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A Details of Uniform Sampling Lower
Bound

In this section we repeat the statement of Theorem 5
and give a full proof.

Theorem 5. Assume that the loss function is either
logistic regression or SVM, and the regularizer is the
2-norm squared. Let ε, γ ∈ (0, 1) be arbitrary. For
all sufficiently large n, there exist an instance In of n
points such that with probability at least 1− 1/nγ/2 it
will be the case that for a uniform sample C of c =
n1−γ/λ points, there is no weighting U that will result
in an ε-coreset.

Proof. The instance In consists of points located on
the real line, so the dimension d = 1. A collection A of
n− (λnγ/2) points is located at +1, and the remaining
λnγ/2 points are located at −1, call this collection of
points B. All points are labeled +1. Note R = 1.

Let C be the random sample of c points, and U an ar-
bitrary weighting of the points in C. Note that U may
depend on the instantiation of C. Our goal is to show
that (C,U) is not an ε-coreset. Our proof strategy is
to first show that its likely that C contains only points
from A. Then we want to show that, conditioned on
C ⊆ A, that C can not be a core set for any possible
weighting. We accomplish this by showing that the
limit as n approaches infinity of the lefthand size of
the definition of coreset in equation (2) must be 1.

We now show that one can use a standard union bound
to establish that it is likely that C ⊆ A. To accomplish
this let Ei be the probability that the the ith point
selected to be in C is not in A.

Pr[C ⊆ A] = 1− Pr
[
∨i∈C Ei

]
≥ 1− |C| |B|

n

= 1− n1−γ

λ

λnγ/2

n
= 1− 1

nγ/2

Now we show if C ⊆ A and n is large enough, then
(C,U) cannot be an ε-coreset for any collection U of
weights. To accomplish this consider the the hypoth-
esis β0 = nγ/4. From the definition of coreset, it is
sufficient to show that H(β0), defined as,

H(β0) =
|
∑
i∈P fi(β0)−

∑
i∈C uifi(β0)|∑

i∈P fi(β0)
(4)

is greater than ε. We accomplish this by showing that
the limit as n goes to infinity of H(β0) is 1. Applying
Condition 1 we can conclude that

H(β0) ≥
|
∑
i∈P `i(β0)−

∑
i∈C ui`i(β0)| − ελ ‖β0‖22∑

i∈P `i(β0) + λ ‖β0‖22
(5)

Then, using the fact that A and B is a partition of the
points and C ⊆ A we can conclude that

H(β0) ≥
|
∑
i∈A `i(β0) +

∑
i∈B `i(β0)−

∑
i∈C ui`i(β0)| − ελ ‖β0‖22∑

i∈A `i(β0) +
∑
i∈B `i(β0) + λ ‖β0‖22

=

∣∣∣∑i∈A `i(β0)∑
i∈B `i(β0)

+ 1−
∑
i∈C ui`i(β0)∑
i∈B `i(β0)

∣∣∣− ελ‖β0‖22∑
i∈B `i(β0)∑

i∈A `i(β0)∑
i∈B `i(β0)

+ 1 +
λ‖β0‖22∑
i∈B `i(β0)

(6)

We now need to bound various terms in equation (6).
Let us first consider logistic regression. Note that∑
i∈B

`i(β0) = |B| log(1 + exp(nγ/4)) ≥ |B|nγ/4 = λn3γ/4

(7)

Therefore,

lim
n→∞

λ ‖β0‖22∑
i∈B `i(β0)

≤ lim
n→∞

λnγ/2

λn3γ/4
= 0 (8)

Also note that

lim
n→∞

∑
i∈A

`i(β0) (9)

= lim
n→∞

|A| log(1 + exp(−nγ/4)) (10)

≤ lim
n→∞

n exp(−nγ/4) = 0 (11)

Finally, by Observation 1, we have,

lim
n→∞

∑
i∈C

ui`i(β0) ≤ lim
n→∞

(1 + ε)n exp(−nγ/4) = 0

(12)

Combining equations (7), (8), (9), and (12), we the
expression in equation (6) converges to 1 as n → ∞.
Thus for sufficiently large n, H(β0) > εand thus (C,U)
is not an ε-coreset.

