A Details of Uniform Sampling Lower Bound

In this section we repeat the statement of Theorem 5 and give a full proof.
Theorem 5. Assume that the loss function is either logistic regression or SVM, and the regularizer is the 2-norm squared. Let $\epsilon, \gamma \in(0,1)$ be arbitrary. For all sufficiently large n, there exist an instance I_{n} of n points such that with probability at least $1-1 / n^{\gamma / 2}$ it will be the case that for a uniform sample C of $c=$ $n^{1-\gamma} / \lambda$ points, there is no weighting U that will result in an ϵ-coreset.

Proof. The instance I_{n} consists of points located on the real line, so the dimension $d=1$. A collection A of $n-\left(\lambda n^{\gamma / 2}\right)$ points is located at +1 , and the remaining $\lambda n^{\gamma / 2}$ points are located at -1 , call this collection of points B. All points are labeled +1 . Note $R=1$.

Let C be the random sample of c points, and U an arbitrary weighting of the points in C. Note that U may depend on the instantiation of C. Our goal is to show that (C, U) is not an ϵ-coreset. Our proof strategy is to first show that its likely that C contains only points from A. Then we want to show that, conditioned on $C \subseteq A$, that C can not be a core set for any possible weighting. We accomplish this by showing that the limit as n approaches infinity of the lefthand size of the definition of coreset in equation (2) must be 1 .

We now show that one can use a standard union bound to establish that it is likely that $C \subseteq A$. To accomplish this let E_{i} be the probability that the the $i^{t h}$ point selected to be in C is not in A.

$$
\begin{aligned}
& \operatorname{Pr}[C \subseteq A]=1-\operatorname{Pr}\left[\vee_{i \in C} E_{i}\right] \geq 1-|C| \frac{|B|}{n} \\
& =1-\frac{n^{1-\gamma}}{\lambda} \frac{\lambda n^{\gamma / 2}}{n}=1-\frac{1}{n^{\gamma / 2}}
\end{aligned}
$$

Now we show if $C \subseteq A$ and n is large enough, then (C, U) cannot be an ϵ-coreset for any collection U of weights. To accomplish this consider the the hypothesis $\beta_{0}=n^{\gamma / 4}$. From the definition of coreset, it is sufficient to show that $H\left(\beta_{0}\right)$, defined as,

$$
\begin{equation*}
H\left(\beta_{0}\right)=\frac{\left|\sum_{i \in P} f_{i}\left(\beta_{0}\right)-\sum_{i \in C} u_{i} f_{i}\left(\beta_{0}\right)\right|}{\sum_{i \in P} f_{i}\left(\beta_{0}\right)} \tag{4}
\end{equation*}
$$

is greater than ϵ. We accomplish this by showing that the limit as n goes to infinity of $H\left(\beta_{0}\right)$ is 1 . Applying Condition 1 we can conclude that

$$
\begin{equation*}
H\left(\beta_{0}\right) \geq \frac{\left|\sum_{i \in P} \ell_{i}\left(\beta_{0}\right)-\sum_{i \in C} u_{i} \ell_{i}\left(\beta_{0}\right)\right|-\epsilon \lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in P} \ell_{i}\left(\beta_{0}\right)+\lambda\left\|\beta_{0}\right\|_{2}^{2}} \tag{5}
\end{equation*}
$$

Then, using the fact that A and B is a partition of the points and $C \subseteq A$ we can conclude that

$$
\begin{align*}
& H\left(\beta_{0}\right) \geq \\
& \frac{\left|\sum_{i \in A} \ell_{i}\left(\beta_{0}\right)+\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)-\sum_{i \in C} u_{i} \ell_{i}\left(\beta_{0}\right)\right|-\epsilon \lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in A} \ell_{i}\left(\beta_{0}\right)+\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)+\lambda\left\|\beta_{0}\right\|_{2}^{2}} \\
& =\frac{\left|\frac{\sum_{i \in A} \ell_{i}\left(\beta_{0}\right)}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)}+1-\frac{\sum_{i \in C} u_{i} \ell_{i}\left(\beta_{0}\right)}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)}\right|-\frac{\epsilon \lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)}}{\frac{\sum_{i \in A} \ell_{i}\left(\beta_{0}\right)}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)}+1+\frac{\lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)}} \tag{6}
\end{align*}
$$

We now need to bound various terms in equation (6). Let us first consider logistic regression. Note that
$\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)=|B| \log \left(1+\exp \left(n^{\gamma / 4}\right)\right) \geq|B| n^{\gamma / 4}=\lambda n^{3 \gamma / 4}$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)} \leq \lim _{n \rightarrow \infty} \frac{\lambda n^{\gamma / 2}}{\lambda n^{3 \gamma / 4}}=0 \tag{8}
\end{equation*}
$$

