interval are projected onto it).

Proposition B.1.
����⇡̂ � ⇡

0
����
1
 log ⇢

p
m+ n

2�2(M)

����MR �M
����
1



Julien M. Hendrickx, Alex Olshevsky, Venkatesh Saligrama

Proof. We will leverage results for perturbations of stationary distributions of discrete-time Markov-chains; to
that end, we introduce the auxiliary matrices PR = I� 1

2dmax
M

R and P
0 = I� 1

2dmax
M , where dmax is the largest

degree in G, i.e. the largest number of revealed elements on any row or column. Observe that the o↵-diagonal
elements of MR

,M are non-negative and bounded by 1, and that each row or column contains at most dmax of
them. Moreover, using e to denote the all-ones vector, MR

e = Me = 0, which implies PR
, P

0 are row-stochastic
matrices with positive diagonals.

The left-eigenvectors ⇡
R and ⇡

0 of MR and M corresponding to the eigenvalue 0 are also the principal left-
eigenvectors of PR

, P
0, and thus the stationary distributions of the corresponding Markov chains since we have

assumed them to be stochastic vectors. It follows then from Agarwal et al. [2018] (Theorems 2, 3 and the
discussion immediately after the statement of Theorem 3 in the supplementary materials) that

���
���⇡R � ⇡

0
���
���
1
 1

2

���
���PR � P

0
���
���
1

✓
logR

� log �2(P 0)
+

1
1� �2(P 0)

◆

 1
2

���
���PR � P

0
���
���
1

logR+ 1
1� �2(P 0)

. (25)

where the second line was obtained via the standard inequality log x  x� 1; here

R = max
`2Ix[Iy

s
1� ⇡0

`

4⇡0
`

.

Our first step is to bound R. Indeed, since P
0 = I � 1

2dmax
M we have

1� �2(P
0) =

1

2dmax
�2(M),

where we remark on the di↵erence in the (standard) convention: while �2(M) is the second-smallest eigenvalue of
M , �2(P 0) refers to the second-largest eigenvalue of the latter.

Since ⇡
0
` � ⇢�2

m+n for every ` and 1�x
4x is decreasing, we have then

max
`2Ix[Iy

s
1� ⇡0

`

4⇡0
`



s
1� ⇢�2/(m+ n)

4⇢�2/(m+ n)

=

r
⇢2(m+ n)� 1

4

 1

2
⇢
p
m+ n.

Reintroducing this and the expression 1� �2(P 0) = 1
2dmax

�2(M) into Eq. (25) leads to

����⇡R � ⇡
0
����
1

✓
1

2

◆
1 + log(⇢

p
m+ n/2)

1
2dmax

�2(M)

����PR � P
0
����
1

 dmax log ⇢
p
m+ n

�2(M)

����PR � P
0
����
1 ,

and the result now follows from ����PR � P
0
����
1 =

1

2dmax
||MR �M ||1,

and from
||⇡̂ � ⇡

0||1  ||⇡R � ⇡
0||1,

which holds since each entry ⇡̂` is the projection of ⇡R
` on an interval to which ⇡

0
` belongs.

The last ingredient in the proof is a relation between the error ||⇡̂ � ⇡
0||1 on the stationary distribution and the

error ||Â�A||F on the matrix.
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Proposition B.2. ���
���Â�A

���
���
F
 3(m+ n)2⇢4 ||⇡̂ � ⇡||1 .

Proof. Recall that Aij = ⇡
0
i /⇡

0
j and that by construction Âij = ⇡̂i/⇡̂j for all i, j. We can decompose the error on

an individual entry as

���Âij �Aij

��� =

�����
⇡̂i

⇡̂j
� ⇡

0
i

⇡0
j

�����



�����
⇡̂i

⇡̂j
� ⇡̂i

⇡0
j

�����+

�����
⇡̂i

⇡0
j

� ⇡
0
i

⇡0
j

�����

= ⇡̂i

�����
1

⇡̂j
� 1

⇡0
j

�����+
1

⇡0
j

��⇡̂i � ⇡
0
i

�� ,

so that
X

i,j

���Âij �Aij

��� 
X

i

⇡̂i

����(⇡̂)�1 � (⇡0)�1
����
1

+
X

j

1

⇡0
j

����⇡̂ � ⇡
0
����
1
. (26)

We first bound
P

i ⇡̂i. Observe1 that

X

i

⇡̂i =
X

i

⇡
R
i +

X

i

(⇡̂i � ⇡
R
i )

 1 +
X

i

(⇡̂i � ⇡
R
i ).