We now need to bound various terms in equation (6)
for SVM. First note that∑
i∈B

`i(β0) = |B|(1 + nγ/4) ≥ |B|nγ/4 = λn3γ/4 (13)

Therefore,

lim
n→∞

λ ‖β0‖22∑
i∈B `i(β0)

≤ lim
n→∞

λnγ/2

λn3γ/4
= 0 (14)

Also note that

lim
n→∞

∑
i∈A

`i(β0) = lim
n→∞

|A|max(0, 1− nγ/4) = 0 (15)
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Finally, by Observation 1, we have that:

lim
n→∞

∑
i∈C

ui`i(β0) ≤ lim
n→∞

(1 + ε)nmax(0, 1− nγ/4) = 0

(16)

Combining equations (13), (14), (15), and (16), we the
expression in equation (6) converges to 1 as n → ∞.
Thus for sufficiently large n, H(β0) > εand thus (C,U)
is not an ε-coreset.

B Details of General Lower Bound on
Coreset Size

B.1 Logistic Regression

Proof of Observation 9:

Proof. It is well known that

di =
|(βx, βy) · xi + βz|√

β2
x + β2

y

Therefore,

|(βx, βy) · xi + βz| = di

√
β2
x + β2

y ≤ ‖βA‖ di

Now we need to show ‖βA‖ di/2 ≤ |(βx, βy) · xi + βz|.
Note that there are two points (points adjacent to A)
xj = (a′, b′) for which (βx, βy) · xj + βz = 0. Consider
one of them. We have:

0 = βxa
′ + βyb

′ + βz

≥ βz − |βxa′ + βyb
′|

≥ βz −
√
β2
x + β2

y

√
a′2 + b′2

Since the points are over a circle of size 1 we have√
a′2 + b′2 = 1. Therefore,

β2
x + β2

y ≥ β2
z

So we can conclude:

|(βx, βy) · xi + βz| = di

√
β2
x + β2

y ≥
di√

2
‖βA‖ ≥

di
2
‖βA‖

Remaining Proof of Lemma 8:

Proof. Using the Taylor expansion of cos(x) =
∞∑
i=0

(−1)i x
2i

(2i)! = 1 − x2

2! + x4

4! − . . . , we have cos( π4k ) −

cos( π2k ) ≥ 1
2

(
( π2k )2− ( π4k )2

)
−O( 1

k4 ) = ( 3π2

32k2 )−O( 1
k4 ).

Plugging this inequality, we derive∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)

≤

∑
xi∈C

ui exp(−‖βA‖2 (( 3π2

32k2 )−O( 1
k4 )))∑

xi∈A
`i(βA)

=

∑
xi∈C

ui exp(− n2/5

2
√
cλ2/5 ( 3π2λ2/5

32c2n2/5−2γ −O( λ4/5

n4/5−4γ )))∑
xi∈A

`i(βA)

=

∑
xi∈C

ui exp(−αn2γ +O( λ2/5

n2/5−4γ ))∑
xi∈A

`i(βA)
,

where α > 0 is a constant. Since all the points in A are
miss-classified, we have `i(βA) ≥ log 2 for all of them.
Using this fact and Observation 1, we have:∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)
≤

(1 + ε)n exp(−αn2γ +O( λ2/5

n2/5−4γ ))
n
4k log 2

Finally, using the fact that k = cn
1/5−γ

λ1/5 and taking the
limit, we conclude:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA)

≤ lim
n→∞

4k(1 + ε) exp(−αn2γ +O( λ2/5

n2/5−4γ ))

log 2
= 0

B.2 SVM

For the sake of contradiction, suppose an ε-coreset
(C, u) of size k, as stated in Theorem 6, exists for
the circle instance. We fix A to be a chunk. Sim-
ilar to logistic regression, we set βA as the parame-
ters of the linear SVM that separates A from P/A
such that the model predicts A incorrectly and pre-
dicts the points P/A as positive correctly and ‖βA‖2 =√

n1−γ

kλ = n2/5
√
cλ2/5 .

Our goal is to show Eqn. (2) tends to 1 as n grows
to infinity. We can break the cost function of Linear
SVM into two parts:

FP,1(βA) :=
∑
xi∈P

`i(βA) + 2λ ‖βA‖22

where `i(βA) = max(1 − βAxiyi, 0) = max(1 −
((βx, βy) · xi + βz)yi, 0). Then, we determine the limit
of the following quantities as n grows to infinity.