Also note that

$$
\begin{align*}
& \lim _{n \rightarrow \infty} \sum_{i \in A} \ell_{i}\left(\beta_{0}\right) \tag{9}\\
& =\lim _{n \rightarrow \infty}|A| \log \left(1+\exp \left(-n^{\gamma / 4}\right)\right) \tag{10}\\
& \leq \lim _{n \rightarrow \infty} n \exp \left(-n^{\gamma / 4}\right)=0 \tag{11}
\end{align*}
$$

Finally, by Observation 1, we have,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i \in C} u_{i} \ell_{i}\left(\beta_{0}\right) \leq \lim _{n \rightarrow \infty}(1+\epsilon) n \exp \left(-n^{\gamma / 4}\right)=0 \tag{12}
\end{equation*}
$$

Combining equations (7), (8), (9), and (12), we the expression in equation (6) converges to 1 as $n \rightarrow \infty$. Thus for sufficiently large $n, H\left(\beta_{0}\right)>\epsilon$ and thus (C, U) is not an ϵ-coreset.

We now need to bound various terms in equation (6) for SVM. First note that

$$
\begin{equation*}
\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)=|B|\left(1+n^{\gamma / 4}\right) \geq|B| n^{\gamma / 4}=\lambda n^{3 \gamma / 4} \tag{13}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\lambda\left\|\beta_{0}\right\|_{2}^{2}}{\sum_{i \in B} \ell_{i}\left(\beta_{0}\right)} \leq \lim _{n \rightarrow \infty} \frac{\lambda n^{\gamma / 2}}{\lambda n^{3 \gamma / 4}}=0 \tag{14}
\end{equation*}
$$

Also note that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i \in A} \ell_{i}\left(\beta_{0}\right)=\lim _{n \rightarrow \infty}|A| \max \left(0,1-n^{\gamma / 4}\right)=0 \tag{15}
\end{equation*}
$$

Finally, by Observation 1, we have that:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \sum_{i \in C} u_{i} \ell_{i}\left(\beta_{0}\right) \leq \lim _{n \rightarrow \infty}(1+\epsilon) n \max \left(0,1-n^{\gamma / 4}\right)=0 \tag{16}
\end{equation*}
$$

Combining equations (13), (14), (15), and (16), we the expression in equation (6) converges to 1 as $n \rightarrow \infty$. Thus for sufficiently large $n, H\left(\beta_{0}\right)>\epsilon$ and thus (C, U) is not an ϵ-coreset.

B Details of General Lower Bound on Coreset Size

B. 1 Logistic Regression

Proof of Observation 9:
Proof. It is well known that

$$
d_{i}=\frac{\left|\left(\beta_{x}, \beta_{y}\right) \cdot x_{i}+\beta_{z}\right|}{\sqrt{\beta_{x}^{2}+\beta_{y}^{2}}}
$$

Therefore,

$$
\left|\left(\beta_{x}, \beta_{y}\right) \cdot x_{i}+\beta_{z}\right|=d_{i} \sqrt{\beta_{x}^{2}+\beta_{y}^{2}} \leq\left\|\beta_{A}\right\| d_{i}
$$

Now we need to show $\left\|\beta_{A}\right\| d_{i} / 2 \leq\left|\left(\beta_{x}, \beta_{y}\right) \cdot x_{i}+\beta_{z}\right|$. Note that there are two points (points adjacent to A) $x_{j}=\left(a^{\prime}, b^{\prime}\right)$ for which $\left(\beta_{x}, \beta_{y}\right) \cdot x_{j}+\beta_{z}=0$. Consider one of them. We have:

$$
\begin{aligned}
0 & =\beta_{x} a^{\prime}+\beta_{y} b^{\prime}+\beta_{z} \\
& \geq \beta_{z}-\left|\beta_{x} a^{\prime}+\beta_{y} b^{\prime}\right| \\
& \geq \beta_{z}-\sqrt{\beta_{x}^{2}+\beta_{y}^{2}} \sqrt{a^{\prime 2}+b^{\prime 2}}
\end{aligned}
$$

Since the points are over a circle of size 1 we have $\sqrt{a^{\prime 2}+b^{\prime 2}}=1$. Therefore,

$$
\beta_{x}^{2}+\beta_{y}^{2} \geq \beta_{z}^{2}
$$

So we can conclude:

$$
\left|\left(\beta_{x}, \beta_{y}\right) \cdot x_{i}+\beta_{z}\right|=d_{i} \sqrt{\beta_{x}^{2}+\beta_{y}^{2}} \geq \frac{d_{i}}{\sqrt{2}}\left\|\beta_{A}\right\| \geq \frac{d_{i}}{2}\left\|\beta_{A}\right\|
$$

Remaining Proof of Lemma 8:

Proof. Using the Taylor expansion of $\cos (x)=$ $\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i}}{(2 i)!}=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$, we have $\cos \left(\frac{\pi}{4 k}\right)-$ $\cos \left(\frac{\pi}{2 k}\right) \geq \frac{1}{2}\left(\left(\frac{\pi}{2 k}\right)^{2}-\left(\frac{\pi}{4 k}\right)^{2}\right)-O\left(\frac{1}{k^{4}}\right)=\left(\frac{3 \pi^{2}}{32 k^{2}}\right)-O\left(\frac{1}{k^{4}}\right)$. Plugging this inequality, we derive

$$
\frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)}
$$

$$
\begin{aligned}
& \leq \frac{\sum_{x_{i} \in C} u_{i} \exp \left(-\frac{\left\|\beta_{A}\right\|}{2}\left(\left(\frac{3 \pi^{2}}{32 k^{2}}\right)-O\left(\frac{1}{k^{4}}\right)\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)} \\
& =\frac{\sum_{x_{i} \in C} u_{i} \exp \left(-\frac{n^{2 / 5}}{2 \sqrt{c} \lambda^{2 / 5}}\left(\frac{3 \pi^{2} \lambda^{2 / 5}}{32 c^{2} n^{2 / 5-2 \gamma}}-O\left(\frac{\lambda^{4 / 5}}{n^{4 / 5-4 \gamma}}\right)\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)} \\
& =\frac{\sum_{x_{i} \in C} u_{i} \exp \left(-\alpha n^{2 \gamma}+O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}
\end{aligned}
$$

where $\alpha>0$ is a constant. Since all the points in A are miss-classified, we have $\ell_{i}\left(\beta_{A}\right) \geq \log 2$ for all of them. Using this fact and Observation 1, we have:

$$
\frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)} \leq \frac{(1+\epsilon) n \exp \left(-\alpha n^{2 \gamma}+O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)}{\frac{n}{4 k} \log 2}
$$

Finally, using the fact that $k=c \frac{n^{1 / 5-\gamma}}{\lambda^{1 / 5}}$ and taking the limit, we conclude:

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)} \\
& \leq \lim _{n \rightarrow \infty} \frac{4 k(1+\epsilon) \exp \left(-\alpha n^{2 \gamma}+O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)}{\log 2}=0
\end{aligned}
$$

B. 2 SVM

For the sake of contradiction, suppose an ϵ-coreset (C, u) of size k, as stated in Theorem 6, exists for the circle instance. We fix A to be a chunk. Similar to logistic regression, we set β_{A} as the parameters of the linear SVM that separates A from P / A such that the model predicts A incorrectly and predicts the points P / A as positive correctly and $\left\|\beta_{A}\right\|_{2}=$ $\sqrt{\frac{n^{1-\gamma}}{k \lambda}}=\frac{n^{2 / 5}}{\sqrt{c} \lambda^{2 / 5}}$.

Our goal is to show Eqn. (2) tends to 1 as n grows to infinity. We can break the cost function of Linear SVM into two parts:

$$
F_{P, 1}\left(\beta_{A}\right):=\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)+2 \lambda\left\|\beta_{A}\right\|_{2}^{2}
$$

where $\ell_{i}\left(\beta_{A}\right)=\max \left(1-\beta_{A} x_{i} y_{i}, 0\right)=\max (1-$ $\left.\left(\left(\beta_{x}, \beta_{y}\right) \cdot x_{i}+\beta_{z}\right) y_{i}, 0\right)$. Then, we determine the limit of the following quantities as n grows to infinity.
Lemma 11. For the circle instance P, if (C, u) is an ϵ-coreset of P with size $k=c \frac{n^{1 / 5-\gamma}}{\lambda^{1 / 5}}$ for linear SVM, and A is a chunk, then we have,

1. $\lim _{n \rightarrow \infty} \frac{\lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)}=0$;
2. $\lim _{n \rightarrow \infty} \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in P} \ell_{i}\left(\beta_{A}\right)}=0$.

Using this lemma, which we will prove soon, we can prove Theorem 6 for the linear SVM: The definition of coreset allows us to choose any β, so we can set $\beta=\beta_{A}$ for a chunk A. Then, by Observation 1, Eqn. (2) simplifies to:

$$
\begin{aligned}
& \frac{\left|\sum_{x_{i} \in X} f_{i}\left(\beta_{A}\right)-\sum_{x_{i} \in C} u_{i} f_{i}\left(\beta_{A}\right)\right|}{\sum_{x_{i} \in X} f_{i}\left(\beta_{A}\right)} \\
& \geq \frac{\left|\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)-\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)\right|-2 \epsilon \lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)+\lambda\left\|\beta_{A}\right\|_{2}^{2}} \\
& =\frac{\left|1-\frac{\sum_{x_{i} \in C} u_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)}\right|-\frac{2 \epsilon \lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)}}{1+\frac{\lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)}},
\end{aligned}
$$

which tends to 1 as $n \rightarrow \infty$ by Lemma 11. This implies that (C, u) is not an ϵ-coreset for the circle instance, which is a contradiction. This completes the proof of Theorem 6 for SVM.