Moreover, by construction (⇡̂i � ⇡
R
i ) is positive only when

⇡
R
i < ⇢

�2
/(m+ n),

in which case
⇡̂i = ⇢

�2
/(m+ n).

Hence X

i

⇡̂i  1 +
X

i

⇢
�2

m+ n
 1 + ⇢

�2  2. (27)

Secondly, since

⇡
0
j � ⇢

�2

m+ n
,

we have X

j

1

⇡0
j

 ⇢
2
m(m+ n).

Plugging this into Eq. (26), we obtain
X

i,j

|Âij �Aij |  2||⇡̂�1 � (⇡0)�1||1 + ⇢
2
m(m+ n)||⇡̂ � ⇡

0||1. (28)

Moreover, since

��(⇡̂i)
�1 � (⇡0

i )
�1
�� =

��⇡̂i � ⇡
0
i

��
⇡̂i⇡

0
i

. (29)

1It might be tempting to say that
P

i ⇡̂i  1, but this may not be the cause because ⇡̂i is the projection of the
statationary distribution, that that projection could increase the 1-norm.
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we have that
||⇡̂�1 � (⇡0)�1||1  ||⇡̂ � ⇡

0||1⇢4(m+ n)2.

Plugging this into Eq. (28) leads to

X

i,j

���Âij �Aij

���  2(m+ n)2⇢4 ||⇡̂ � ⇡||1

+m(m+ n)⇢2 ||⇡̂ � ⇡||1
 3(m+ n)2⇢4 ||⇡̂ � ⇡||1 ,

and the result follows then from
���
���Â�A

���
���
F
=
���
���vec(Â�A)

���
���
2


���
���vec(Â�A)

���
���
1

=
X

i,j

���Âij �Aij

��� .

Theorem 4 now immediately follows from the combination of Lemma B.1, Propositions B.1 and B.2, together
with the bound

max (||�||1 , ||�||1)  max
�p

n ||�||2 ,
p
m ||�||2

�


p
max(m,n) ||�||F .

Finally, to prove Corollary 2, observe first that all o↵-diagonal entries in M
R are at least ⇢�1

1+⇢�1 � ⇢
�1

/2 in
absolute values. Moreover, as we have discussed in Section 5.1, Mk`⇡k = M`k⇡` for every k, ` 2 Ix [ Iy; another
way to say this is that diag(⇡0)M is symmetric. Lemma C.3 implies then

�2(M) � mink ⇡0
k

maxk ⇡0
k

⇢
�1

2
�2(L).

Finally, recall that (⇡0)T = K(xT
, (y�1)T ) for some constant K, and it follows from Lemma C.4 that x, y can

be chosen so that xi, yj 2 [⇢�1
, ⇢]. As a consequence, mink ⇡0

k

maxk ⇡0
k
� ⇢

�2, and thus �2(M) � ⇢�3

2 �2(L). Corollary 2

follows from the combination of this bound with Theorem 4.

C Technical Lemmas

Lemma C.1. Let A,B be two PSD matrices. Then every eigenvalue of AB is real and non-negative, and

�max(AB)  �max(A)�max(B).

