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A Details of Uniform Sampling Lower
Bound

In this section we repeat the statement of Theorem 5
and give a full proof.

Theorem 5. Assume that the loss function is either
logistic regression or SVM, and the regularizer is the
2-norm squared. Let e,y € (0,1) be arbitrary. For
all sufficiently large n, there exist an instance I, of n
points such that with probability at least 1 — 1/717/2 it
will be the case that for a uniform sample C' of ¢ =
n'=7 /X points, there is no weighting U that will result
1 an e-coreset.

Proof. The instance I, consists of points located on
the real line, so the dimension d = 1. A collection A of
n— (An7/?) points is located at +1, and the remaining
An7/2 points are located at —1, call this collection of
points B. All points are labeled +1. Note R = 1.

Let C be the random sample of ¢ points, and U an ar-
bitrary weighting of the points in C'. Note that U may
depend on the instantiation of C. Our goal is to show
that (C,U) is not an e-coreset. Our proof strategy is
to first show that its likely that C' contains only points
from A. Then we want to show that, conditioned on
C C A, that C can not be a core set for any possible
weighting. We accomplish this by showing that the
limit as n approaches infinity of the lefthand size of
the definition of coreset in equation (2) must be 1.

‘We now show that one can use a standard union bound
to establish that it is likely that C' C A. To accomplish
this let F; be the probability that the the i*" point
selected to be in C' is not in A.
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Now we show if C' C A and n is large enough, then
(C,U) cannot be an e-coreset for any collection U of
weights. To accomplish this consider the the hypoth-
esis By = n?/*. From the definition of coreset, it is
sufficient to show that H(5y), defined as,

H(B) = |D icp fi(zﬁjo,) ;J%EES u; fi(Bo)| )

is greater than e. We accomplish this by showing that
the limit as n goes to infinity of H(8y) is 1. Applying
Condition 1 we can conclude that
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Then, using the fact that A and B is a partition of the
points and C' C A we can conclude that
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We now need to bound various terms in equation (6).
Let us first consider logistic regression. Note that

3" 4i(Bo) = |Bllog(1 + exp(n?/*)) > | Bln/* = xn®1/*
1€B

(7)
Therefore,
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Also note that

Jim > 4i(Bo) (9)
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Finally, by Observation 1, we have,

Jim Y witi(fo) < lim (14 enexp(—n"/*) =0
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Combining equations (7), (8), (9), and (12), we the
expression in equation (6) converges to 1 as n — oo.
Thus for sufficiently large n, H(8y) > eand thus (C,U)
is not an e-coreset.

We now need to bound various terms in equation (6)
for SVM. First note that

3" (Bo) = |BI(L+ 074 > |BIn?/* = a1/t (13)
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Therefore,
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Also note that
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Finally, by Observation 1, we have that:
lim Zu i (Bo) < hm (1 + e)nmax(0,1 — n?/4) =

n—00
eC
(16)

Combining equations (13), (14), (15), and (16), we the
expression in equation (6) converges to 1 as n — oo.
Thus for sufficiently large n, H(8p) > eand thus (C,U)
is not an e-coreset. O

B Details of General Lower Bound on
Coreset Size

B.1 Logistic Regression

Proof of Observation 9:

Proof. 1t is well known that
(B, By) - i + Be|

\/ B2+ B2
Therefore,
(B, By) - i + B| = din/ B2 + B5 < [|Ball di

Now we need to show |84l di/2 < |(Bs, By) - i + B2]-
Note that there are two points (points adjacent to A)
zj = (a’,b’) for which (8, By) - x; + 5. = 0. Consider
one of them. We have:
0= Ba:a/ + 6yb/ + ﬁz
Z ﬁz - |Ba:a/ + Byb/|

> B — /B2 + B2V @ + b

Since the points are over a circle of size 1 we have

Va2 +1'2 = 1. Therefore,
B2+ By > B2

d; =

So we can conclude:

|(Ba, By) - i + B:| = din/ B2 + B3 =

d;
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Remaining Proof of Lemma 8:

Proof. Using the Taylor expansion of cos(z

o0
=1- 21+4|*

> (-1)igs
- O(3) = (35

i=0
cos(g) 2 5((35)* = (%))
Plugging this inequality, we derive
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where o > 0 is a constant. Since all the points in A are
miss-classified, we have ¢;(54) > log2 for all of them.
Using this fact and Observation 1, we have:
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Finally, using the fact that k = c*577—

limit, we conclude:
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B.2 SVM

For the sake of contradiction, suppose an e-coreset
(C,u) of size k, as stated in Theorem 6, exists for
the circle instance. We fix A to be a chunk. Sim-
ilar to logistic regression, we set 54 as the parame-
ters of the linear SVM that separates A from P/A
such that the model predicts A incorrectly and pre-
dicts the points P/A as positive correctly and |||, =
nl=v _  n?/5
= Jexa/se

Our goal is to show Eqn. (2) tends to 1 as n grows
to infinity. We can break the cost function of Linear
SVM into two parts:

Fpi(Ba) =Y Li(Ba) +2) Bl

z,€P

where ¢;(84) = max(l — fax;y;,0) = max(l —
((Bzs By) - i + B2)v:,0). Then, we determine the limit

of the following quantities as n grows to infinity.
Lemma 11. For the circle instance P, if (C,u) is an
e-coreset of P with size k = ¢ for linear SVM,

and A is a chunk, then we have,
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Using this lemma, which we will prove soon, we can
prove Theorem 6 for the linear SVM: The definition
of coreset allows us to choose any 3, so we can set
B = B4 for a chunk A. Then, by Observation 1, Eqn.
(2) simplifies to:
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which tends to 1 as n — oo by Lemma 11. This implies
that (C,u) is not an e-coreset for the circle instance,
which is a contradiction. This completes the proof of
Theorem 6 for SVM.

Proof of Lemma 11

The remainder of this section is devoted to proving
Lemma 11. The proof is very similar to the proof of
Lemma 7 and 8.

Proof. of Claim 1 in Lemma 11 We know for all
points in A, £;(84) > 1 this is because all of them
have been incorrectly classified. We also know that
since A is a chunk, |A| = 7;

Therefore
n
Z fz‘(ﬁA) > @
T, EA
We also know [|Ball, = 4/ ch , 50 we can conclude
MBall, MiBaly  _ AlBally _ M _ 4
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The lemma follows by taking the limit of the above
inequality. O

Proof. of Claim 2 in Lemma 11. Using Observation
9 and the fact that all the points in the coreset are
predicted correctly by B4 we have:

> uili(Ba) > u; max (0,1_HﬁA72Hdi)
z,€C z,€C

> Li(Ba) S 0;(Ba)

z,€X €A

Then, by Observation 10 we have
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By definition of chunk, we know all the points in C' are
at least g7 away from the center of A, which means the
closest point in C' to chunk A is at least g points away,

we have 6; > 0 + %’Tﬁ = 2. Therefore,
> uili(Ba)
x,€C
> Li(Ba)
x, €X
> u; max (0, 15l 2 (cos - — cos 7))

< z,€C

B > ti(Ba)

T, EA

o0 .
Using the Taylor expansion of cos(z) = Y (—1)" &~ =
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Therefore, we derive,
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For large enough n, we have max (O,l — an?® +
O(n;\/zi/jh)) = 0. Therefore, by taking the limit we
have:
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