Proof of Lemma 11

The remainder of this section is devoted to proving Lemma 11. The proof is very similar to the proof of Lemma 7 and 8.

Proof. of Claim 1 in Lemma 11 We know for all points in $A, \ell_{i}\left(\beta_{A}\right) \geq 1$ this is because all of them have been incorrectly classified. We also know that since A is a chunk, $|A|=\frac{n}{4 k}$.

Therefore

$$
\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right) \geq \frac{n}{4 k}
$$

We also know $\left\|\beta_{A}\right\|_{2}=\sqrt{\frac{n^{1-\gamma}}{k \lambda}}$, so we can conclude
$\frac{\lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)} \leq \frac{\lambda\left\|\beta_{A}\right\|_{2}^{2}}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)} \leq \frac{\lambda\left\|\beta_{A}\right\|_{2}^{2}}{\frac{n}{4 k}}=\frac{\lambda \frac{n^{1-\gamma}}{k \lambda}}{\frac{n}{4 k}}=\frac{4}{n^{\gamma}}$
The lemma follows by taking the limit of the above inequality.

Proof. of Claim 2 in Lemma 11. Using Observation 9 and the fact that all the points in the coreset are predicted correctly by β_{A} we have:

$$
\frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)} \leq \frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\frac{\left\|\beta_{A}\right\| d_{i}}{2}\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}
$$

Then, by Observation 10 we have

$$
\begin{aligned}
& \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)} \\
& \leq \frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\frac{\left\|\beta_{A}\right\|}{2}\left(\cos \theta-\cos \theta_{i}\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}
\end{aligned}
$$

By definition of chunk, we know all the points in C are at least $\frac{n}{4 k}$ away from the center of A, which means the closest point in C to chunk A is at least $\frac{n}{8 k}$ points away, we have $\theta_{i} \geq \theta+\frac{2 \pi}{n} \frac{n}{8 k}=\frac{\pi}{2 k}$. Therefore,

$$
\begin{aligned}
& \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)} \\
& \leq \frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\frac{\left\|\beta_{A}\right\|}{2}\left(\cos \frac{\pi}{4 k}-\cos \frac{\pi}{2 k}\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}
\end{aligned}
$$

Using the Taylor expansion of $\cos (x)=\sum_{i=0}^{\infty}(-1)^{i} \frac{x^{2 i}}{(2 i)!}=$ $1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\ldots$, we have,

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4 k}\right)-\cos \left(\frac{\pi}{2 k}\right) \\
& \geq \frac{1}{2}\left(\left(\frac{\pi}{2 k}\right)^{2}-\left(\frac{\pi}{4 k}\right)^{2}\right)-O\left(\frac{1}{k^{4}}\right)=\left(\frac{3 \pi^{2}}{32 k^{2}}\right)-O\left(\frac{1}{k^{4}}\right)
\end{aligned}
$$

Therefore, we derive,

$$
\begin{aligned}
& \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)} \\
& \leq \frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\frac{\left\|\beta_{A}\right\|}{2}\left(\left(\frac{3 \pi^{2}}{32 k^{2}}\right)-O\left(\frac{1}{k^{4}}\right)\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)} \\
& =\frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\frac{n^{2 / 5}}{2 c \lambda^{2 / 5}}\left(\frac{3 \pi^{2} \lambda^{2 / 5}}{32 c n^{2 / 5-2 \gamma}}-O\left(\frac{\lambda^{4 / 5}}{n^{4 / 5-4 \gamma}}\right)\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)} \\
& =\frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\alpha n^{2 \gamma}+O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}
\end{aligned}
$$

For large enough n, we have $\max \left(0,1-\alpha n^{2 \gamma}+\right.$ $\left.O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)=0$. Therefore, by taking the limit we have:

$$
\lim _{n \rightarrow \infty} \frac{\sum_{x_{i} \in C} u_{i} \ell_{i}\left(\beta_{A}\right)}{\sum_{x_{i} \in X} \ell_{i}\left(\beta_{A}\right)}
$$

$$
\leq \lim _{n \rightarrow \infty} \frac{\sum_{x_{i} \in C} u_{i} \max \left(0,1-\alpha n^{2 \gamma}+O\left(\frac{\lambda^{2 / 5}}{n^{2 / 5-4 \gamma}}\right)\right)}{\sum_{x_{i} \in A} \ell_{i}\left(\beta_{A}\right)}=0
$$