Proof. Since A is PSD, its singular value decomposition is of the form A = U⌃UT . The diagonal matrix ⌃ only
contains non-negative values, so ⌃

1
2 is well defined. Hence the eigenvalues of AB = U⌃

1
2⌃

1
2U

T
B are exactly the

eigenvalues of M := ⌃
1
2U

T
BU⌃

1
2 , and are thus real since M is symmetric. Moreover, M is positive semi-definite

because for any x,
x
T
Mx = x

T⌃
1
2U

T
BU⌃

1
2x = (U⌃

1
2x)TB(U⌃

1
2x) � 0,

due to B being positive semi-definite. Since the spectral radius is lower bounded-by the induced 2-norm, with
equality for symmetric matrices, there holds

�max(AB)  ||AB||2  ||A||2 ||B||2 = �max(A)�max(B).
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Lemma C.2. Let A : � 2 I ! A(�) be an analytical function of the real variable � for some interval I and
whose values are symmetric PSD matrices, and B a PSD matrix. Then �max(A(�)B) is Lipschitz continuous
with respect to � on I.

Proof. Because A(�) is analytic and symmetric, we can rewrite it as A(�) = U(�)⌃(�)U(�)T , where ⌃ is diagonal
and contain the non-negative eigenvalues of A(�), U is orthonormal, and both ⌃ and U are analytic functions of
�, see Kato [2013]. As in Lemma C.1, we see that �max(A(�)B) = �M(�), with

M(�) := ⌃(�)
1
2U(�)TBU(�)⌃(�)

1
2

an analytical function of � that is always positive semi-definite, so its eigenvalues are real. It follows then
from Theorem 6.8 in that the eigenvalues of M can be expressed as analytical functions of �, and hence that
maxi �i(M(�)) is a Lipschitz-continuous function of � on the interval I.

Lemma C.3. Let L be a directed Laplacian: this means that L is a matrix whose rows sum to zero and whose
o↵-diagonal elements are positive (but L may not be symmetric). Let Aij denote these o↵diagonal weights, let
amin be a lowr bound on the smallest positive Aij. Finally, let L̄ the corresponding Laplacian when all positive
weights ar replced by one.

We make the assumption that L̄ is symmetric. If further L is symmetric, then

�2(L) � amin�2(L̄)

If instead DL is symmetric for some positive diagonal D whose smallest and largest diagonal entries are dmin and
dmax, then �2(L) is real and

�2(L) �
dmin

dmax
amin�2(L̄)

Proof. We assume first that L is symmetric. In that case its eigenvectors are orthogonal, and since the vector e
corresponds to the its eigenvalue 0, we have

�2(L) = min
eT x=0

x
T
Lx

xTx

Using the classical expression of xT
Lx for symmetric Laplacian, we see that for any x, we have

x
T
Lx =

X

i<j

Aij(xi � xj)
2

�
X

i<j,Aij>0

amin(xi � xj)
2

= amin

X

i<j,L̄ij 6=0

(xi � xj)
2

= aminx
T
L̄x.

Hence we have

�2(L) � amin min
eT x=0

x
T
L̄x

xTx
= amin�2(L).

We now move to the second claim. Observe that

L = D
�1/2

D
�1/2

DL

which implies that L and D
�1/2

DLD
�1/2 are similar. IF DL is symmetric, the latter matrix is also symmetric,

and we obtain that all the eigenvalues of L are real. Thus it makes sense to talk about

�2(L) = �2(D
�1/2(DL)D�1/2),

which is the second-smallest eigenvalue of L after the smallest eigenvalue of zero.
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Observe that that D1/2
e is an eigenvector of D�1/2(DL)D�1/2 with eigenvalue 0. Hence

�2(L) = �2(D
�1/2(DL)D�1/2)

= min
x:eTD1/2x=0

x
T
D

�1/2(DL)D�1/2
x
T

xTx

= min
y:eT y=0

y
T
DLy

yTD�1y

� 1

dmax
min

y:eT y=0

y
T
DLy

yT y
=

�2(DL)

dmax
.

Observe now that all nonzero o↵-diagonal elements of DL have an absolute value at least dminamin. The first
claim of this lemma implies then �2(DL) � dminamin, from which the second claim follows.

Lemma C.4. Let A 2 Rm⇥n be a positive rank-1 matrix such that Aij 2 [⇢�1
, ⇢]. Then A can be written as

A = xy
T for vectors x 2 Rm

, y 2 Rn such that xi, yj 2 [⇢�1
, ⇢] for every i 2 Ix, j 2 Iy.