Lemma 11. For the circle instance P , if (C, u) is an

ε-coreset of P with size k = cn
1/5−γ

λ1/5 for linear SVM,
and A is a chunk, then we have,
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1. lim
n→∞

λ‖βA‖22∑
xi∈P

`i(βA) = 0;

2. lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈P

`i(βA) = 0.

Using this lemma, which we will prove soon, we can
prove Theorem 6 for the linear SVM: The definition
of coreset allows us to choose any β, so we can set
β = βA for a chunk A. Then, by Observation 1, Eqn.
(2) simplifies to:

|
∑
xi∈X fi(βA)−

∑
xi∈C uifi(βA)|∑

xi∈X fi(βA)

≥
|
∑
xi∈X `i(βA)−

∑
xi∈C ui`i(βA)| − 2ελ ‖βA‖22∑

xi∈X `i(βA) + λ ‖βA‖22

=
|1−

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA) | −
2ελ‖βA‖22∑
xi∈X

`i(βA)

1 +
λ‖βA‖22∑
xi∈X

`i(βA)

,

which tends to 1 as n→∞ by Lemma 11. This implies
that (C, u) is not an ε-coreset for the circle instance,
which is a contradiction. This completes the proof of
Theorem 6 for SVM.

Proof of Lemma 11

The remainder of this section is devoted to proving
Lemma 11. The proof is very similar to the proof of
Lemma 7 and 8.

Proof. of Claim 1 in Lemma 11 We know for all
points in A, `i(βA) ≥ 1 this is because all of them
have been incorrectly classified. We also know that
since A is a chunk, |A| = n

4k .

Therefore ∑
xi∈A

`i(βA) ≥ n

4k

We also know ‖βA‖2 =
√

n1−γ

kλ , so we can conclude

λ ‖βA‖22∑
xi∈X

`i(βA)
≤

λ ‖βA‖22∑
xi∈A

`i(βA)
≤
λ ‖βA‖22

n
4k

=
λn

1−γ

kλ
n
4k

=
4

nγ

The lemma follows by taking the limit of the above
inequality.

Proof. of Claim 2 in Lemma 11. Using Observation
9 and the fact that all the points in the coreset are
predicted correctly by βA we have:∑

xi∈C
ui`i(βA)∑

xi∈X
`i(βA)

≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖di2

)
∑
xi∈A

`i(βA)

Then, by Observation 10 we have∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖2 (cos θ − cos θi)

)
∑
xi∈A

`i(βA)

By definition of chunk, we know all the points in C are
at least n

4k away from the center of A, which means the
closest point in C to chunk A is at least n

8k points away,
we have θi ≥ θ + 2π

n
n
8k = π

2k . Therefore,∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖2 (cos π

4k − cos π
2k )
)

∑
xi∈A

`i(βA)

Using the Taylor expansion of cos(x) =
∞∑
i=0

(−1)i x
2i

(2i)! =

1− x2

2! + x4

4! − . . . , we have,

cos(
π

4k
)− cos(

π

2k
)

≥ 1

2

(
(
π

2k
)2 − (

π

4k
)2
)
−O(

1

k4
) = (

3π2

32k2
)−O(

1

k4
)

Therefore, we derive,∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)

≤

∑
xi∈C

ui max
(
0, 1− ‖βA‖2 (( 3π2

32k2 )−O( 1
k4 ))

)
∑
xi∈A

`i(βA)

=

∑
xi∈C

ui max
(
0, 1− n2/5

2cλ2/5 ( 3π2λ2/5

32cn2/5−2γ −O( λ4/5

n4/5−4γ ))
)

∑
xi∈A

`i(βA)

=

∑
xi∈C

ui max
(
0, 1− αn2γ +O( λ2/5

n2/5−4γ )
)

∑
xi∈A

`i(βA)

For large enough n, we have max
(
0, 1 − αn2γ +

O( λ2/5

n2/5−4γ )
)

= 0. Therefore, by taking the limit we
have:

lim
n→∞

∑
xi∈C

ui`i(βA)∑
xi∈X

`i(βA)
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≤ lim
n→∞

∑
xi∈C

ui max
(
0, 1− αn2γ +O( λ2/5

n2/5−4γ )
)

∑
xi∈A

`i(βA)
= 0