Proof. Since A is rank-1 and positive it can be written as x̂ŷ
T for positive vectors x̂, ŷ. We use the indices

min,max to denote the indices of the smallest and largest values of the vectors. Observe first that for an arbitrary
index j 2 Iy, we have

x̂max

x̂min
=

ŷj x̂max

ŷj x̂min
=

maxi2Ix Aij

mini2Ix Aij
 ⇢

2
.

The same argument shows ŷmax

ŷmin
 ⇢

2. We define

x =
⇢

x̂max
x̂, y =

x̂max

⇢
ŷ.

There holds again A = xy
T . For the vector x we have just constructed we have that

xmax =
⇢

x̂max
x̂max = ⇢.

This implies xmin � ⇢
�1 by the same argument as above.

Moreover, ymax  1, for otherwise we would have maxi,j Aij = xmaxymax > ⇢. So, if ymin � ⇢
�1, then we are

done. Otherwise, we have ⇢�1

ymin
> 1, and we can define

x
0 =

ymin

⇢�1
x, y

0 =
⇢
�1

ymin
y,

satisfying again x
0(y0)T = A. By construction y

0
min = ⇢

�1, so that y0max  ⇢. Moreover, since ⇢�1

ymin
> 1, we have

that
x
0
max  xmax  ⇢.

Finally,

x
0
min =

xminymin

⇢�1
� ⇢

�1

⇢�1
= 1,

so that x0
, y

0 satisfy the conditions we need.

D Additional Experiments

Ridge regression: Our implementation of the ridge-regression (Eq. 1) uses gradient descent, projecting x and y

at each step on the set [µ⇢�1
, µ⇢] to which we know the real values belong. Di↵erent values of � were tried. The

gradient iterations were interrupted when ||x(k + 1)� x(k)||1 + ||y(k + 1)� y(k)||1  10�12 or after 200000 steps.
Each problem was solved using 10 di↵erent initial x(0), y(0), with values randomly selected in [µ⇢�1

, µ⇢], and the
best final iterate (in term of the objective function) was kept. Examples of results are presented in Figure 4, for
the same experimental conditions as in Figure 3(a), except that results are averaged over 5 tests for each data
point. We further note that large errors for small values of � were consistently obtained on every single one of the
realizations.
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Figure 3: Evolution of the average error ||Â�A||F for the two proposed algorithms (Markov Chain, Log-LS) and
for an unweighted version of the algorithm of Section 3 in (a) a scenario where all revealed entries are perturbed
by a random noise of magnitude �/2 ( 50 ⇥ 50 matrices with on average 20% of revealed entries), and (b) a
targeted scenario where the smallest revealed entry is replaced by a⇤ (10⇥ 10 matrices with on average 50% of
revealed entries). Initial matrices have entries between 10�1 and 10.
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Figure 4: Evolution with � of the average error ||Â�A||F for our two algorithms, an unweighted version of the
algorithm of Section 3, and our implementation of the ridge regression with � = 0 (no regularization) and � = .1,
in a scenario where all revealed entries are perturbed by a random noise of magnitude �/2 ( 50⇥ 50 matrices
with on average 50% of revealed entries). Initial matrices have entries between 10�1 and 10. Large errors are
observed for the ridge regression methods, even for very small values of �.



Julien M. Hendrickx, Alex Olshevsky, Venkatesh Saligrama

0 1000 2000 3000 4000
iterations

100

102

104 Log LS
Log LS unweighted
Markov Chain
Alt Min-SVD
Alt Min-Random
Propagation

0 1000 2000 3000 4000
iterations

100

102

104 Log LS
Log LS unweighted
Markov Chain
Alt Min-SVD
Alt Min-Random
Propagation

(a) (b)

Figure 5: Evolution with the number of iterations of the average error (with the variance in (a) and 80% Error
Margins (b)) on “Star-Graph” Sampling (3 columns and 3 rows), for the Alt-Min-SVD and Alt-Min-Random
methods, compared with the performance of non-iterative methods.


